Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/25321
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorHirota, Jeremy-
dc.contributor.authorKim, Yechan-
dc.date.accessioned2020-03-04T20:56:14Z-
dc.date.available2020-03-04T20:56:14Z-
dc.date.issued2019-
dc.identifier.urihttp://hdl.handle.net/11375/25321-
dc.descriptionMcMaster University MASTER OF SCIENCE (2019) Hamilton, Ontario (Medical Sciences) TITLE: Modulation of cyclic adenosine monophosphate for potentiation of long-acting β2-agonist and glucocorticoids in human airway epithelial cells AUTHOR: Yechan Kim, B.HSc. (McMaster University) SUPERVISOR: Dr. Jeremy Alexander Hirota NUMBER OF PAGES: xiv, 81en_US
dc.description.abstractIn Canada, asthma is the third most common chronic disease resulting in 250 premature deaths annually and related healthcare expenses exceeding $2.1 billion/year. It is estimated that around 50-80% of asthma exacerbations are due to viral infections. Despite an advanced understanding on how to treat and manage the symptoms of asthma, current therapy is sub-optimal in 35-50% of moderate-severe asthmatics around the world resulting in lung inflammation, persistent impairment of lung function, and increased risk of mortality. Combination of long-acting β2 agonists (LABA) for bronchodilation and glucocorticoids (GCS) to control lung inflammation represent the dominant strategy for the management of asthma. Increasing intracellular cyclic adenosine monophosphate (cAMP) beyond existing combination LABA/GCS are likely to be beneficial for the management of difficult to control asthmatics that are hypo-responsive to mainstay therapy. In human airway epithelial cells (HAEC), cAMP is either exported by transporters or broken down by enzymes, such as phosphodiesterase 4 (PDE4). We have demonstrated that HAEC express ATP Binding Cassette Transporter C4 (ABCC4), an extracellular cAMP transporter. We also show that ABCC4 and PDE4 inhibition can potentiate LABA/GCS anti-inflammatory responses in a human epithelial cell line in a cAMP-dependent mechanism validating the pursuit of novel ABCC4 inhibitors as a cAMP elevating agent for asthma.en_US
dc.language.isoenen_US
dc.subjectRespiratoryen_US
dc.subjectImmunologyen_US
dc.subjectATP Binding Cassette Transporter C4en_US
dc.subjectPhosphodiesterase 4en_US
dc.subjectcAMPen_US
dc.subjectLong acting beta agonisten_US
dc.subjectglucocorticoiden_US
dc.subjectasthmaen_US
dc.titleMODULATION OF CYCLIC ADENOSINE MONOPHOSPHATE FOR POTENTIATION OF LONG-ACTING β2-AGONIST AND GLUCOCORTICOIDS IN HUMAN AIRWAY EPITHELIAL CELLSen_US
dc.typeThesisen_US
dc.contributor.departmentHealth Sciencesen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Science in Medical Sciences (MSMS)en_US
dc.description.layabstractAsthma is a common chronic lung disease characterized by narrow and inflamed airways that cause breathing difficulties. Current management includes the combination of bronchodilators, to relax the airway, and steroids, to decrease inflammation. Unfortunately, this combination therapy is suboptimal in 35-50% of users, increasing the risk of asthma attacks, hospitalization rate, and health care costs. Recently, there have been studies theorizing that we can improve the therapy’s ability to decrease inflammation by increasing cAMP, an important molecule for biological activities. We tested this claim by blocking the breakdown and export of cAMP to increase its levels and measured inflammatory cytokines, molecules that direct the action of immune cells. Our results show that in a model of viral infection, administering the combination therapy while increasing cAMP levels can further decrease inflammatory cytokines prompting further investigation for its potential implication in the clinic.en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Kim_Yechan_2019June_MSc.pdf.pdf
Access is allowed from: 2021-03-04
2.25 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue