Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/25302
Title: Global Evaluation of the Escherichia coli Proteome during Stationary Phase
Authors: McFarlane, Nicole
Advisor: Schellhorn, Herb
Department: Biology
Keywords: E. coli;Proteomics;Stationary Phase;Long-term growth;Differential Expression;Tandem Mass Tags;Mass Spectrometry
Publication Date: 2019
Abstract: Escherichia coli survives in both nutrient rich nutrient-limited environments. As such, understanding the gene and protein level activity that occurs during stationary phase is considered an important aspect of bacterial survival. Escherichia coli has been studied for decades providing substantial insight into gene expression profiles in exponential phase and recently, during adaptation to stationary phase. This led to the discovery of RpoS as a growth phase-dependent sigma factor. Further studies indicated that there are many genes that are expressed in an RpoS-independent but stationary phase-specific manner. However, proteins represent the functional molecules of the cell. Additionally, protein expression does not always correlate with the corresponding gene expression patterns. Therefore, to obtain an in depth understanding of the proteins that play a role in long-term growth in E. coli, TMT- (Tandem Mass Tags) based quantitative proteomic analysis was performed to identify proteins that are preferentially expressed during prolonged starvation. We identified proteins that were both positively and negatively regulated by RpoS during stationary phase, such as GadA and TnaA, respectively. RpoS levels peaked during early stationary phase and declined thereafter. However, proteins that were RpoS-dependent continued to increase during prolonged stationary phase. Additionally, we identified proteins that were expressed in an RpoS-independent manner during stationary phase. This suggests that protein expression during early stationary phase is distinct from prolonged stationary phase. Furthermore, RpoS-independent proteins may also play an important role during long-term growth.
URI: http://hdl.handle.net/11375/25302
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
McFarlane_Nicole_CA_2019May_Master of Science.pdf
Access is allowed from: 2020-05-30
2.33 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue