Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/25476
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorHabibi, Saeid-
dc.contributor.authorTawakol, Abdel Rahman-
dc.date.accessioned2020-05-27T18:52:49Z-
dc.date.available2020-05-27T18:52:49Z-
dc.date.issued2020-
dc.identifier.urihttp://hdl.handle.net/11375/25476-
dc.description.abstractThe electrification of transportation is gradually becoming more prominent as it is more efficient and sustainable than conventional transportation alternatives found today. At the centre of this growth is battery testing and research, as they are the primary energy storage devices used to power electric vehicles. With the growing complexity of battery systems, testing and monitoring their performance relies on highly specialized and precise equipment. Furthermore, the use of battery models helps researchers improve their research while reducing the time and costs involved in testing. As such, accurate battery modelling is a critical component in predicting how a battery will behave in specific applications and under various conditions. In this research, a lithium-ion cell is tested extensively, and its performance is characterized across a wide range of operating conditions including temperature, current rates and state of charge (SOC) values. An equivalent circuit model for impedance modelling is proposed, which utilizes constant phase elements represented in the time domain to improve fitting accuracy. This is done concurrently with the development of a state of the art, fully automated battery test system which is showcased throughout the course of the research. In addition to this, an analysis is conducted on the low frequency impedance data used during research, as well as its effect on model accuracy. To provide significance behind the results and relevance to real-world applications, all of the impedance modelling is experimentally validated using temporal drive cycle data. This research was able to demonstrate that the use of a ZARC element can improve the mid-frequency fitting of impedance data relative to a conventionally used modelling approach. It also showcases how the use of low frequency electrochemical impedance spectroscopy (EIS) data can negatively impact the accuracy of impedance modelling.en_US
dc.language.isoenen_US
dc.subjectconstant phase elementsen_US
dc.subjectstate of chargeen_US
dc.subjectbattery characterizationen_US
dc.subjectelectric vehicleen_US
dc.subjectelectrochemical impedance spectroscopyen_US
dc.subjectlithium-ionen_US
dc.titlePerformance Characterization and Modelling of a Lithium-Ion Cell using Electrochemical Impedance Spectroscopyen_US
dc.typeThesisen_US
dc.contributor.departmentMechanical Engineeringen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Applied Science (MASc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Tawakol_Abdel_Rahman_202005_MASc.pdf
Access is allowed from: 2021-05-07
16.97 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue