Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/25001
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorKirubarajan, Thia-
dc.contributor.authorLi, Jingqun-
dc.date.accessioned2019-10-07T14:35:27Z-
dc.date.available2019-10-07T14:35:27Z-
dc.date.issued2019-
dc.identifier.urihttp://hdl.handle.net/11375/25001-
dc.descriptionEfficient multi-dimensional assignment algorithms and their application in multi-frame trackingen_US
dc.description.abstractIn this work, we propose a novel convex dual approach to the multidimensional dimensional assignment problem, which is an NP-hard binary programming problem. It is shown that the proposed dual approach is equivalent to the Lagrangian relaxation method in terms of the best value attainable by the two approaches. However, the pure dual representation is not only more elegant, but also makes the theoretical analysis of the algorithm more tractable. In fact, we obtain a su cient and necessary condition for the duality gap to be zero, or equivalently, for the Lagrangian relaxation approach to nd the optimal solution to the assignment problem with a guarantee. Also, we establish a mild and easy-to-check condition, under which the dual problem is equivalent to the original one. In general cases, the optimal value of the dual problem can provide a satisfactory lower bound on the optimal value of the original assignment problem. We then extend the purely dual formulation to handle the more general multidimensional assignment problem. The convex dual representation is derived and its relationship to the Lagrangian relaxation method is investigated once again. Also, we discuss the condition under which the duality gap is zero. It is also pointed out that the process of Lagrangian relaxation is essentially equivalent to one of relaxing the binary constraint condition, thus necessitating the auction search operation to recover the binary constraint. Furthermore, a numerical algorithm based on the dual formulation along with a local search strategy is presented. Finally, the newly proposed algorithm is shown to outperform the Lagrangian relaxation method in a number of multi-target tracking simulations.en_US
dc.language.isoenen_US
dc.subjectBinary programmingen_US
dc.subjectOptimizationen_US
dc.subjectMulti-target trackingen_US
dc.subjectassignment problemen_US
dc.titleEFFICIENT DATA ASSOCIATION ALGORITHMS FOR MULTI-TARGET TRACKINGen_US
dc.typeThesisen_US
dc.contributor.departmentElectrical and Computer Engineeringen_US
dc.description.degreetypeThesisen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Li_Jingqun_201909_PhD.pdf
Open Access
1.86 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue