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Abstract

In this work, we propose a novel convex dual approach to the multidimensional di-

mensional assignment problem, which is an NP -hard binary programming problem.

It is shown that the proposed dual approach is equivalent to the Lagrangian relax-

ation method in terms of the best value attainable by the two approaches. However,

the pure dual representation is not only more elegant, but also makes the theoretical

analysis of the algorithm more tractable. In fact, we obtain a sufficient and necessary

condition for the duality gap to be zero, or equivalently, for the Lagrangian relaxation

approach to find the optimal solution to the assignment problem with a guarantee.

Also, we establish a mild and easy-to-check condition, under which the dual prob-

lem is equivalent to the original one. In general cases, the optimal value of the dual

problem can provide a satisfactory lower bound on the optimal value of the original

assignment problem.

We then extend the purely dual formulation to handle the more general multi-

dimensional assignment problem. The convex dual representation is derived and its

relationship to the Lagrangian relaxation method is investigated once again. Also,

we discuss the condition under which the duality gap is zero. It is also pointed out

that the process of Lagrangian relaxation is essentially equivalent to one of relaxing

the binary constraint condition, thus necessitating the auction search operation to
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recover the binary constraint. Furthermore, a numerical algorithm based on the dual

formulation along with a local search strategy is presented.

Finally, the newly proposed algorithm is shown to outperform the Lagrangian

relaxation method in a number of multitarget tracking simulations.
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Chapter 1

Background and Motivation

1.1 Data association problem

Data association is an important step in tracking algorithms. The task of data associ-

ation is to assign the measurements to the tracks in the system. That is, data associ-

ation determines the origin of each measurement. In the simplest case of single target

tracking, only a single target is to be tracked, and the nearest neighborhood data

association method is the most commonly used algorithm. However, for multi-target

tracking, in which multiple targets are to be tracked with observations possibly from

multiple platforms, we need to develop efficient data association algorithms. Here,

the difficulty is to handle the exponential increase in the computational load with the

number of targets and measurements.

In this introduction chapter, we first review the nearest neighborhood association

algorithm. The commonly used Joint Probabilistic Data Association (JPDA) algo-

rithm is then described in full detail. Next, we study the data association algorithm

based on S-D assignment, in which S − 1 frames of measurements are to be assigned

6
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to the targets being tracked, and point out the difficulties in these methods and our

approach to address these difficulties.

1.2 Nearest neighbor association [4]

For tracking a single target, the nearest neighborhood association algorithm is fre-

quently applied. In this algorithm, a region commonly referred to as a gate is identified

such that only the measurements inside the region are considered for data association.

The region is given by

{z|D(z) < r}, (1.2.1)

where r is an adjustable parameter taking different values corresponding to different

confidence levels, z is the sensor measurement, and D(z) is the square of a normalized

distance between z and the predicted measurement ẑ:

D(z) = [z − ẑ(k|k − 1)]′S(k)−1[z − ẑ(k|k − 1)], (1.2.2)

where S(k) is the covariance of the innovation, which is the difference between the

actual measurement and the predicted one.

The measurement in the gate with the smallest value D(z) is chosen to be the

measurement associated to the target.

Another commonly used data association algorithm for tracking a single target is

Probabilistic Data Association (PDA) [4], which has been extended into the JPDA

algorithm for tracking multiple targets.

7



Ph.D. Thesis – J. Li McMaster University – Multitarget tracking

1.3 Joint Probabilistic Data Association (JPDA)

algorithm [4]

If the number of targets is known and relatively small, and the clutter, which is the

noise caused by the environment, is not heavy, then the JPDA algorithm can be

applied to perform data association, as well as the estimation, also referred to as

filtering in the literature.

1.3.1 Joint association event probabilities

First, we need to calculate the probability of a joint association event

θ(k) = ∩m(k)
j=1 θjtj(k), (1.3.1)

where

m(k) = #Z(k), (1.3.2)

the number of measurements in Z(k), the kth data set, and θjtj(k) is the event that

the jth measurement in Z(k) is associated with the tjth target.

Let the accumulative measurements up to time k be denoted by Zk = {Z(1), . . . , Z(k)}.

The probability of the joint association event, given the accumulative measurements,

is

P(θ(k)|Zk) = P
(
θ(k)|Z(k),m(k), Zk−1

)
=

1

c
P
(
θ(k), Z(k)|m(k), Zk−1

)
,

(1.3.3)

8
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where

c = P
(
Z(k)|m(k), Zk−1

)
. (1.3.4)

Furthermore,

P
(
θ(k), Z(k)|m(k), Zk−1

)
= p
(
Z(k)|θ(k),m(k), Zk−1

)
P(θ(k)|m(k), Zk−1).

(1.3.5)

Under the independence assumption, the first term in Eq.(1.3.5) is

p
(
Z(k)|θ(k),m(k), Zk−1

)
=

m(k)∏
j=1

p
(
zj(k)|θjtj(k), Zk−1

)
= V −φ

m(k)∏
j=1

ftj
(
zj(k)

)τj ,
(1.3.6)

where

τj =


1, if measurement j is associated to target tj,

0, otherwise,

(1.3.7)

since

p
(
zj(k)|θjtj(k), Zk−1

)
=


ftj
(
zj(k)

)
, if measurement j is associated to target tj,

V −1, otherwise,

(1.3.8)

where V is the volume of the observation field, and

ftj
(
zj(k)

)
= N [zj(k); ẑtj(k|k − 1), Stj(k)], (1.3.9)

9
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the normal distribution density with the mean equal to ẑtj(k|k − 1), the predicted

measurement for target tj, and the covariance equal to Stj(k)], the innovation covari-

ance.

On the other hand, by a combinatorial argument, the second term in Eq.(1.3.5)

is found to be

P(θ(k)|m(k), Zk−1)

=
φ!

m(k)!
P(there are φ false alarms in the m(k) measurements|m(k), Zk−1)

=
φ!

m(k)!

[∏
t

(P t
D)δt(1− P t

D)1−δt
] µF (φ)

P(m(k))
,

(1.3.10)

where

δt =


1, if a measurement j is associated to target tj by θ(k),

0, otherwise,

(1.3.11)

P t
D is the detection probability of target t, φ is the number of measurements associated

to false alarms in θ(k), and µF (φ) is the prior probability mass function (pmf), that

is, the known probability distribution of false alarms. Such a distribution depends on

the nature of the clutter and is described by the clutter model. For more information

on clutter models, see [4, 43]).

For the parametric JPDA, we use Poisson pmf for the clutter model:

µF (φ) = e−λV
(λV )φ

φ!
. (1.3.12)

10
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Combining this model with Eq.(1.3.10), and Eq.(1.3.5), we get

P(θ(k)|Zk)

=
1

c1

m(k)∏
j=1

{
λ−1ftj

[
zj(k)

]}τj[∏
t

(P t
D)δt(1− P t

D)1−δt
]
,

(1.3.13)

where c1 is a normalizing constant making the total probability equal to 1.

There is also a nonparametric clutter model, in which

µF (φ) = ε, (1.3.14)

a constant determined by the volume of the observation field.

With this model, we similarly get

P(θ(k)|Zk)

=
φ!

c2

m(k)∏
j=1

{
V ftj

[
zj(k)

]}τj[∏
t

(P t
D)δt(1− P t

D)1−δt
]
.

(1.3.15)

1.3.2 The state estimation

Now, the marginal association probabilities

βjt = P
(
θjt|Zk

)
(1.3.16)

can be derived from the joint probabilities:

βjt =
∑
θ:θjt∈θ

P
(
θjt|Zk

)
. (1.3.17)

11
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In order to estimate the states of the targets, we need one filter for each of the

targets (the number of the targets is known).

The state estimation equation of the tth target is given by

x̂t(k|k) = x̂t(k|k − 1) +W t(k)νt(k), (1.3.18)

where we use the superscript t to represent the filter for the tth target, and

νt(k) =

m(k)∑
j=1

βjt(k)νjt(k), (1.3.19)

with

νjt(k) = zj(k)− ẑt(k|k − 1), (1.3.20)

and

W t(k) = P t(k|k − 1)
(
H t(k)

)′(
St(k)

)−1
. (1.3.21)

The covariance associated with the updated state of the tth target is

P t(k|k) = β0t(k)P t(k|k − 1) + [1− β0t(k)]P tc(k|k) + P̃ t(k) (1.3.22)

where the covariance of the state updated with the corrected measurement is

P tc(k|k) = P t(k|k − 1)−W t(k)St(k)
(
W t(k)

)′
(1.3.23)

12
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and the spread of the innovation term is

P̃ t(k) = W t(k)
[m(k)∑
j=1

βjt(k)νjt(k)νjt(k)′ − νt(k)(νt(k))′
](
W t(k)

)′
(1.3.24)

1.4 S-D assignment based data association [4, 11]

Suppose we have S sensors. The ith measurement from sensor s is denoted by zi(s).

Then a set of measurements will be received at each scan instant. We are faced

with the problem of associating the measurements to targets being tracked. A class

of association algorithm can be developed based on combinatorial optimization, in

which the association problem is formulated as a linear assignment problem.

Similar to Eq.(1.3.13) or Eq.(1.3.15), we can define the likelihood function that

the measurement S-tuple Zi1i2...ıS =
(
zi1(1), zi1(2), . . . , ziS(S)

)
is from a target t:

Λ(Zi1i2...ıS |t)

=
S∏
s=1

{
(P s

Dp
[
zis(s)|xt

]}u(is)
(1− P s

D)1−u(is),
(1.4.1)

where

u(is) =


0, if is = 0 (the target is missing),

1, otherwise,

(1.4.2)

Since xt is unknown in Eq.(1.4.1), and hence will be replaced by its ML estimate:

x̂t = arg max
xt

Λ(Zi1i2...ıS |t) (1.4.3)

13
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The likelihood that the measurements are all spurious (i.e. t = ∅) is

Λ(Zi1i2...ıS |t = ∅) =
S∏
s=1

[ 1

Ψs

]u(is)
, (1.4.4)

where Ψs is the false alarm probability in a cell multiplied by the volume of the

resolution cell.

A association cost of associating Zi1i2...ıS to target t is then defined by:

ci1i2...iS =
S∑
s=1

{
[u(is)− 1] ln(1− P s

D)

− u(is) ln
( P s

DΨs

|2πΣs|1/2
)

+ u(is)(1

2

[
zis(s)−H(x̂t,yis(s))

]T
Σ−1
s[

zis(s)−H(x̂t,yis(s))
])}

(1.4.5)

With the above costs, the data association problem will be formulated as an

optimization problem, more specifically, a multidimensional assignment problem:

min
ρ

n1∑
i1=0

n2∑
i2=0

· · ·
nS∑
iS=0

ci1i2...iSρi1i2...iS , (1.4.6)

14
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subject to the constraints:

ρi1i2...iS ∈ {0, 1} (1.4.7)

n2∑
i2=0

· · ·
nS∑
iS=0

ρi1i2...iS = 1,∀i1 ∈ 1, ..., n1, (1.4.8)

n1∑
i1=0

n3∑
i3=0

· · ·
nS∑
iS=0

ρi1i2...iS = 1,∀i2 ∈ 1, ..., n2, (1.4.9)

. . . (1.4.10)

n1∑
i1=0

· · ·
nS−1∑
iS−1=0

ρi1i2...iS = 1,∀iS ∈ 1, ..., nS. (1.4.11)

In the above formulation, measurement 0 in each frame represents a missing target,

and

ρi1i2...iS =


1 if measurements Zi1i2...ıS are associated to a target,

0 otherwise.

These constraints specify that each real measurement has to be assigned to only

one measurement in any other frame.

1.5 Review of the assignment algorithm

In the previous section, we see that the data association problem arising in the context

of multisensor multitarget tracking applications can be formulated as a Multidimen-

sional assignment problem (MAP). The MAP is an extension of the classical 2-D

linear assignment problem. See [36] for a detailed account of assignment problems

arising in multiple-target tracking applications. Moreover, the MAP approach is an

efficient way to implement the Multiple hypothesis tracking (MHT) algorithm [8],

15
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which is a key algorithm in autonomous driving vehicles [1] and surveillance systems

[17].

In the classical 2-D assignment problem, m persons are to be matched to m objects

(or to n > m objects in asymmetric assignment problems) such that the total benefit

is maximized [7]. It can be used to model a wide variety of practical applications,

such as resource assignment problems for wireless communication [32]. The research

on 2-D assignment problem has a relatively long history, see [34] for an extensive

review of different types of assignment problems. As a result, there exist some well

known algorithms to find optimal solutions to the 2-D problem efficiently, namely, in

polynomial time. The Hungarian method was proposed in [26]. Several versions of

the auction algorithm were proposed in [7]. The signature method was developed in

[2]. A shortest augmenting path algorithm was presented in [21]. A review of these

as well as other methods can be found in [12, 9].

The MAP, however, has been shown to be NP -hard [16]. As a consequence,

exact algorithms for MAP, such as the branch and bound algorithm, turn out to be

quite inefficient, especially for large-size problems [38]. Approximate MAP algorithms

have to be used in some practical applications such as object tracking for surveillance

involving real-time decision making.

Approximate methods for the MAP with decomposable costs are considered in [3]

and are further investigated in [44] using a graph partition method. Integer program-

ming models for the MAP with star costs are presented in [45]

Heuristic algorithms have been widely studied for MAPs as well, see[22] for a

survey and generalizations of heuristic approaches, including construction heuristics,

metaheuristics and local search heuristics. Other related methods for MAPs include

16
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the greedy method [39], and a solver for multi-index assignment presented in [35],

which integrated the idea of cutting-planes and heuristics into a branch-and-cut al-

gorithm.

Recently, solutions based on deep learning have been proposed for some conven-

tional optimization problems. Machine learning methods to solve assignment prob-

lems in multi-target tracking are surveyed in [13], where a review of probabilistic

graphical models for multiple dimensional assignment problems, together with the

belief propagation method and the Markov chain Monte Carlo method are presented.

The deep learning method is discussed as well. Moreover, it is pointed out that rein-

forcement learning approach is preferred over supervised learning approaches to avoid

the requirement of generating MAPs with known solutions, which is hard to get due

to the NP -hardness of MAPs.

On the other hand, a Lagrangian relaxation (LR) method was proposed to solve

three dimensional assignment problems in [15]. Later, the method was extended to

solve MAPs by [33, 37, 11, 38]. Another related work is a dual decompostion method

in [27].

1.6 Objective and organization of the thesis

The purpose of this research is to find an efficient algorithm for multidimensional

assignment problems, in order to tackle the MAPs arising from the data association

operations in multi-target tracking applications.

The thesis is organized as follows. We first propose a novel approach for three

dimensional assignment problems in Chapter 2. In order to assess the efficiency of the

new method, we generate a series of random assignment problems with known optimal

17



Ph.D. Thesis – J. Li McMaster University – Multitarget tracking

solutions. The dual method is then applied to solve these problems. Meanwhile, the

LR method is applied to these problem as well, to serve as a benchmark for the

performance evaluation. These simulations show that the dual approach outperforms

the LR method.

The dual assignment approach is extended to solve more general multidimensional

problems in Chapter 3. The convex dual representation is first derived and its rela-

tionship to the LR method is investigated. Also, we discuss the condition under which

the duality gap is zero. We also point out that the process of LR is essentially equiva-

lent to relaxing the binary constraint condition, thus necessitating the auction search

operation to recover the binary constraint. Furthermore, a numerical algorithm based

on the dual formulation along with a local search strategy is presented. Again, the

simulation results show that the proposed algorithm has better performances than

the LR method.

In chapter 4, we will first formulate the data association operation in multi-frame

multi-target tracking as a multidimensional assignment problem. Then, the newly

proposed dual assignment method will be applied to solve the resulting assignment

problems. The simulation results show that the association algorithm is effective and

efficient in complex tracking scenarios.
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Chapter 2

A novel three dimensional

assignment algorithm

2.1 Introduction

In this chapter, we propose a novel convex dual approach to the three dimensional

assignment problem. This approach can be thought of as a type of convexification

based on the duality theory. For more on convexification, see, for example,[29, 19, 20].

It will be shown that the optimal value of the proposed dual problem is equal to the

best value attainable by the Lagrangian relaxation (LR). Such an elegant formulation

makes it possible to conduct theoretical analysis on the algorithm. In fact, we prove

two strong duality theorems, which state that under certain mild conditions, the

dual problem is equivalent to the original assignment problem. In general cases, the

optimal value of the dual problem can provide a satisfactory lower bound on the

optimal value of the original assignment problem. Moreover, the newly proposed

approach can be extended to higher dimensional (> 3) assignment problems.
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The chapter is organized as follows. We first formulate the assignment problem

and derive a dual representation. Then, the relationship between the dual approach

and the LR approach is investigated. Next, we establish two strong duality theorems

for the assignment problem. Finally, we consider the complexity of the algorithm and

give some simulation results.

2.2 Formulation of the problem and its dual rep-

resentation

Given a set of coefficients {cijk}, (i, j, k) ∈ I0, an index set given by

I0 = {(i, j, k)|i ∈ {1, ..., N}, j ∈ {1, ..., N}, k ∈ {1, ..., N}}, (2.2.1)

we have a linear objective function

f(x) =
∑

(i,j,k)∈I0

cijkxijk, (2.2.2)

where x = (xijk).
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For brevity, the following vector notations will be adopted in this chapter:

x = (x111, x211, ..., xN11, ..., xNN1, ..., xNNN), (2.2.3)

µ = (µ1, µ2, ..., µN), (2.2.4)

ν = (ν1, ν2, ..., νN), (2.2.5)

η = (η1, η2, ..., ηN), (2.2.6)

µ∗ = (µ∗1, µ
∗
2, ..., µ

∗
N), (2.2.7)

etc.

In the context of radar tracking, the coefficient cijk represents the cost associ-

ated with assigning track i to the jth measurement z1j from sensor 1 and the kth

measurement z2k from sensor 2, and x = (xijk) has the following interpretation:

xijk =


1 if measurements z1j and z2k are associated to track i,

0 otherwise.

With such an interpretation, the linear function f(x) then represents the total cost

of associating the two groups of measurements (with N measurements from each of

the two sensors) to the N tracks. In order to minimize the total cost, we have the

following 3-D assignment problem:

min
x
f(x), (PP)
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subject to the constraints:

xijk ∈ {0, 1} (2.2.8)

N∑
j=1

N∑
k=1

xijk = 1,∀i ∈ {1, ..., N}, (2.2.9)

N∑
i=1

N∑
k=1

xijk = 1,∀j ∈ {1, ..., N}, (2.2.10)

N∑
i=1

N∑
j=1

xijk = 1, ∀k ∈ {1, ..., N}. (2.2.11)

The constraints given above specify that each track can only be assigned to one

measurement from each sensor, and that every measurement can only be assigned to

a single track.

Moreover, we will use SF to represent the set of feasible solutions to the optimiza-

tion problem (PP), i.e.,

SF = {x ∈ {0, 1}N3

: x satisfies Eqs.((2.2.9), (2.2.10), (2.2.11)}. (2.2.12)

In addition, ∀(i, j, k) ∈ I0, define the reduced costs

dijk = cijk − µi − νj − ηk. (2.2.13)
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In this chapter, we will consider a special type of Lagrangian:

L(x, µ, ν, η) =
∑

(i,j,k)∈I0

cijkxijk +
∑

(i,j,k)∈I0

|dijk|(x2
ijk − xijk)

+
N∑
i=1

(
µi(1−

N∑
j=1

N∑
k=1

xijk)
)

+
N∑
j=1

(
νj(1−

N∑
i=1

N∑
k=1

xijk)
)

+
N∑
k=1

(
ηk(1−

N∑
i=1

N∑
j=1

xijk)
)
.

(2.2.14)

Substituting Eq. (2.2.13) into the above equation, we get

L(x, µ, ν, η) =
∑

(i,j,k)∈I0

(
|dijk|x2

ijk + (dijk − |dijk|)xijk
)

+
N∑
i=1

µi +
N∑
j=1

νj +
N∑
k=1

ηk.

(2.2.15)

For dijk 6= 0, we have

|dijk|x2
ijk + (dijk − |dijk|)xijk = |dijk|

(
x2
ijk +

dijk − |dijk|
|dijk|

xijk

)
= |dijk|

(
xijk +

dijk − |dijk|
2|dijk|

)2

− (dijk − |dijk|)2

4|dijk|

≥ −(dijk − |dijk|)2

4|dijk|
.

(2.2.16)

Thus,

|dijk|x2
ijk + (dijk − |dijk|)xijk ≥


dijk, if dijk < 0,

0, if dijk ≥ 0.

(2.2.17)
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The above observation leads us to define x̂ = (x̂ijk)

x̂ijk =


1, if dijk < 0;

0, if dijk ≥ 0.

(2.2.18)

(Note: x̂ is actually a function of (µ, ν, η).) Then, we have

L(x̂, µ, ν, η) =
∑

(i,j,k)∈I0

(
|dijk|x̂2

ijk + (dijk − |dijk|)x̂ijk
)

+
N∑
i=1

µi +
N∑
j=1

νj +
N∑
k=1

ηk

=
∑

(i,j,k)∈I0

(
dijk
)−

+
N∑
i=1

µi +
N∑
j=1

νj +
N∑
k=1

ηk,

(2.2.19)

where the real piece-wise linear concave function (·)− is defined as:

(θ)− =


θ, if θ < 0;

0, otherwise.

(2.2.20)

From Eqs. (2.2.15, 2.2.17, 2.2.19), we immediately get the following weak duality

result:

Lemma 2.2.1. ∀µ, ν, η, ∀x ∈ SF , we have

f(x) = L(x, µ, ν, η) ≥ L(x̂, µ, ν, η).
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For brevity, we denote L(x̂, µ, ν, η) by H(µ, ν, η). Thus, by Eq. (2.2.19),

H(µ, ν, η) =
∑

(i,j,k)∈I0

(
dijk
)−

+
N∑
i=1

µi +
N∑
j=1

νj +
N∑
k=1

ηk. (2.2.21)

We will consider the following dual programming problem

max
µ,ν,η

H(µ, ν, η), (PD)

and show a strong duality result for this problem and the primal problem (PP) under

certain conditions.

Remark: H(µ, ν, η) is a pointwise infimum of a family of affine functions in λ, µ

and ν, and hence is a concave function.

Thus, the dual problem (PD) is a convex optimization problem. In fact, it can be

transformed into a linear programming (LP) problem (see Section 2.7). Furthermore,

the first term in Eq. (2.2.21) can be thought of as a penalty term, which brings in

some useful properties to be discussed in Section 2.4.

2.3 A comparison between the dual approach and

the Lagrangian relaxation approach

Before proving the duality results, it is interesting to make a comparison between our

pure dual approach and the well established LR approach. We show in this section

that the optimal value H∗ of the problem (PD) is equal to the optimal value of the

objective function used by the LR method[15, 33, 37, 11, 38].

As pointed out in [37], multidimensional assignment algorithms [33, 11, 38] are
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extensions of the three dimensional assignment algorithm proposed in [15]. In fact, in

the case of the three dimensional assignment problem (3AP), the different variations of

the LR method proposed in [33, 11, 38] reduce to nearly the same form as that in [15],

although they have been independently developed and have differences in a number

of implementation aspects for higher dimensional assignment problems. Therefore,

these different formulations of the LR algorithm are considered to be essentially the

same algorithm in this chapter. When we refer to the LR method later on, it points

to all the variations of the method proposed in [15, 33, 11, 38].

Let S2 denote the set of ω = (ωij), i = 1, . . . , N ; j = 1, . . . , N satisfying the

constraints:

ωij ∈ {0, 1} (2.3.1)

N∑
j=1

ωij = 1,∀i ∈ {1, ..., N}, (2.3.2)

N∑
i=1

ωij = 1,∀j ∈ {1, ..., N}. (2.3.3)

There are several variants of the LR method for multidimensional assignment

problems[15, 33, 11, 38]. However, all of them operate by maximizing the following

objective function:

G(η) = min
ω∈S2

{ N∑
i=1

N∑
j=1

aijωij

}
+

N∑
k=1

ηk, (2.3.4)

where

aij = min
1≤k≤N

(
cijk − ηk

)
.

In the following discussions, the optimal value of the above objective function will
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be denoted by

J∗LR = max
η
G(η) (2.3.5)

which is the lower bound of the optimal assignment cost estimated by the LR method.

We first establish a more tractable representation of the LR bound.

Lemma 2.3.1. There exist µ̂, ν̂, η̂, such that the bound of the LR method can be

represented as

J∗LR =
N∑
i=1

N∑
j=1

(
min

1≤k≤N

(
cijk − η̂k

)
− µ̂i − ν̂j

)−
+

N∑
i=1

µ̂i +
N∑
j=1

ν̂j +
N∑
k=1

η̂k.

(2.3.6)

Proof. By the continuity of G(η), there exists η̂ = (η̂k)
N
k=1, such that

J∗LR = G(η̂)

=
(

min
ω∈S2

N∑
i=1

N∑
j=1

âijωij

)
+

N∑
k=1

η̂k

(2.3.7)

where

âij = min
1≤k≤N

(
cijk − η̂k

)
.

Furthermore, it follows from the duality theory for the 2-D assignment problem

that

min
ω∈S2

N∑
i=1

N∑
j=1

âijωij

= max
µ,ν

H2(µ, ν)

(2.3.8)
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where

H2(µ, ν) = max
µ,ν

{ N∑
i=1

N∑
j=1

(
âij − µi − νj

)−
+

N∑
i=1

µi +
N∑
j=1

νj

}
By the continuity of H2(µ, ν), there exist µ̂ and ν̂, such that

min
ω∈S2

N∑
i=1

N∑
j=1

âijωij

=
N∑
i=1

N∑
j=1

(
âij − µ̂i − ν̂j

)−
+

N∑
i=1

µ̂i +
N∑
j=1

ν̂j

Combining the above equation with Eq. (2.3.7), we get

J∗LR =
N∑
i=1

N∑
j=1

(
min

1≤k≤N

(
cijk − η̂k

)
− µ̂i − ν̂j

)−
+

N∑
i=1

µ̂i +
N∑
j=1

ν̂j +
N∑
k=1

η̂k

(2.3.9)

We also need the following substitution lemma:

Lemma 2.3.2. There exist µ̂, ν̂ and η̂ which satisfy Eq. (2.3.6), and furthermore,

for each index-pair (i, j), there is at most one index k with

cijk − η̂k − µ̂i − ν̂j < 0.

Proof. We have established the existence of µ̂, ν̂ and η̂ satisfying Eq. (2.3.6) in the

previous lemma. We show now that the claim of the lemma is true for any given
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index-pair (i1, j1). Let

k1 = arg min
1≤k≤N

(
ci1j1k − η̂k

)
. (2.3.10)

If

ci1j1k1 − η̂k1 − µ̂i1 − ν̂j1 = 0

then, by the definition of k1, we have

ci1j1k − η̂k − µ̂i1 − ν̂j1 ≥ 0

∀k, and the proof is done.

On the other hand, if

ci1j1k1 − η̂k1 − µ̂i1 − ν̂j1 < 0,

and suppose that there is another index k2 such that

ci1j1k2 − η̂k2 − µ̂i1 − ν̂j1 < 0,

then, it follows from the definition of k1 that

ci1j1k1 − η̂k1 ≤ ci1j1k2 − η̂k2 (2.3.11)

Define µ̃ = (µ̃i) by

µ̃i =


µ̂i − ε, if i = i1,

µ̂i, else.

(2.3.12)
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where

ε = −
(
ci1j1k2 − η̂k2 − µ̂i1 − ν̂j1

)
> 0, (2.3.13)

then one can verify that

ci1j1k1 − η̂k1 − µ̃i1 − ν̂j1 ≤ 0 (2.3.14)

ci1j1k2 − η̂k2 − µ̃i1 − ν̂j1 = 0. (2.3.15)

Moreover, by the dual theory of 2-D assignment,

min
1≤k≤N

(
ci1jk − η̂k

)
− µ̂i1 − ν̂j ≥ 0 (2.3.16)

∀j 6= j1.

As a result, we have

(
min

1≤k≤N

(
ci1jk − η̂k

)
− µ̃i1 − ν̂j

)−
=
(

min
1≤k≤N

(
ci1jk − η̂k

)
− µ̂i1 − ν̂j + ε

)−
= 0

and (
min

1≤k≤N

(
ci1jk − η̂k

)
− µ̂i1 − ν̂j

)−
= 0

∀j 6= j1.
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With the above two equations, and by canceling all the i 6= i1 terms, we get

J∗LR −
{ N∑
i=1

N∑
j=1

(
min

1≤k≤N

(
cijk − η̂k

)
− µ̃i − ν̂j

)−
+

N∑
i=1

µ̃i +
N∑
j=1

ν̂j +
N∑
k=1

η̂k

}
=
(

min
1≤k≤N

(
ci1j1k − η̂k

)
− µ̂i1 − ν̂j1

)−
+ µ̂i1

−
(

min
1≤k≤N

(
ci1j1k − η̂k

)
− µ̃i1 − ν̂j1

)−
− µ̃i1 .

(2.3.17)

Therefore,

J∗LR −
{ N∑
i=1

N∑
j=1

(
min

1≤k≤N

(
cijk − η̂k

)
− µ̃i − ν̂j

)−
+

N∑
i=1

µ̃i +
N∑
j=1

ν̂j +
N∑
k=1

η̂k

}
= ε+

((
ci1j1k1 − η̂k1

)
− µ̂i1 − ν̂j1

)−
−
((
ci1j1k1 − η̂k1

)
− µ̃i1 − ν̂j1

)−
= ε+

((
ci1j1k1 − η̂k1

)
− µ̂i1 − ν̂j1

)
−
((
ci1j1k1 − η̂k1

)
− µ̃i1 − ν̂j1

)
= 0,

(2.3.18)

or equivalently,

J∗LR =
N∑
i=1

N∑
j=1

(
min

1≤k≤N

(
cijk − η̂k

)
− µ̃i − ν̂j

)−
+

N∑
i=1

µ̃i +
N∑
j=1

ν̂j +
N∑
k=1

η̂k

(2.3.19)
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Therefore, by replacing the original µ̂ with µ̃, one can see that the new µ̂, together

with ν̂ and η̂, satisfies Eq. (2.3.6). Furthermore, we now have

ci1j1k1 − η̂k1 − µ̂i1 − ν̂j1 ≤ 0 (2.3.20)

ci1j1k2 − η̂k2 − µ̂i1 − ν̂j1 = 0. (2.3.21)

By repeating the above procedure for a certain finite number of times, we will be

able to find the values of µ̂, ν̂ and η̂ that have the desired properties.

Lemma 2.3.3. If (µ∗, ν∗, η∗) is an optimal solution to problem (PD), that is,

H∗ =
N∑
i=1

N∑
j=1

N∑
k=1

(
cijk − η∗k − µ∗i − ν∗j

)−
+

N∑
i=1

µ∗i +
N∑
j=1

ν∗j +
N∑
k=1

η∗k,

(2.3.22)

then, for each pair of index (i, j), there is at most an index k with

cijk − η∗k − µ∗i − ν∗j < 0.

Proof. We show the lemma by a contradiction argument. Suppose that there is an

index (i1, j1), for which there are two indices k1 and k2 such that

ci1j1k1 − η∗k1 − µ
∗
i1
− ν∗j1 ≤ cijk2 − η∗k2 − µ

∗
i1
− ν∗j1 < 0. (2.3.23)
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Define µ̃ = (µ̃i) by

µ̃i =


µ∗i − ε, if i = i1,

µ∗i , else.

(2.3.24)

where

ε = −1

2

(
cijk2 − η∗k2 − µ

∗
i1
− ν∗j1

)
> 0, (2.3.25)

then one can verify that

(
ci1j1k1 − η∗k1 − µ̃i1 − ν

∗
j1

)−
= ε+

(
ci1j1k1 − η∗k1 − µ

∗
i1
− ν∗j1

)−
(2.3.26)(

ci1j1k2 − η∗k2 − µ̃i1 − ν
∗
j1

)−
= ε+

(
ci1j1k2 − η∗k2 − µ

∗
i1
− ν∗j1

)−
(2.3.27)

and (
ci1j1k − η∗k − µ̃i1 − ν∗j1

)− ≥ (ci1j1k − η∗k − µ∗i1 − ν∗j1)− (2.3.28)

∀k. As a result, we get

H∗ =
N∑
i=1

N∑
j=1

N∑
k=1

((
cijk − η∗k − µ∗i − ν∗j

)−
+

N∑
i=1

µ∗i +
N∑
j=1

ν∗j +
N∑
k=1

η∗k

≤ −ε+
N∑
i=1

N∑
j=1

N∑
k=1

((
cijk − η∗k − µ̃i − ν∗j

)−
+

N∑
i=1

µ̃i +
N∑
j=1

ν∗j +
N∑
k=1

η∗k

(2.3.29)

a contradiction to that H∗ is the optimal value of the dual problem (PD).
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Now, we can prove the following comparison theorem:

Theorem 2.3.4. The optimal value H∗ of the problem (PD) is equal to the bound

J∗LR of the relaxation method, i.e.,

H∗ = J∗LR (2.3.30)

Proof. Step 1: By Lemma 2.3.2, there exist µ̂, ν̂, η̂, such that

J∗LR =
N∑
i=1

N∑
j=1

(
min

1≤k≤N

(
cijk − η̂k

)
− µ̂i − ν̂j

)−
+

N∑
i=1

µ̂i +
N∑
j=1

ν̂j +
N∑
k=1

η̂k,

(2.3.31)

and for each index-pair (i, j), there is at most one index k such that

cijk − η̂k − µ̂i − ν̂j < 0. (2.3.32)

As a result, we get

J∗LR =
N∑
i=1

N∑
j=1

N∑
k=1

(
cijk − η̂k − µ̂i − ν̂j

)−
+

N∑
i=1

µ̂i +
N∑
j=1

ν̂j +
N∑
k=1

η̂k

,

(2.3.33)
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On the other hand, the optimal value of the problem (PD) is given by

H∗ = max
µ,ν,η

{ N∑
i=1

N∑
j=1

N∑
k=1

((
cijk − ηk − µi − νj

)−
+

N∑
i=1

µi +
N∑
j=1

νj +
N∑
k=1

ηk

}
,

(2.3.34)

by the definition of H in the previous section.

Combining the above two equations, we get

H∗ ≥ J∗LR. (2.3.35)

Step 2: Suppose

H∗ =
N∑
i=1

N∑
j=1

N∑
k=1

(
cijk − η∗k − µ∗i − ν∗j

)−
+

N∑
i=1

µ∗i +
N∑
j=1

ν∗j +
N∑
k=1

η∗k.

(2.3.36)

Then, by Lemma 2.3.3, for each pair of index (i, j), there is at most an index k with

cijk − η∗k − µ∗i − ν∗j < 0. (2.3.37)
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Therefore, we get

H∗ =
N∑
i=1

N∑
j=1

(
min

1≤k≤N

(
cijk − η∗k

)
− µ∗i − ν∗j

)−
+

N∑
i=1

µ∗i +
N∑
j=1

ν∗j +
N∑
k=1

η∗k

≤ max
µ,ν

{ N∑
i=1

N∑
j=1

(
min

1≤k≤N

(
cijk − η∗k

)
− µi − νj

)−
+

N∑
i=1

µi +
N∑
j=1

νj

}
+

N∑
k=1

η∗k

= min
ω∈S2

{ N∑
i=1

N∑
j=1

[
min

1≤k≤N

(
cijk − η∗k

)]
ωij

}
+

N∑
k=1

η∗k

= G(η∗) ≤ J∗LR.

(2.3.38)

where we have used the dual theory of 2-D assignment problem, and G(η) is defined

in Eq. (2.3.4).

Combining the inequalities (2.3.35, 2.3.38) leads to the conclusion of the theorem.

Remark: All of the variants of the LR method[15, 33, 11, 38] for the three-

dimensional assignment problem are based on maximizing the function G(η) given by

Eq. (2.3.4). The distinctions between them are in the different ways of searching for

the feasible assignments. Thus, by Theorem 2.3.4, we conclude that H∗ is at least as

good as the bounds given by the LR method.
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2.4 Strong duality results of the assignment prob-

lem

Given (µ∗, ν∗, η∗), we have a set of coefficients

d∗ijk = cijk − µ∗i − ν∗j − η∗k (2.4.1)

∀(i, j, k) ∈ I0, by Eq.(2.2.13).

The purpose of this section is to prove two strong duality results.

Theorem 2.4.1. Let f ∗ and H∗ be the optimal values of the assignment problem

(PP) and its dual problem (PD) respectively. Then

f ∗ = H∗, (2.4.2)

if and only if there exists an optimal solution (µ∗, ν∗, η∗) to the dual problem (PD),

such that

d∗imjmkm ≤ 0,m = 1, . . . , N, (2.4.3)

where each of the three sequences {i1, . . . , iN}, {j1, . . . , jN} and {k1, . . . , kN} is a

permutation of {1, . . . , N}.

The next theorem gives an easier to check condition for the strong duality to be

true.

Theorem 2.4.2. Suppose that there exists an optimal solution (µ∗, ν∗, η∗) to the dual
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problem (PD), such that d∗ijk 6= 0 for ∀(i, j, k) ∈ I0, then

f ∗ = H∗, (2.4.4)

where f ∗ and H∗ are the optimal values of the assignment problem (PP) and its dual

problem (PD), respectively.

If the condition in either of the theorems is satisfied, the dual approach will give

the optimal solution to the primal assignment problem. In 2-D assignment problems,

similar conditions are guaranteed to be true by the unimodularity of the constraint

matrix. In the three dimensional case, we can no longer rely on the unimodularity

criterion. Thus, the theoretical implication of the condition needs further investiga-

tion. However, this is not too restrictive a condition. It has been shown in our Monte

Carlo simulations that even when the condition is not met, the average relative er-

ror f∗−H∗

f∗
is in the range of 2-5% (see Table 2.6.4). In practical applications, where

the cost coefficients typically have simpler structures due to the sparsity of the cost

coefficients, the average errors are even smaller, as confirmed in [33, 11].

In order to prove the two theorems, we need to investigate the solutions to the

dual problem (PD).

2.4.1 Properties of optimal solutions to the problem (PD)

We will use the following index sets to characterize the optimal solutions to the dual

problem (PD).
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Definition 1. For any i ∈ {1, 2, ..., N}, define the two-dimensional index set

N1(i) = {(j, k) : d∗ijk < 0}. (2.4.5)

For any j ∈ {1, 2, ..., N}, define the two-dimensional index set

N2(j) = {(i, k) : d∗ijk < 0}. (2.4.6)

For any k ∈ {1, 2, ..., N}, define the two-dimensional index set

N3(k) = {(i, j) : d∗ijk < 0}. (2.4.7)

Moreover, we denote the number of elements in a set S by card(S).

Lemma 2.4.3. ∀(µ∗, ν∗, η∗), there exists a ε0 > 0, such that

H(µ, ν, η)−H(µ∗, ν∗, η∗)

=
∑

(i,j,k)∈I0:d∗ijk<0

(
µ∗i − µi + ν∗j − νj + η∗k − ηk

)
+

∑
(i,j,k)∈I0:d∗ijk=0

(
µ∗i − µi + ν∗j − νj + η∗k − ηk

)−

+
N∑
i=1

(
µi − µ∗i + νi − ν∗i + ηi − η∗i

)
(2.4.8)

∀(µ, ν, η) satisfying

N∑
k=1

(
|µk − µ∗k|+ |νk − ν∗k |+ |ηk − η∗k|

)
< ε0. (2.4.9)
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Proof. Define

ε0 =


1
2
, if d∗ijk = 0 for ∀(i, j, k) ∈ I0,

1
2

min{|d∗ijk| : d∗ijk 6= 0}, otherwise.

(2.4.10)

We directly calculate

H(µ, ν, η)−H(µ∗, ν∗, η∗)

=
∑

(i,j,k)∈I0

((
cijk − µi − νj − ηk

)− − (cijk − µ∗i − ν∗j − η∗k)−)

+
N∑
k=1

(
µk − µ∗k + νk − ν∗k + ηk − η∗k

)
=

∑
(i,j,k)∈I0

((
d∗ijk + µ∗i − µi + ν∗j − νj + η∗k − ηk

)− − (d∗ijk)
−
)

+
N∑
k=1

(
µk − µ∗k + νk − ν∗k + ηk − η∗k

)
.

Thus,

H(µ, ν, η)−H(µ∗, ν∗, η∗)

=
∑

(i,j,k)∈I0:d∗ijk<0

((
d∗ijk + µ∗i − µi + ν∗j − νj + η∗k − ηk

)− − (d∗ijk)
−
)

+
∑

(i,j,k)∈I0:d∗ijk=0

(
µ∗i − µi + ν∗j − νj + η∗k − ηk

)−
+

N∑
k=1

(
µk − µ∗k + νk − νk ∗+ηk − η∗k

)
,

due to the fact that if d∗ijk > 0, then d∗ijk+µ∗i −µi+ν∗j −νj +η∗k−ηk > 0 by inequality

(2.4.9) and Eq. (2.4.10), and thus both
(
d∗ijk + µ∗i − µi + ν∗j − νj + η∗k − ηk

)−
and(

d∗ijk
)−

are zero.
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For d∗ijk < 0, we have

(
d∗ijk + µ∗i − µi + ν∗j − νj + η∗k − ηk)− − (d∗ijk)

−

= d∗ijk + µ∗i − µi + ν∗j − νj + η∗k − ηk − d∗ijk

= µ∗i − µi + ν∗j − νj + η∗k − ηk,

because

d∗ijk + µ∗i − µi + ν∗j − νj + η∗k − ηk < 0,

by inequality (2.4.9) and Eq. (2.4.10) once again.

It follows that

H(µ, ν, η)−H(µ∗, ν∗, η∗)

=
∑

(i,j,k)∈I0:d∗ijk<0

(
µ∗i − µi + ν∗j − νj + η∗k − ηk

)
+

∑
(i,j,k)∈I0:d∗ijk=0

(
µ∗i − µi + ν∗j − νj + η∗k − ηk

)−

+
N∑
i=1

(
µi − µ∗i + νi − ν∗i + ηi − η∗i

)
.

Lemma 2.4.4. (Optimal solution criterion) Let (µ∗, ν∗, η∗) be an optimal solution to
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the problem (PD). Then, the following inequalities must be satisfied:

card(N1(i)) ≤ 1,

card(N2(j)) ≤ 1,

card(N3(k)) ≤ 1,

∀(i, j, k) ∈ I0.

Proof. Let δ0 = ε0, as defined in Lemma 2.4.3.

Fix i0 ∈ {1, 2, . . . , N}. Let

µi =


µ∗i0 − δ, for i = i0,

µ∗i , otherwise ,

(2.4.11)

where δ ∈ (0, δ0), and νj = ν∗j , ηk = η∗k for all j, k.

Then, by Lemma 2.4.3, we have

H(µ, ν, η)−H(µ∗, ν∗, η∗)

= δ
( ∑

(i0,j,k):d∗i0jk
<0

1
)

+
( ∑

(i0,j,k):d∗i0jk
=0

(δ)−
)
− δ

= δ
( ∑

(i0,j,k):d∗i0jk
<0

1
)
− δ

= δ
(
card(N1(i0))− 1

)
.

(2.4.12)

Suppose that (µ∗, ν∗, η∗) is an optimal solution to the problem (PD).

It follows from Eq. (2.4.12) that for any i0 ∈ {1, 2, . . . , N}, and any δ ∈ (0, δ0),
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we have

δ
(
card(N1(i0)− 1

)
= H(µ∗ + δ · ei0 , ν∗, η∗)−H(µ∗, ν∗, η∗) ≤ 0.

This immediately leads to

card(N1(i0)) ≤ 1.

In the same manner, we can prove

card(N2(j)) ≤ 1,

card(N3(k)) ≤ 1,

∀j and k ∈ {1, 2, . . . , N}.

2.4.2 Proof of the duality theorems

First, we prove Theorem 2.4.1.

Proof. By Eq. (2.2.13), we have

cijk = dijk + µi + νj + ηk, (2.4.13)

∀(i, j, k) ∈ I0.
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It follows that ∀x = (xijk) ∈ SF , we have

f(x) =
∑

(i,j,k)∈I0

cijkxijk

=
∑

(i,j,k)∈I0

dijkxijk +
∑

(i,j,k)∈I0

(µi + νj + ηk)xijk

=
∑

(i,j,k)∈I0

dijkxijk +
N∑
i=1

(
µi + νi + ηi

)
(2.4.14)

Suppose that there exists an optimal solution (µ∗, ν∗, η∗) to the dual problem (PD)

satisfying the condition of the theorem. Define

x∗ijk =


1, if (i, j, k) = (im, jm, km),m = 1, . . . , N ;

0, otherwise.

(2.4.15)

Then, x∗ = (x∗ijk) is a feasible solution to (PP). By Eq. (2.4.14),

f(x∗) =
∑

(i,j,k)∈I0

d∗ijkx
∗
ijk +

N∑
i=1

(
µ∗i + ν∗i + η∗i

)
=

N∑
m=1

d∗imjmkm +
N∑
i=1

(
µ∗i + ν∗i + η∗i

)
=

N∑
m=1

(d∗imjmkm)− +
N∑
i=1

(
µ∗i + ν∗i + η∗i

)
.

(2.4.16)

By Lemma 2.4.4, for each index i, there is at most an index-pair (j, k) with
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d∗ijk < 0. Thus, it follows from Eq. (2.4.16) that

f(x∗) =
∑

(i,j,k)∈I0

(d∗ijk)
− +

N∑
i=1

(
µ∗i + ν∗i + η∗i

)
= H(µ∗, ν∗, η∗).

(2.4.17)

The above equation, together the weak duality lemma 2.2.1, leads to f ∗ = H∗, and

the proof for the sufficiency is complete.

Next, we proceed to show the necessity of the condition. For that purpose, suppose

that f ∗ = f(x∗) = H∗ = H(µ∗, ν∗, η∗) is true.

Then, there are three sequences {i1, . . . , iN}, {j1, . . . , jN} and {k1, . . . , kN}, with

each of them being a permutation of {1, . . . , N}, such that x∗ = (x∗ijk) can be repre-

sented in the form of Eq. (2.4.15).

Now, note that we always have

f(x∗)−H(µ∗, ν∗, η∗) =
N∑
m=1

d∗imjmkm −
∑

(i,j,k)∈I0

(d∗ijk)
− ≥ 0. (2.4.18)

In order to have f ∗ −H∗ = 0, we must have

d∗imjmkm ≤ 0,

for m = 1, . . . , N . The proof is completed.

Next, we prove Theorem 2.4.2.
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Proof. Define

x∗ijk =


1, if d∗ijk < 0;

0, if d∗ijk > 0.

(2.4.19)

Then, by Lemma 2.4.4, x∗ = (x∗ijk) is a feasible solution to the problem (PP). As

a result, there are three sequences {i1, . . . , iN}, {j1, . . . , jN} and {k1, . . . , kN}, and

each of them is a permutation of {1, . . . , N}, such that x∗ = (x∗ijk) can be represented

in the form of Eq. (2.4.15). Furthermore, we have

d∗imjmkm < 0,

for m = 1, . . . , N . Then, the theorem follows from Theorem 2.4.1, and the proof is

completed.

2.5 The solution to the original assignment prob-

lem

If the conditions of Theorem 2.4.1 or Theorem 2.4.2 are satisfied, then the optimal

value of the problem (PP) is equal to the optimal value of the dual problem. Mean-

while, if Theorem 2.4.1 can be applied, the optimal solution x∗ = (x∗ijk) to the original
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assignment problem is given by

x∗ijk =


1, if (i, j, k) = (im, jm, km),m = 1, . . . , N ;

0, otherwise.

(2.5.1)

If the condition of Theorem 2.4.2 are satisfied, the solution is

x∗ijk =


1, if d∗ijk < 0;

0, if d∗ijk > 0.

(2.5.2)

On the other hand, if the conditions of the theorems are not satisfied, we need

to search for the final (sometimes sub-optimal) assignment. In principle, we can

apply any heuristic searching method [22],[39] on the reduced costs {d∗ijk}. To get the

final assignment in our simulations, however, we used the following simple two-step

procedure, which is actually used by the Lagrangian method in each of its iterations

to search for a feasible solution [15, 33, 11, 38]:

Step 1: We solve the relaxed 2-D assignment problem:

min
ω∈S2

N∑
i=1

N∑
j=1

aijωij (2.5.3)

where S2 is defined in Section 2.3, and

aij = min
1≤k≤N

(
cijk − η∗k

)
, (2.5.4)

where η∗ has already been determined in solving problem (PD).

Step 2: Fix the assignment (i, j(i)) obtained in the previous step, and solve another
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2-D assignment problem:

min
ω∈S2

N∑
i=1

N∑
k=1

cij(i)kωik (2.5.5)

to obtain the 3-D assignment (i, j(i), k(i)).

2.6 Simulation results

In this section, two sets of simulations are performed to demonstrate the effectiveness

of the proposed dual approach. Our computation platform is a laptop with an Intel

i7-6500U CPU running Windows 10. The computations are carried out using the

MATLAB programming language.

In the first set of simulations, we illustrate the performance of the newly proposed

approach by conducting Monte Carlo simulations on some small-size problems. The

costs are randomly generated, and hence we get dense three dimensional cost arrays.

The algorithms are run 200 times in the simulations.

The true optimal values to problem (PP) are shown in Fig. 2.6.1 for problem

size N = 4 and in Fig. 2.6.2 for N = 6, together with the lower bound estimates

H∗ by solving the dual problem (PD). To make it easier to compare the results, the

differences between the true optimal values and the estimates are also shown in the

figures. From the curves, it can be seen that for N = 4 the duality gaps are nearly

zero in more than half of the simulated problems. Furthermore, it has been shown by

calculation that the average relative errors between the estimate H∗ and the optimal

assignment costs are around 2–3% (see Table 2.6.1).

Next, we demonstrate that the solutions by the Lagrange relaxation method con-

verge towards the optimal solution to the dual problem (PD) with the increasing
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Figure 2.6.1: Lower bound estimates by the dual method (N = 4); the curve near
zero shows the duality gaps (always non-negative).

Size Relative error
(%)

4x4x4 1.870
6x6x6 2.95

Table 2.6.1 Average errors for N = 4 and N = 6.
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Figure 2.6.2: Lower bound estimates by the dual method (N = 6); the curve near
zero shows the duality gaps (always non-negative).
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Figure 2.6.3: Differences between the dual estimates and the estimates by the LR
method (size N = 6). Top: after 20 LR iterations; Middle: after 100 LR iterations;
Bottom: after 200 LR iterations. The optimal values are around 1, similar to those

shown in Fig. 2.6.2.
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number of iterations. As shown in Fig. 2.6.3, after 100 iterations, the results of the

LR method are close to the corresponding results of the dual method, as predicted

by Theorem 2.3.4. In fact, due to numerical errors, some points on the bottom curve

are even below zero.

In the second set of simulations, we compare the dual approach to the LR method

[15, 33, 11, 38] by applying the algorithms to larger size problems. For that purpose,

the method proposed in [18] is employed to generate random assignment problems

of different sizes with known optimal solutions. The generated problems have dense

cost coefficient arrays. Although this is not true for problems in typical tracking

applications [33, 11, 38], the randomly generated problems can be used to assess the

performance of general assignment algorithms. The cost coefficients are integers in

the range (0, 20). Problems of ten different sizes are considered, from small 10x10x10

problems to relatively large 100x100x100 problems. The choice of the sizes is based

on[25], oriented towards tracking applications.

The statistics of the randomly generated assignment problems, together with that

of the differences between the assignment results, are shown in Table 2.6.2 and Table

2.6.3. Moreover, Figs. (2.6.4–2.6.9) show the distributions of the 40x40x40 and

50x50x50 assignment problems using histograms, together with the distributions of

the resulting assignment values for the two classes of problems.

The subgradient method [42] is used to solve the maximization problems produced

by both the dual method and the LR method [33, 11]. Before applying the subgradient

method, the cost coefficients are normalized so that the normalized cost values are in
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Figure 2.6.4: Distribution of the optimal values of the 100 randomly generated
40x40x40 test problems.

Problem size Optimal value Difference 1 Difference 2
10x10x10 48.7000 -0.6812 1.6000
20x20x20 100.3700 -2.0025 3.9300
30x30x30 147.7300 -2.5872 6.4500
40x40x40 200.5400 -3.5150 10.4100
50x50x50 252.2000 -4.3150 10.7800
60x60x60 300.5800 -4.2553 11.6300
70x70x70 342.8250 -5.6898 11.3000
80x80x80 401.5500 -7.9812 9.7000
90x90x90 451.8500 -10.9125 10.9500

100x100x100 492 -15.6250 10.7000

Table 2.6.2 Means of the optimal assignment costs (column 2), the differences
between the dual lower bounds and the optimal values (column 3) and the
differences between the actual assignment costs and the optimal values (column 4)
for different problem sizes.
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Figure 2.6.5: Distribution of the differences between the dual lower bounds and
the optimal values of the 100 randomly generated 40x40x40 test problems.

Problem size Optimal value Difference 1 Difference 2
10x10x10 78.6566 0.8816 7.1313
20x20x20 140.1142 3.1506 12.9748
30x30x30 215.8759 4.3009 15.6439
40x40x40 308.5539 5.7585 4.4262
50x50x50 341.1111 5.3575 6.5370
60x60x60 295.6804 6.4773 6.2557
70x70x70 471.8404 6.8194 3.7538
80x80x80 699.6289 5.0957 9.8000
90x90x90 561.0816 6.2093 2.7868

100x100x100 411.7778 8.2281 6.2333

Table 2.6.3 Variances of the optimal assignment costs (column 2), variances of the
differences between dual lower bounds and the optimal values (column 3) and
variances of the differences between actual assignment costs and optimal values
(column 4) for different problem sizes.
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Figure 2.6.6: Distribution of the differences between the assignment results and
the optimal values of the 100 randomly generated 40x40x40 test problems.
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Figure 2.6.7: Distribution of the optimal values of the 100 randomly generated
50x50x50 test problems.
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Figure 2.6.8: Distribution of the differences between the dual lower bounds and
the optimal values of the 100 randomly generated 50x50x50 test problems.
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Figure 2.6.9: Distribution of the differences between the assignment results and
the optimal values of the 100 randomly generated 50x50x50 test problems.
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the range (0, 1). The iteration scheme is

xn+1 = xn +
1

n

g(x)

||g(x)||
, (2.6.1)

where g(x) ∈ ∂f(x) with f(x) being the objective function to be maximized, and ∂

denotes the subgradient operator. The reason for choosing such a simple method is to

ensure that the differences in the simulation results for the two algorithms under tests

are indeed caused by the inherent differences between the dual algorithm and the LR

algorithm, instead of being produced by the methods used to solve the associated

maximization problems.

For the LR method, the stopping criterion adopted in the simulation is

An −Gn

Gn

< 1%, (2.6.2)

with an upper limit of 200 on the number of iterations, where An is the total cost

corresponding to the assignment result and Gn is the lower bound estimation at the

nth step. The auction algorithm [7] is employed to find the solutions to all resulting

2-D assignment problems in implementing the Lagrange relaxation method.

For the dual method, the stopping criterion is n > 100 and

|Hn+1 −Hn| < 0.0001Hn, (2.6.3)

with an upper limit of 200 on the number of iterations, where Hn is the lower bound

estimation at the nth step.

The results are shown in Fig. 2.6.11 to Fig. 2.6.20. In these figures, the relative
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Problem size Average relative error(%)
Dual LR

10x10x10 3.223297 4.556535
20x20x20 3.837284 5.215574
30x30x30 4.378541 5.050015
40x40x40 5.226154 5.954631
50x50x50 4.289758 5.000658
60x60x60 3.870937 4.004356
70x70x70 3.312801 3.263973
80x80x80 2.400072 2.816428
90x90x90 2.42686 2.35371

100x100x100 2.1812 2.009

Table 2.6.4 Relative errors for different problem sizes

errors (errors divided by the corresponding optimal values) of the final assignments

and the corresponding lower bounds for the test problems are shown. The average

relative errors are summarized in Table 2.6.4.

The CPU times for the 40x40x40 simulation are shown in Fig. 2.6.10, with a mean

value of 0.2021s and a standard deviation of 0.0220s. Also shown in the figure are the

times for the LR method, with a standard variation of 0.0891s. The curves of CPU

times for other problem sizes have similar characteristics. The average running times

for these tests are summarized in Table 2.6.5.

From the above results, several observations can be made. First, we can see that

the dual method outperforms the LR method, both in terms of accuracy and running

times.

Second, note that the relative errors of the dual method are better than the relative

errors of the LR method, in spite of the fact that both methods have obtained nearly

the same lower bounds. This implies that the final assignment results depend not
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Figure 2.6.10: CPU times for the 100 randomly generated 40x40x40 test problems.

Problem size CPU time for each problem (s)
Dual LR

10x10x10 0.003223 0.045565
20x20x20 0.020363 0.165529
30x30x30 0.070448 0.457757
40x40x40 0.1921 0.7755
50x50x50 0.718940 2.063451
60x60x60 1.432292 3.662854
70x70x70 2.631925 6.278000
80x80x80 4.057100 8.709200
90x90x90 5.2350 9.5303

100x100x100 6.4780 11.5207

Table 2.6.5 Average elapsed CPU times for different problem sizes
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only on the lower bound estimation, but also on the solution (µ, ν, η). The optimal

solution to the dual problem (PD) has better symmetry than that obtained by the LR

method, in which one set of constraints are relaxed, thus leading to asymmetry among

the three sets of constraints. Intuitively, a symmetric solution might capture more

complete information about the original assignment problem. Since the solution is not

unique, it needs further investigation to determine a good criterion for selecting the

solution to the dual problem (PD), or to the problem maxη G(η) for the LR method,

where G(η) is given by Eq. (2.3.4), such that the final assignment result has the

smallest error.

Furthermore, when the size of the problem reaches 70x70x70, the average relative

errors of the two algorithms get close to each other. This is due to the inefficiency

of the subgradient method [41]. The drawbacks of the subgradient method become

more serious with larger size problems. The size N3 of the problem (PD) increases

much faster than the size N2 of the maximization problem associated with the LR

method when N increases. As a result, the advantage of the dual method gradually

decreases when the size reaches 60x60x60. For problems larger than 100x100x100,

more efficient numerical methods are necessary to fully demonstrate the power of

the dual method. Alternatives to the subgradient iteration scheme considered here,

along with the generalization of the dual solution to higher dimensional assignment

problems, is the topic of chapter 2.

On the other hand, the statistics in Table 2.6.2 and Table 2.6.3 and in Figs.

(2.6.4–2.6.9) compare the distribution of the original optimal values with that of the

errors between the solutions and the optimal values. We see that after applying the

dual algorithm, the variances of original distributions have been reduced significantly.
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Figure 2.6.11: Assignment and lower bound estimation relative errors for one
hundred 10x10x10 randomly generated test problems (N = 10).

This demonstrates the power of the algorithm from a statistical perspective.

2.7 Remarks on the time complexity of the dual

problem

We have shown that under some mild conditions, three-dimensional assignment prob-

lems can be transformed into a mathematically equivalent (in terms of their optimal

values) unconstrained convex programming problems through the duality approach.

The original problem is known to be NP -hard [16]. Now, let us examine the time
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Figure 2.6.12: Assignment and lower bound estimation relative errors for one
hundred 20x20x20 randomly generated test problems (N = 20).
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Figure 2.6.13: Assignment result and lower bound estimation relative errors for
one hundred 30x30x30 randomly generated test problems (N = 30).
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Figure 2.6.14: Assignment and lower bound estimation relative errors for one
hundred 40x40x40 randomly generated test problems (N = 40).
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Figure 2.6.15: Assignment and lower bound estimation relative errors for one
hundred 50x50x50 randomly generated test problems (N = 50).
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Figure 2.6.16: Assignment and lower bound estimation relative errors for one
hundred 60x60x60 randomly generated test problems (N = 60).
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Figure 2.6.17: Assignment and lower bound estimation relative errors for fourty
70x70x70 randomly generated test problems (N = 70).
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Figure 2.6.18: Assignment and lower bound estimation relative errors for twenty
80x80x80 randomly generated test problems (N = 80).
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Figure 2.6.19: Assignment and lower bound estimation relative errors for twenty
90x90x90 randomly generated test problems (N = 90).
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Figure 2.6.20: Assignment and lower bound estimation relative errors for ten
100x100x100 randomly generated test problems (N = 100).
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complexity of the resulting dual problem (PD), which is equivalent to the following:

min
µ,ν,η

h(µ, ν, η), (PDE)

where

h(µ, ν, η) =
1

2
(
∑

(i,j,k)∈I0

cijk −H(µ, ν, η))

=
∑

(i,j,k)∈I0

|cijk − µi − νj − ηk|

+ (N2 − 2)
N∑
i=1

µi + (N2 − 2)
N∑
j=1

νj

+ (N2 − 2)
N∑
k=1

ηk.

The problem (PDE) is a convex optimization problem. A variety of iterative

algorithms, such as the subgradient algorithm used in our simulation example, are

available to compute the optimal solution to (PDE) highly efficiently. With such

algorithms, the time complexity depends on the size of the problem, the choice of the

initial solution, the iteration step sizes, as well as accuracy of the resulting solution

[42, 14, 5]. Typically, the iteration converges to the solution in hundreds or even

tens of steps in typical applications [42, 14]. From a practical point of view, the

computational complexity of the problem (PDE) will be ∝ N3, if we set the number

of iteration steps to a fixed number, say, 100.

Furthermore, the problem (PDE) can be represented in an equivalent LP form:

min
µ,ν,η,t

∑
(i,j,k)∈I0

tijk + (N2 − 2)
N∑
i=1

(
µi + νi + ηi

)
(LP)
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subject to

cijk − µi − νj − ηk ≤ tijk,∀(i, j, k) ∈ I0,

and

cijk − µi − νj − ηk ≥ −tijk,∀(i, j, k) ∈ I0.

The problem has 3N +N3 variables, and subject to 2N3 constraint inequalities.

By Khachiyan’s ellipsoid algorithm, the problem (LP) can be solved in polynomial

time [23]. Interior methods present another more efficient way to solve LP problems

in polynomial time.

The time complexity of the LR method depends on the algorithm used to solve

the 2-D assignment problems. When the 2-D problems are solved using the auction

method, the time complexity follows O(N2) [7] but depends on cost coefficients. To

simplify the comparison, let us assume the 2-D assignment problem can be solved by

the auction algorithm in N2 ×K1 calculations, where K1 is a fixed number, say 100.

Then the time complexity of the relaxation method is N2×K1×K2, where K2 is the

number of iterations by the subgradient algorithms, say, 200.

The dual problem can be solved in N3×K3 calculations, where K3 is the number

of iterations by the subgradient algorithms, say, 200. Then, we see that if K2 = K3,

then the relative time complexity of the dual method and the LR method depends on

the ratio N/K1. If the size of the assignment problem N < K1, or N < 100, assuming

K1 = 100, then the dual method has a relatively lower time complexity. On the other

hand, if N > 100, then the relaxation method will have a lower time complexity than

the dual method. For tracking applications, if the number of tracks is less than 100,

the dual method should be more efficient than the relaxation method based on the

75



Ph.D. Thesis – J. Li McMaster University – Multitarget tracking

above reasoning. This was confirmed in our previous simulations.

In our implementation, the time complexity of the relaxation method is close to

that of the dual method. However, it should be pointed out that the performance

of the dual algorithm can be further improved by employing more efficient numerical

methods such as the Gauss-Seidel based iteration method [6]. These implementation

related issues, together with other ways of boosting the efficiency of the proposed

algorithm, will be discussed in the next chapters.

2.8 Conclusions

In this chapter, a dual approach was proposed to convert three-dimensional assign-

ment problems into unconstrained convex programming problems. It is shown that

the optimal value of the dual problem is equal to the upper bound of the objective

functions of the relaxation method. Both the dual method and the LR method demon-

strate high accuracy around 97% for large size problems. However, the advantages of

the dual approach are twofold:

First, it makes theoretical analysis of the algorithm more tractable. In fact, based

on the dual representation, two strong duality results were proved.

Second, for small and medium size problems, the dual method is more efficient and

has higher accuracy than the LR method even with the basic subgradient method.

For large size problems, the problem (PD) can be transformed into a linear optimiza-

tion problem. This is a key advantage, since it makes it possible to employ highly

efficient linear optimization algorithms, such as the interior point method and the

classical simplex method, which are usually much faster than nonlinear optimization

algorithms, to solve the maximization problem (PD). Considering the vast amount
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of literature on linear optimization algorithms, this is indeed a significant advantage,

and it will enable the proposed method to solve even larger assignment problems

arising in a wide variety of applications.

Another advantage of the dual approach is that it can be extended to solve gener-

alized assignment problems, such as many-to-one and one-to-many assignment prob-

lems, and assignment problems with inequality constraints. Furthermore, the method

presented in this chapter can be extended to higher dimensional cases.
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Chapter 3

Dual algorithm for

multi-dimensional assignment

problems

3.1 Introduction

In the previous chapter, we developed a novel dual approach for the three-dimensional

assignment problem, also see [31]. The dual method demonstrated the same or better

accuracy than the Lagrangian relaxation (LR) method while being more time-efficient

and easier to implement due to the simple structure of the dual formulation.

In this chapter, we extend the dual approach to solve more general multidimen-

sional assignment problems. The chapter is organized as follows. A dual convex

representation is derived first in Section 3.2. Also, we discuss the condition under

which the duality gap reaches zero in Section 3.3. Next, we investigate relationship
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of the dual approach to the LR method in Section 3.4.Furthermore, a numerical al-

gorithm based on the dual formulation is presented in Section 3.5. The simulation

results given in Section 3.6 show that the proposed algorithm outperforms the LR

approach both in terms of accuracy and computational efficiency. Finally, we con-

sider in Section 3.7 the time complexity of the algorithm and propose an improved

iteration scheme called the alternating direction iteration method.

It should be pointed out that the results presented in this chapter on the Multidi-

mensional assignment problem (MAP) are not a trivial generalization of those given

in the previous work [31]. First, the proofs in this chapter are not only simpler and

more elegant, but also more powerful in terms of the results than those given in the

last chapter. In fact, the proofs given in [31] on the equivalence between the dual

formulation and the LR for three dimensional assignment problems cannot be used

here to show the equivalence in higher dimensional cases. Second, the new proof also

shows that the process of LR is essentially equivalent to relaxing the binary constraint

condition in the original assignment problem, a new result that does not appear in

the previous work. Moreover, the alternating direction iteration method given in

Section 3.7, which converts a high dimensional maximization problem into a set of

low dimensional maximization problems, turns out to be essential to overcome the

inefficiency of the subgradient method in high dimensional maximization problems.

The simulation results show that by such an iteration scheme, the solution process

can be significantly accelerated. Finally, an effective search strategy is proposed to

further reduce the gap between the final assignment cost and the optimal cost.
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3.2 Formulation of the problem and its dual rep-

resentation

Let M ≥ 3 be an integer. Given a set of coefficients {ci1...iM}, (i1, . . . , iM) ∈ I0, we

have a linear objective function

f(x) =
∑

(i1,...,iM )∈I0

ci1...iMxi1...ıM , (3.2.1)

where x = (xi1...iM ), and I0 is an index set given by

I0 = {1, . . . , N}M = {(i1, . . . , iM) | i1 ∈ {1, . . . , N}, . . . , iM ∈ {1, . . . , N}}, (3.2.2)

.

The M-dimensional assignment problem can be formulated as

min
x
f(x), (PP)

subject to the constraints

xi1...iM ∈ {0, 1} (3.2.3)

N∑
i2=1

· · ·
N∑

iM=1

xi1...iM = 1, ∀i1 ∈ {1, ..., N}, (3.2.4)

N∑
i1=1

· · ·
N∑

im−1=1

N∑
im+1=1

· · ·
N∑

xiM =1

,∀im ∈ {1, ..., N}, (3.2.5)

N∑
i1=1

· · ·
N∑

iM−1=1

xi1...iM = 1,∀iM ∈ {1, ..., N}. (3.2.6)
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In the context of radar tracking applications, ci1...iM can be interpreted as the

cost associated with assigning the imth measurement zm−1,im of sensor m − 1 (m =

2, . . . ,M) to track i1, and x = (xi1...iM ) has the following meaning:

xi1...iM =


1 if measurement zm−1,im is associated to track i1,m = 2, . . . ,M

0 otherwise.

For brevity, the following vector notations will be adopted in this chapter:

x = (x11...1, x21...1, ..., xN1...1, ..., xN...N1, ..., xN...NN),

µ1 = (µ1,1, µ1,2, ..., µ1,N),

µ∗1 = (µ∗1,1, µ
∗
1,2, ..., µ

∗
1,N),

...,

µM = (µM,1, µM,2, ..., µM,N),

µ∗M = (µ∗M,1, µ
∗
M,2, ..., µ

∗
M,N),

µ = (µ1, µ2, . . . , µM).

Moreover, we will use SF to represent the set of feasible solutions to the optimiza-

tion problem (PP), i.e.,

SF = {x ∈ {0, 1}NM

: x satisfies Eqs.((3.2.4), (3.2.5), (3.2.6)}. (3.2.7)

In addition, ∀(i1, . . . , iM) ∈ I0, define the reduced costs

di1...iM = ci1...iM − µ1,i1 − µ2,i2 − · · · − µM,iM . (3.2.8)
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The development of the dual algorithm is based on a special type of separable

Lagrangian:

L(x, µ) =
∑

(i1,...,iM )∈I0

ci1...iMxi1...iM +
∑

(i1,...,iM )∈I0

|di1...iM |(x2
i1...iM

− xi1...iM )

+
N∑
i1=1

(
µ1,i1(1−

N∑
i2=1

· · ·
N∑

iM=1

xi1...iM )
)

+ . . .

+
N∑

iM=1

(
µM,iM (1−

N∑
i1=1

· · ·
N∑

iM−1=1

xi1...iM )
)
.

(3.2.9)

Equivalently,

L(x, µ) =
∑

(i1,...,iM )∈I0

(
|di1...iM |x2

i1...iM
+ (di1...iM − |di1...iM |)xi1...iM

)
+

N∑
i1=1

µ1,i1 + · · ·+
N∑

iM=1

µM,iM ,

(3.2.10)

by Eq. (3.2.8).

For di1...iM 6= 0, we have

|di1...iM |x2
i1...iM

+ (di1...iM − |di1...iM |)xi1...iM

=|di1...iM |
(
x2
i1...iM

+
di1...iM − |di1...iM |
|di1...iM |

xi1...iM

)
=|di1...iM |

(
xi1...iM +

di1...iM − |di1...iM |
2|di1...iM |

)2

− (di1...iM − |di1...iM |)2

4|di1...iM |

≥ − (di1...iM − |di1...iM |)2

4|di1...iM |
.

(3.2.11)
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Thus,

|di1...iM |x2
i1...iM

+ (di1...iM − |di1...iM |)xi1...iM ≥


di1...iM , if di1...iM < 0,

0, if di1...iM ≥ 0.

(3.2.12)

Defining x̂ = (x̂i1...iM )

x̂i1...iM =


1, if di1...iM < 0;

0, if di1...iM ≥ 0,

(3.2.13)

we have the unconstrained Lagrangian

L(x̂, µ) =
∑

(i1,...,iM )∈I0

(
|di1...iM |x̂2

i1...iM
+ (di1...iM − |di1...iM |)x̂i1...iM

)
+

N∑
i=1

(
µ1,i + · · ·+ µM,i

)
=

∑
(i1,...,iM )∈I0

(
di1...iM

)−
+

M∑
m=1

N∑
im=1

µm,im ,

(3.2.14)

where the function (·)− is defined by

(θ)− = min(0, θ) (3.2.15)

and is a piece-wise linear concave function.

Note: x̂ is a function of (µ1, . . . , µM), see Eq. (3.2.8).

From Eqs. (3.2.10, 3.2.12, 3.2.14), we get the following weak duality result:
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Lemma 3.2.1. ∀µ, ∀x ∈ SF , we have

f(x) = L(x, µ) ≥ L(x̂, µ).

For brevity, we denote L(x̂, µ) by H(µ). Thus, by Eq. (3.2.14),

H(µ) =
∑

(i1,...,iM )∈I0

(
di1...iM

)−
+

M∑
m=1

N∑
im=1

µm,im . (3.2.16)

We will consider the following dual problem

max
µ

H(µ), (PD)

and show that it leads to an efficient algorithm for the MAP problem.

Remark: H(µ) is a piece-wise linear concave function. Thus, the dual problem

(PD) is a convex optimization problem. In fact, it can be transformed into a linear

programming (LP) problem (see Section 3.4).

3.3 Strong duality results for the assignment prob-

lem

Given any (µ∗1, . . . , µ
∗
M), we have a set of coefficients

d∗i1...iM = ci1...iM − µ∗1,i1 − · · · − µ
∗
M,iM

(3.3.1)

∀(i1, . . . , iM) ∈ I0, by Eq.(3.2.8).
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The purpose of this section is to prove two strong duality results.

Theorem 3.3.1. Let f ∗ and H∗ be the optimal values of the assignment problem

(PP) and its dual problem (PD) respectively. Then,

f ∗ = H∗ (3.3.2)

if and only if there exists an optimal solution (µ∗1, . . . , µ
∗
M) to the dual problem (PD),

such that

d∗i1,n... iM,n
≤ 0, n = 1, . . . , N, (3.3.3)

and for any m ∈ {1, . . . ,M}, the sequence (im,1, . . . , im,N) is a permutation of (1, . . . , N),

The next theorem makes it possible to check for the condition for the strong

duality.

Theorem 3.3.2. Suppose that there exists an optimal solution (µ∗1, . . . , µ
∗
M) to the

dual problem (PD) such that d∗i1...iM 6= 0 for any (i1, . . . , iM) ∈ I0. Then,

f ∗ = H∗, (3.3.4)

where f ∗ and H∗ are the optimal values of the assignment problem (PP) and its dual

problem (PD), respectively.

To prove the two theorems, we need to investigate the solutions to the dual prob-

lem (PD).
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3.3.1 Properties of optimal solutions to the problem (PD)

We will use the following index sets to characterize the optimal solutions to the dual

problem (PD).

Definition 2. For any m ∈ {1, . . . ,M}, i ∈ {1, 2, ..., N}, define the (M − 1)-

dimensional index set

Nm(im) = {(i1, . . . , im−1, im+1, . . . , iM) : d∗i1...iM < 0}. (3.3.5)

Moreover, we denote the number of elements in a set S by card(S).

Lemma 3.3.3. (Optimal solution criterion) Let µ∗ = (µ∗1, . . . , µ
∗
M) be an optimal

solution to the problem (PD). Then, the following inequalities must be satisfied:

card(Nm(im)) ≤ 1,

∀m ∈ {1, . . . ,M}, i ∈ {1, . . . , N}.

Proof. Suppose that the claim is false. By rearranging the indices, if necessary, we

can assume that d111...1 < 0, and d121...1 < 0.

Let δ = min{|d1i2...i−M | : d1i2,...,iM < 0}.

Define µ̂∗ = (µ̂∗m,im) by

µ̂∗m,im =


µ∗m,im − δ, if m = 1, im = 1,

µ∗m,im , otherwise.

(3.3.6)
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Then, one can verify that

H(µ̂∗)−H(µ∗) ≥ δ > 0. (3.3.7)

This is however in contradiction to the assumption that µ∗ is an optimal solution to

the problem (PD).

3.3.2 Proof of the duality theorems

First, we prove Theorem 3.3.1.

Proof. By Eq. (3.2.8), we have

ci1...iM = di1...iM + µ1,i1 + · · ·+ µM,iM , (3.3.8)

∀(i1, . . . , iM) ∈ I0.

It follows that ∀x = (xi1...iM ) ∈ SF , we have

f(x) =
∑

(i1,...,iM )∈I0

ci1...iMxi1...iM

=
∑

(i1,...,iM )∈I0

di1...iMxi1...iM +
∑

(i1,...,iM )∈I0

(µ1,i1 + · · ·+ µM,iM )xi1...iM

=
∑

(i1,...,iM )∈I0

di1... iMxi1...iM +
N∑
i=1

(
µ1,i + · · ·+ µM,i

)
(3.3.9)

Suppose that there exists an optimal solution (µ∗1, . . . , µ
∗
M) to the dual problem
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(PD) satisfying the condition of the theorem. Define

x∗i1...iM =


1, if (i1, . . . , iM) = (i1,n, . . . , iM,n), n = 1, . . . , N ;

0, otherwise.

(3.3.10)

Then, x∗ = (x∗i1...iM ) is a feasible solution to (PP).

Moreover, by Eq. (3.3.9),

f(x∗) =
∑

(i1,...,iM )∈I0

d∗i1... iMx
∗
i1...iM

+
N∑
i=1

(
µ∗1,i + · · ·+ µ∗M,i

)
=

N∑
n=1

d∗i1,n...iM,n
+

N∑
i=1

(
µ∗1,i + · · ·+ µ∗M,i

)
=

N∑
n=1

(d∗i1,n...iM,n
)− +

N∑
i=1

(
µ∗1,i + · · ·+ µ∗M,i

)
.

(3.3.11)

By Lemma 3.3.3, for each im,n, there is at most one index-tuple (k1, . . . , kM) with

im,n = km, and d∗k1...kM < 0. Thus, it follows from Eq. (3.3.11) that

f(x∗) =
∑

(k1,...,kM )∈I0

(d∗k1...kM )− +
N∑
i=1

(
µ∗1,i + · · ·+ µ∗M,i

)
= H(µ∗1, . . . , µ

∗
M).

(3.3.12)

The above equation, together with the weak duality lemma 3.2.1, leads to f ∗ = H∗,

and the proof for the sufficiency is complete.

Next, we proceed to show the necessity of the condition. For that purpose, suppose

that x∗ is an optimal solution to (PP) and f ∗ = f(x∗) = H∗ = H(µ∗1, . . . , µ
∗
M) is true.

Then, there are M sequences {im,1, . . . , im,N}, m = 1, . . . ,M , with each of these
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sequences being a permutation of {1, . . . , N}, such that x∗ = (x∗i1...iM ) can be repre-

sented in the form of Eq. (3.3.10).

Now, note that

f(x∗)−H(µ∗1, . . . , µ
∗
M) =

N∑
n=1

d∗i1,n...iM,n
−

∑
(i1,...,iM )∈I0

(d∗i1...iM )− ≥ 0. (3.3.13)

In order to satisfy f ∗ −H∗ = 0, we must have

d∗i1,n...iM,n
≤ 0,

for n = 1, . . . , N . The proof is completed.

Next, we prove Theorem 3.3.2.

Proof. Define

x∗i1...iM =


1, if d∗i1...iM < 0;

0, if d∗i1...iM > 0.

(3.3.14)

Then, by Lemma 3.3.3, x∗ = (x∗i1...iM ) is a feasible solution to the problem (PP).

As a result, there are M sequences {im,1, . . . , im,N}, where m = 1, . . . ,M , with each

of these sequences being a permutation of {1, . . . , N}, such that x∗ = (x∗i1...iM ) can be

represented in the form of Eq. (3.3.10). Furthermore, we have

d∗i1,n...iM,n
< 0,

for n = 1, . . . , N . Then, the theorem follows from Theorem 3.3.1, and the proof is
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completed.

3.4 Connection to the Lagrangian relaxation ap-

proach

Now, let us investigate the connection between the proposed dual approach and the

LR approach. The major result of this section is that the optimal value H∗ of the

problem (PD) is equal to the optimal value of the objective function maximized by

the LR method[15, 33, 11, 38].

There are several variants of the LR method for multidimensional assignment

problems[15, 33, 11, 38]. We will focus on one of the variants[33, 11].

Let S
[m−1]
F denote the feasible set of ω[m−1] = (ωi1...im−1), where i1 = 1, . . . , N ; . . . ; im−1 =

1, . . . , N satisfying the constraints of the (m− 1)-dimensional assignment problem:

ωi1...im−1 ∈ {0, 1}
N∑
i2=1

· · ·
N∑

im−1=1

ωi1...im−1 = 1,∀i1 ∈ {1, ..., N},

. . . ,

N∑
i1=1

· · ·
N∑

im−2=1

ωi1...im−1 = 1, ∀im−1 ∈ {1, ..., N}.
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The LR method operates by maximizing the following objective function:

G[1](µM) = min
ω[M−1]∈S[M−1]

{ N∑
i1=1

· · ·
N∑

iM−1=1

c
[M−1]
i1...iM−1

ωi1...iM−1

}
+

N∑
k=1

µM,k, (3.4.1)

where ω[M−1] = (ωi1...iM−1
),

c
[M−1]
i1...iM−1

= min
1≤k≤N

(
c

[M ]
i1...iM

− µ(M)
k

)
(3.4.2)

with the convention

c
[M ]
i1...iM

= ci1...iM . (3.4.3)

In the case of M > 3, the problem

min
ω[M−1]

{ N∑
i1=1

· · ·
N∑

iM−1=1

c
[M−1]
i1...iM−1

ωi1...iM−1

}
(PP(M-1))

is still NP-hard, and hence needs further relaxation.

By repeating the relaxation process, we will end up with a maximazation problem:

max
µ2,...,µM

G[M−1](µ2, . . . , µM), (3.4.4)

where

G[M−1](µ2, . . . , µM)

= min
ω[2]∈S[2]

F

{ N∑
i1=1

N∑
iM−1=1

c
[2]
i1i2
ωi1i2

}
+

M∑
m=2

N∑
im=1

µm,im ,
(3.4.5)
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with ω[2] = (ωi1i2), and the coefficients c
[m]
i1...im

are recursively defined by

c
[m−1]
i1...im−1

= min
1≤im≤N

(
c

[m]
i1...im

− µm,im
)
. (3.4.6)

for m = 3, . . . ,M .

The following representation can be derived from (3.4.6) by induction.

Lemma 3.4.1.

G[M−1](µ2, . . . , µM)

= min
ω[2]∈S[2]

F

N∑
i1=1

{
ci1...iM −

M∑
m=3

µm,im

}
ωi1i2 +

M∑
m=3

N∑
im=1

µm,im .
(3.4.7)

Let us denote the optimal value of the LR iterations by

J∗LR = max
µ2,...,µ(M)

G[M−1](µ2, . . . , µM). (3.4.8)

Moreover, define

K∗ = max
µ∈F [M ]

M∑
m=1

N∑
im=1

µm,im (3.4.9)

where the set F [M ] is given by

F [M ] = {µ :
M∑
m=1

µm,im ≤ ci1...iM , for ∀(i1, . . . , iM) ∈ I0} (3.4.10)

Lemma 3.4.2. For any µ̃2, . . . , µ̃M , we have

G[M−1](µ̃2, . . . , µ̃M) ≤ K∗ (3.4.11)
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Proof. We know that

G[M−1](µ̃2, . . . , µ̃M)

= min
ω[2]∈S[2]

F

N∑
i1=1

{
ci1...iM −

M∑
m=3

µ̃m,im

}
ωi1i2 +

M∑
m=3

N∑
im=1

µ̃M,iM .
(3.4.12)

Thus, from 2-D assignment theory,

G[M−1](µ̃2, . . . , µ̃M)

= max
(µ1,i1 , µ2,i2 )∈F [2]

{ N∑
i1=1

µ1,i1 +
N∑
i2=1

µ2,i2

}
+

M∑
m=3

N∑
im=1

µ̃m,im ,
(3.4.13)

where F [2] is the set of (µ1,i1 , µ2,i2) satisfying the inequalities

2∑
m=1

N∑
im=1

µm,im ≤ ci1...iM −
M∑
m=3

µ̃m,im (3.4.14)

for any (i1, i2) ∈ {1, . . . , N}2.

It follows that

G[M−1](µ̃2, . . . , µ̃M)

≤ max
µ∈F [M ]

{ N∑
i1=1

µ1,i1 +
N∑
i2=1

µ2,i2 +
M∑
m=3

N∑
im=1

µm,im
}

=K∗,

(3.4.15)

since (µ1,i1 , µ2,i2 , µ̃3,i3 , . . . , µ̃M,iM ) ∈ F [M ], due to inequality (3.4.14).

Lemma 3.4.3. Let H∗ be the optimal value of the problem (PD). Then, there exists
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µ∗ ∈ F [M ], such that

H∗ =
{
ci1...iM −

M∑
m=1

µ∗m,im
}−

+
M∑
m=1

N∑
im=1

µ∗m,im

=
M∑
m=1

N∑
im=1

µ∗m,im

(3.4.16)

Proof. Suppose that µ̃∗ is an optimal solution to problem (PD). By Lemma 3.3.3, for

any i1 = 1, . . . ,M , there is at most one index (i1, . . . , iM) ∈ I0, with

ci1...iM −
M∑
m=1

µ̃∗m,im < 0. (3.4.17)

Therefore, by rearranging the indices, if necessary, we can assume that

ck...k −
M∑
m=1

µ̃∗m,k < 0

for k = 1, ..., N1, with N1 ≤ N , while ci1...iM −
∑M

m=1 µ̃
∗
m,im ≥ 0 for all other indices.

Define µ∗ = (µ∗m,im) by

µ∗m,im =


µ̃∗m,im + ck...k −

∑M
m=1 µ̃

∗
m,k, if m = 1, im = 1, ..., N1,

µ̃∗m,im , otherwise.

(3.4.18)

It can be directly verified that µ∗ ∈ F [M ], and

H∗ =
{
ci1...iM −

M∑
m=1

µ∗m,im
}−

+
M∑
m=1

N∑
im=1

µ∗m,im

Therefore, we have established the existence of µ∗ claimed by the lemma.
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Lemma 3.4.4. Let H∗ be the optimal value of the problem (PD). Then, we have

H∗ = K∗ (3.4.19)

Proof. ∀µ ∈ F [M ], we have
M∑
m=1

µm,im ≤ ci1...iM (3.4.20)

for any (i1, . . . , iM) ∈ {1, . . . , N}M .

As a result, {
ci1...iM −

M∑
m=1

µm,im
}−

= 0 (3.4.21)

for any (i1, . . . , iM) ∈ {1, . . . , N}M .

Thus, for any µ ∈ F [M ],

M∑
m=1

N∑
im=1

µm,im

=
{
ci1...iM −

M∑
m=1

µm,im
}−

+
M∑
m=1

N∑
im=1

µm,im

≤H∗.

(3.4.22)

It follows that

K∗ = max
µ∈F [M ]

M∑
m=1

N∑
im=1

µm,im ≤ H∗ (3.4.23)
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On the other hand, by Lemma 3.4.3, there exists µ∗ ∈ F [M ], such that

H∗ =
M∑
m=1

N∑
im=1

µ∗m,im

≤ K∗

(3.4.24)

The conclusion of the lemma then follows from (3.4.23) and (3.4.24).

Combining Lemma 3.4.2 and the previous lemma, we get the following

Theorem 3.4.5. The optimal value H∗ of the problem (PD) is an upper bound of

J∗LR of the relaxation method, i.e.,

J∗LR ≤ H∗ (3.4.25)

Remark: In fact, by Eq. (3.4.13) and Eq. (3.4.16), we can get

J∗LR = H∗. (3.4.26)

With respect to the above relationship, we conclude that the LR method and the

dual approach are equivalent.

On the other hand, by Lemma 3.4.4, the optimal duality coefficient µ∗ can be

found by solving the LP problem:

max
µ∈F [M ]

M∑
m=1

N∑
im=1

µm,im (3.4.27)
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where F [M ] is the set of µ satisfying the inequalities:

M∑
m=1

µm,im ≤ ci1...iM (3.4.28)

for any (i1, . . . , iM) ∈ {1, . . . , N}M .

By the duality theory of the linear programming, we have the following theorem.

Theorem 3.4.6. The optimal solution to the dual problem (PD) can be found by

solving the LP problem

min
x
f(x)

subject to the constraints:

x ≥ 0

N∑
i2=1

· · ·
N∑

iM=1

xi1...iM = 1, ∀i1 ∈ {1, ..., N},

N∑
i1=1

· · ·
N∑

im−1=1

N∑
im+1=1

· · ·
N∑

iM=1

,∀im ∈ {1, ..., N},

N∑
i1=1

· · ·
N∑

iM−1=1

xi1...iM = 1,∀iM ∈ {1, ..., N}.

Remark: By the equivalence of the LR method and the dual approach, we observe

that LR is equivalent to relaxing the binary constraint condition.
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3.5 The solution to the original assignment prob-

lem

If the conditions of Theorem 3.3.1 or Theorem 3.3.2 are satisfied, the optimum value

of the problem (PP) is equal to the optimal value of the dual problem. Meanwhile,

if Theorem 3.3.1 can be applied, the optimal solution x∗ = (x∗i1...iM ) to the original

assignment problem is given by

x∗i1...iM =


1, if (i1, . . . , iM) = (i1,n, . . . , iM,n), n = 1, . . . , N ;

0, otherwise.

(3.5.1)

If the conditions of Theorem 3.3.2 are satisfied, the solution is

x∗i1...iM =


1, if d∗i1...iM < 0;

0, if d∗i1...iM > 0.

(3.5.2)

On the other hand, if the conditions of the theorems are not satisfied, then we need

to search for the optimal (or sometimes sub-optimal) solution. One way is to use the

branch-and-bound method [28]. Another way of finding the solution is an (M−1)-step

procedure shown in Algorithm 1, as done in the LR approach [15, 33, 11, 38],

The complete algorithm for the multidimensional assignment is shown in Algo-

rithm 4.

Remarks: Due to numerical errors, the solution µ∗ might not be an optimal

solution to (PD). This motivates the above local search operation to mitigate the

effect of numerical errors and possible instability in the subgradient iterations.
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procedure LRsearch(c, µ∗)
Step 1: Solve the relaxed 2-D assignment problem:

min
ω∈S[2]

F

N∑
i1=1

N∑
i2=1

c
[2]
i1i2
ωi1i2 (3.5.3)

where S
[2]
F is defined in Section 3.4, and

c
[2]
i1i2

= min
i3,...,iM

(
ci1...iM −

M∑
m=3

µ∗m,im
)
, (3.5.4)

Step 2: Fix the assignment (i1, i2(i1)) obtained in the previous step, and solve
another 2-D assignment problem:

min
ω∈S[2]

F

N∑
i1=1

N∑
i3=1

c
[3]
i1,i2(i1),i3

ωi1i3 (3.5.5)

to obtain the 3-D assignment (i1, i2(i1), i3(i1)), where

c
[3]
i1,i2(i1),i3

= min
i4,...,iM

(
ci1,i2(i1),i3,i4,...,iM −

M∑
m=4

µ∗m,im
)
. (3.5.6)

....,

Step M − 1: Fix the assignment (i1, i2(i1), . . . , iM−1(i1)) obtained in the
previous step, and solve the 2-D assignment problem:

min
ω∈S[2]

F

N∑
i1=1

N∑
i3=1

ci1,i2(i1),...iM−1(i1),iMωi1iM (3.5.7)

to obtain the M -D assignment (i1, i2(i1), . . . , iM(i1)).
return the assignment

x∗i1...iM =

{
1, if (i1, . . . , iM) = (i1, i2(i1), . . . , iM(i1)), for i1 = 1, . . . , N ;

0, otherwise.
(3.5.8)

end procedure
Algorithm 1: LR Search algorithm
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µ∗ ← an optimal solution to the problem (PD);
x[0] ← LRsearch(c,µ∗);
f [0] ← f(x[0]);
δ ← f [0] −H∗, where L∗ = L(µ∗);
for k ← 1, N do /* local search */

µ← (µ1,1, . . . , µ1,N , . . . , µM,1, . . . , µM,N); /*

µi,j =

{
µ∗i,j − δ, if (i, j) = (M,k)

µ∗i,j, otherwise,
(3.5.9)

*/

x[k] ← LRsearch(c,µ);
f [k] ← f(x[k]);

end

return the assignment x[k0] with k0 = arg minMk=0 f
[k].

Algorithm 2: The top level function of the multidimensional assignment algo-
rithm
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3.6 Simulation results

In this section, we present some simulation results. Our computation environment

is a laptop with an Intel i7-6500U CPU running Windows 10. The programming

language is MATLAB. The proposed algorithm is tested on four-dimensional assign-

ment problems with known optimal solutions, randomly generated using the method

proposed in [18]. The generated problems have dense integer cost coefficients in the

range (0, 20). Although the cost coefficients in typical tracking applications are not

always dense[33, 11, 38], they can be used to assess the performance of general as-

signment algorithms. Problems of four different sizes are considered, from relatively

small 10x10x10x10 problems to relatively large 40x40x40x40 problems. The choice

of the sizes is based on[25], oriented towards tracking applications. Meanwhile, the

same set of problems are solved using the LR method as the benchmark to evaluate

the performance of the dual method.

The statistics of the randomly generated assignment problems, together with that

of the differences between the assignment results, are shown in Table 3.6.1 and Table

3.6.2. Moreover, Fig. 3.6.1 to Fig. 3.6.3 show the distribution of the 20x20x20x20

assignment problems using histograms, together with the distributions of the resulting

assignment values.

The subgradient method [42] is used to solve the maximization problems produced

by both the dual method and the LR method. Before applying the subgradient

method, a normalization is performed on the cost coefficients so that the normalized

cost values are in the range (0, 1). The iteration scheme is as follows:

xn+1 = xn +
1

n

g(x)

||g(x)||
, (3.6.1)
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Figure 3.6.1: Distribution of the optimal values of the 100 randomly generated
20x20x20x20 test problems.

Problem size Optimal value Difference 1 Difference 2
10x10x10x10 49.1200 2.8470 8.1200
20x20x20x20 98.3200 3.8217 9.7200
30x30x30x30 148.6500 3.8892 9.5500
40x40x40x40 200.0000 5.7897 8.1000

Table 3.6.1 Means of the optimal assignment costs (column 2), the duality gaps,
that is, the differences between the optimal values and the dual lower
bounds(column 3) and the differences between the actual assignment costs and the
optimal values (column 4) for different problem sizes.
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Figure 3.6.2: Distribution of the duality gaps of the 100 randomly generated
20x20x20x20 test problems.

Problem size Optimal value Difference 1 Difference 2
10x10x10x10 66.7935 3.8505 9.8844
20x20x20x20 114.3006 5.0702 8.9915
30x30x30x30 171.6079 5.4183 6.8921
40x40x40x40 197.7778 5.4354 7.6556

Table 3.6.2 Variances of the optimal assignment costs (column 2), variances of the
duality gaps (column 3) and variances of the differences between actual assignment
costs and optimal values (column 4) for different problem sizes.
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Figure 3.6.3: Distribution of the differences between the assignment results and
the optimal values of the 100 randomly generated 20x20x20x20 test problems.
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Problem size Average relative error(%) CPU time for each problem (s)
Dual LR Dual LR

10x10x10x10 9.386396 18.321642 0.03748 0.1081
20x20x20x20 6.06388 10.0953 0.5473 0.8317
30x30x30x30 4.02538 7.30202 3.9443 4.9205
40x40x40x40 2.639375 3.440335 25.6986 28.4049

Table 3.6.3 Relative errors and elapsed CPU times for different problem sizes

where g(x) ∈ ∂f(x), the subgradient of f(x) at point x. Note that here we want to

maximize the objective function f(x). The reason for choosing such a simple method

is to ensure that the differences in the simulation results for the two algorithms under

tests are indeed caused by the inherent differences between the dual algorithm and the

LR algorithm, instead of being produced by the methods used to solve the associated

maximization problems.

For the LR method, the stopping criterion adopted in the simulations is

An −Gn

Gn

< 1%, (3.6.2)

with an upper limit of 200 on the number of iterations, where An is the total cost

corresponding to the assignment result and Gn is the lower bound estimate at the

nth step.

For the dual method, the stopping criterion is n > 100 and

|Hn+1 −Hn| < 0.0001Hn, (3.6.3)

with an upper limit of 200 on the number of iterations, where Hn is the lower bound

estimation at the nth step.

The results are shown in Fig. 1 to Fig. 4, and are summarized in Table 3.6.3.
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Figure 3.6.4: Relative errors of the assignment results and the lower bound
estimates from one hundred randomly generated 10x10x10x10 test problems

(N = 10).
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Figure 3.6.5: Relative errors of the assignment results and the lower bound
estimates from one hundred randomly generated 20x20x20x20 test problems

(N = 20).
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Figure 3.6.6: Relative errors of the assignment results and the lower bound
estimates from twenty randomly generated 30x30x30x30 test problems (N = 30).
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Figure 3.6.7: Relative errors of the assignment results and the lower bound
estimates from ten randomly generated 40x40x40x40 test problems (N = 40).

109



Ph.D. Thesis – J. Li McMaster University – Multitarget tracking

0 50 100
Problem number

0.5

1

1.5

2
C

P
U

 t
im

e
 (

s)

Dual times
LR times

Figure 3.6.8: CPU times for the 100 randomly generated 20x20x20x20 test
problems.

The results demonstrate that the dual approach outperforms the LR algorithm both

in terms of the elapsed CPU times and the relative accuracy of the final assignments.

The CPU times for the 20x20x20x20 simulation are shown in Fig. 3.6.8, with a

mean value of 0.5473s and a standard deviation of 0.0098s. Also shown in the figure

are the CPU times of the LR method, which have a standard variation of 0.1094s.

The curves of CPU times for other problem sizes have similar characteristics.

On the other hand, the statistics in Table 3.6.1 and Table 3.6.2 and in Fig. 3.6.1

to Fig. 3.6.3 show that after applying the dual algorithm, the variances of original

distributions have been reduced significantly. From a statistical perspective, the dual

algorithm can be interpreted as a filter that reduces the “noise” in the original data.

110



Ph.D. Thesis – J. Li McMaster University – Multitarget tracking

3.7 Alternating direction iteration scheme

The time complexity of solving the dual problem (PD) using the subgradient algo-

rithms is proportional to the number of subgradient operations, and thus is O(NM).

For the LR method, the most time consuming operation is calculating the coeffi-

cients

c
[m−1]
i1...im−1

= min
1≤im≤N

(
c

[m]
i1...im

− µm,im
)
. (3.7.1)

This operation also has an NM order time complexity. Since the calculation of the

subgradient involves a similar comparison operation, we thus conclude that the dual

method and the LR method have the same order of time complexity.

However, in contrast to the recursive calls to the 2-D auction algorithm, which

has an O(N2) time complexity [7], the dual approach can directly get the optimal

dual variables by employing a simple subgradient algorithm, and thus is found to be

more efficient in our simulations.

On the other hand, as pointed out in Section 3.4, the optimal dual coefficients

µ∗ can be obtained by solving an Linear programming (LP) problem using any effi-

cient LP algorithm. An alternate direction iteration method, which is essentially a

dimension-reduction technique, can efficiently accelerate the solution process of the

problem (PD). We illustrate the algorithm for the case of M = 4, while pointing out

that the idea can be adapted to any value of M ≥ 3.

The algorithm is based on the following observation:
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max∑4
m=1 µm,im≤ci1...i4 ,∀(i1,...,i4)∈I0

4∑
m=1

N∑
im=1

µm,im

= max
µ3,µ4

{
max

µ1,i1+µ2,i2≤ci1...i4−µ3,i3−µ4,i4 ,∀(i1,...,i4)∈I0

2∑
m=1

N∑
im=1

µm,im

+
4∑

m=3

N∑
im=1

µm,im
}

= max
µ3,µ4

{
max

µ1,i1+µ2,i2≤c[2](i1,i2),∀(i1,i2)

2∑
m=1

N∑
im=1

µm,im

+
4∑

m=3

N∑
im=1

µm,im
}

(3.7.2)

where c[2](i1, i2) = mini3,i4{ci1...i4 − µ3,i3 − µ4,i4}, as defined before.

Thus, the four-dimensional maximization operation can be carried out by per-

forming a two-stage iterative maximization, with the inner maximization being a

two-dimensional assignment problem. Consequently, we get an alternating direction

iteration scheme as shown in Algorithm 3.

The problems in Section 3.6 are recalculated using Algorithm 3. The results are

summarized in Table 3.7.1, where we compare the average errors and the elapsed CPU

times for the original four-dimensional subgradient method and the two-dimensional

alternating direction iteration method described in Algorithm 3. It can be seen that

the CPU times have been significantly reduced by the dimension-reduction technique

while maintaining the same accuracy, especially for large-size problems. For small-

size problems, the original four-dimensional (4D) subgradient method is more efficient

than the two-dimensional (2D) iteration method.
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nit ← number of iterations;

I2 ← {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)};
for k = 1 : nit do
// External iteration

for (p, q) in I2 do
// For every 2D combination

{r, s} ← I2\{p, q} // Set difference

c
[2]
ip,iq

= minir,is{cipiqiris − µr,ir − µs,is},
. Solve the following 2D assignment problem
(v∗, w∗)← arg maxv,w

∑
i,j(c

[2]
ij − vi − wj)− +

∑
i vi +

∑
j wj

. v = (v1, . . . , vN), w = (w1, . . . , wN)
µp ← v∗

µq ← w∗

end

end

return optimal solution (µ1, µ2, µ3, µ4) to problem (PD).
Algorithm 3: Alternating direction iteration algorithm

Problem size Average relative error(%) CPU time for each problem (s)
4D iteration 2D iteration 4D iteration 2D iteration

10x10x10x10 9.386396 10.162819 0.03748 0.04864
20x20x20x20 6.06388 5.931272 0.58748 0.27613
30x30x30x30 4.02538 3.987029 3.9443 1.59149
40x40x40x40 2.639375 2.605811 25.6986 9.05326

Table 3.7.1 Relative errors and elapsed CPU times for two different iteration
methods. 4D iteration corresponds to the subgradient method described in Section
3.6, while 2D iteration corresponds to Algorithm 3, with iteration number nit=10.
The subgradient method is used to solve each of the 2D assignment sub-problems in
200 iterations
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3.8 Conclusions

In this chapter, a dual approach was proposed for the MAP problem. Moreover, two

strong duality results were proved. The dual approach was shown to be closely related

to the LR method, providing a framework to conduct a theoretical investigation of

the LR algorithm. It was also pointed out that the LR relaxation is equivalent to

relaxing the binary constraint condition, and as a result, the dual coefficient µ can

be obtained by solving an LP problem.

On the other hand, it was demonstrated that a simple but efficient numerical

method can be developed based on the dual formulation, with the same or even

better accuracy than that of the LR method. The proposed local search strategy was

shown to be effective in the simulations.
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Chapter 4

Multi-frame tracking based on

multi-dimensional assignment

algorithm

4.1 Introduction

The common way of tracking multiple objects is to estimate the tracks of the objects

using a single scan or frame of measurements at every time step. But this is not

effective in tracking maneuvering targets and multiple targets moving along closely

spaced near-parallel tracks. In such scenarios, instead of relying on a single frame of

measurements, it is more desirable to consider multiple frames of measurements at

every estimation step by taking advantage of the time correlation among the successive

data frames. This has attracted a lot of attention in the tracking research community.

See [24, 8] for more about multi-frame related developments.
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For multiple frame tracking to work, we need to address the problem of associ-

ating the measurements in two or more data frames to the targets being tracked.

This is a situation where Multidimensional assignment problem (MAP) can play an

important role: the multi-frame data association problem can be formulated into an

MAP problem, see [4, 46, 24, 36]. The challenge now is to find effective methods to

solve the MAP problem.

In the case of single frame tracking, the data association operation can be mod-

eled as a 2-D data association problem, for which a number of efficient algorithms

have been proposed in the literature. See [7] and the references therein. Unlike 2-D

assignment problems, however, MAP is an NP-hard problem [16]. As a consequence,

it is impractical to get exact solutions to large scale MAPs for applications with real

time requirements as in some surveillance systems. A number of approximate MAP

assignment algorithms have been proposed [33, 37, 3, 11]. These algorithms are much

more efficient in terms of the CPU time than the exact methods such as the branch

and bound algorithm [40]. Among these, the Lagrangian relaxation method has been

applied to multi-object tracking with good association accuracy [33, 37, 11]. There-

fore, multi-frame assignment is a promising method that merits further research to

meet the requirements of practical tracking applications.

We recently developed a novel multidimensional assignment algorithm based on

the idea of dual convexification [31, 30].The newly proposed algorithm is shown to be

equivalent to the Lagrangian relaxation method in the sense that they both provide

the same lower bound estimation for the optimal total assignment cost. However, the

dual algorithm is much more elegant in the formulation and easier to implement than
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the Lagrangian method. This is a significant advantage in practical engineering appli-

cations. Our extensive simulation results in [31, 30] showed that the dual algorithm is

more efficient than the Lagrangian relaxation method in solving randomly generated

MAP problems. Now we use this new algorithm to solve assignment problems arising

from a series of multi-frame tracking problems with different complexities. The re-

sults demonstrate that the dual method outperforms the Lagrangian method in this

context, while maintaining the same level of high accuracy.

4.2 Problem formulation

We consider the problem of tracking multiple objects in a plane. The state space

model of each of the objects is



x(k + 1)

y(k + 1)

ux(k + 1)

uy(k + 1)


=F



x(k)

y(k)

ux(k)

uy(k)



+



T 2

2
0

0 T 2

2

T 0

0 T


vx(k)

vy(k)


(4.2.1)
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where

F =



1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1


, (4.2.2)

(x(k), y(k) and (ux(k), uy(k) are the position and velocity vectors of the target at

time k, respectively, while (vx(k), vy(k) is the acceleration vector caused by Gaussian

white noise at time k. T is the time step.

The measurement model is given by

r(k) =
√
x2(k) + y2(k) + wr(k) (4.2.3)

θ(k) = arctan(
y(k)

x(k)
) + wθ(k) (4.2.4)

where (r(k), θ(k)) is the polar coordinate of the target at time k, while wr(k) and

wθ(k) are the Gaussian white noise components at time k in the range and bearing

measurements, respectively.

4.3 2-D assignment formulation for single frame

association

Let V be the area of the field of view, which is divided into small cells of area ∆v. The

field of view is divided into small cells, so that we can more conveniently refer to the

probability of a measurement being in a particular cell, instead of being forced to use

the probability density in the following formulations. By the routine reasoning, see
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for example [4], one can verify that the probability of associating the measurement

zj(k) to target i at time k is

Λi,j(k) =
PF

1
V

∆v if i = 0, j 6= 0

(1− PD) 1
V

∆v if i 6= 0, j = 0

PDN [zj(k); ẑi(k|k − 1), Si(k)]∆v otherwise.

(4.3.1)

where ẑi(k|k − 1) is the predicted measurement for target i at time k, and Si(k) is

the covariance of the measurement’s distribution for target i at time k, V is the area

of each cell. Moreover, as usual, the dummy target 0 represents false alarms and new

targets, and the dummy measurement 0 represents a missing target.

Remark: The value of Λ0,0(k) has no effect on the data association, and can be

set to a value which is convenient in the calculations.

Now, let us denote the data association which assign measurement j to target i

by the symbol i ↔ j, then the best data associations i ↔ ji, i = 1, . . . , N1 are those

which maximize the likelihood product

Λ1,j1(k)Λ2,j2(k) . . .ΛN1,jN1
(k), (4.3.2)

where N1 is the number of confirmed targets, assuming independence of the likeli-

hoods. However, instead of workling on the above likelihoods directly, it turns out

to be more convenient to consider the following negative logarithmic likelihood ratio,
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see [4],

ci,j = − ln
Λi,j

Λ0,j

(4.3.3)

for (i, j) ∈ I2, with I2 being an index set given by

I2 = {0, . . . , N1} × {0, . . . , N2}

= {(i, j) | i ∈ {0, . . . , N1}, . . . , j ∈ {0, . . . , N2}}.
(4.3.4)

.

If i 6= 0,

ci,j = ln
PF (2π|Si(k)|)n

2

PDV

+
1

2
(zj(k)− ẑi(k|k − 1))TSi(k)−1(zj(k)− ẑi(k|k − 1)))

(4.3.5)

where n is the dimension of the observation vector. In the simpler case of i = 0, ci,j

can be obtained from Eq. (4.3.2) correspondingly.

Moreover, define the linear objective function

f(ρ) =
∑

(i,j)∈I2

ci,jρi,j, (4.3.6)

where ρ = (ρi,j). It can be seen that the original data association problem can be

represented as a 2-dimensional assignment problem:

min
ρ
f(ρ), (PP)
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subject to the constraints

ρi,j ∈ {0, 1} (4.3.7)

N2∑
j=0

ρi,j = 1,∀i ∈ {1, ..., N1}, (4.3.8)

N1∑
i=0

ρi,j = 1,∀j ∈ {1, ..., N2}. (4.3.9)

4.4 3-D assignment formulation for double frame

association

Next, we consider the two frame data association problem. For a real target i, namely

i 6= 0, the probability of associating the measurements zj(k) and zm(k + 1) to target

i at time k is

Λi,j,m(k) = Λi,j(k)Pm|i,j(k) (4.4.1)

where Pm|i,j(k) is the probability of associating measurement zm(k + 1) to target i

given that the measurement zj(k) is associated to target i at time k.

As in [24], if j 6= 0 and k 6= 0, namely for real measurements, Pm|i,j(k) can be

calculated as follows.

Pm|i,j(k) = PDN [zm(k + 1); ẑi(k + 1|k), Si(k + 1)]∆v, (4.4.2)

where ẑi(k+ 1|k) and Si(k+ 1) are calculated by applying Kalman filter on the state

of target i at time k − 1 and taking zj(k) as the measurement from target i at time

k.
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The case of j = 0 and k 6= 0 can be calculated similarly. The only difference is

that here we do not update the state x̂(k − 1|k) with an actual measurement during

the course of applying the Kalman filter to calculate ẑi(k + 1|k).

For k = 0, we simply have Pm|i,j(k) = PF
1
V

∆v.

Similar to what we have done in the case of single frame associations, we consider

the negative logarithmic likelihood ratio, see [4],

ci,j,m = − ln
Λi,j,m

Λ0,j,m

(4.4.3)

for (i, j,m) ∈ I3, with I3 being an index set given by

I3 = {0, . . . , N1} × {0, . . . , N2} × {0, . . . , N3} (4.4.4)

.

Moreover, define the linear objective function

f(ρ) =
∑

(i,j,m)∈I3

ci,j,mρi,j,m, (4.4.5)

where ρ = (ρi,j,m). It can be seen that the original double frame data association

problem can be cast into a 3-dimensional assignment problem:

min
ρ
f(ρ), (PP)
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subject to the constraints

ρi,j,m ∈ {0, 1} (4.4.6)

N2∑
j=0

N3∑
m=0

ρi,j,m = 1,∀i ∈ {1, ..., N1}, (4.4.7)

N1∑
i=0

N3∑
m=0

ρi,j,m = 1,∀j ∈ {1, ..., N2}. (4.4.8)

N1∑
i=0

N2∑
j=0

ρi,j,m = 1,∀m ∈ {1, ..., N3}. (4.4.9)

4.5 Assignment problem for general multi-frame

data association

In general, letM ≥ 3 be an integer, we have similar formulations of (M−1)-frame data

association problem as M -dimensional assignment problems. The cost coefficients

{ci1...iM}, (i1, . . . , iM) ∈ I0 are defined as

ci1i2...iM = − ln
Λi1i2...iM

Λ0i2...iM

, (4.5.1)

and correspondingly, we have a linear objective function

f(ρ) =
∑

(i1,...,iM )∈I0

ci1...iMρi1...ıM , (4.5.2)

where ρ = (ρi1...iM ), and I0 is an index set given by

I0 = {0, . . . , N1} × {0, . . . , N2} × · · · × {0, . . . , NM}, (4.5.3)
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.

The M -dimensional assignment problem corresponding to M − 1-frame data as-

sociation problems is

min
ρ
f(ρ), (PP)

subject to the constraints

ρi1...iM ∈ {0, 1} (4.5.4)

N2∑
i2=0

· · ·
NM∑
iM=0

ρi1...iM = 1,∀i1 ∈ {1, ..., N1}, (4.5.5)

N1∑
i1=0

· · ·
Nm−1∑
im−1=0

Nm+1∑
im+1=0

· · ·
N∑

iM=0

ρi1...iM = 1,∀im ∈ {1, ..., Nm}, (4.5.6)

N1∑
i1=0

· · ·
NM−1∑
iM−1=0

ρi1...iM = 1,∀iM ∈ {1, ..., NM}. (4.5.7)

Similarly, ρ = (ρi1...iM ), with ρi1...iM = 1, if measurement zm−1,im is associated to

track i1 for m = 2, . . . ,M , otherwise, ρi1...iM = 0.

As in the previous chapter, the following vector notations will be adopted in this

chapter:

ρ = (ρ00...0, ρ10...0, ..., ρN1...0, ..., ρN1...NM
),

µ1 = (µ1,0, µ1,1, ..., µ1,N1),

. . . , µ = (µ1, . . . , µM).

Defining

L(µ) =
∑

(i1,...,iM )∈I0

(
di1...iM

)−
+

M∑
m=1

Nm∑
im=0

µm,im . (4.5.8)
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where

di1...iM = ci1...iM − µ1,i1 − µ2,i2 − · · · − µM,iM . (4.5.9)

We will consider the following dual problem

max
µ

L(µ), (PD)

under the condition that µm,0 = 0 for m = 1, . . . ,M .

With the above assignment problem, we have the following theorem [30].

Theorem 4.5.1. The optimal solution to the dual problem (PD) can be found by

solving the LP problem

min
ρ
f(ρ)

subject to the constraints:

ρ ≥ 0

N2∑
i2=0

· · ·
NM∑
iM=0

ρi1...iM = 1,∀i1 ∈ {1, ..., N1},

N1∑
i1=0

· · ·
Nm−1∑
im−1=0

Nm+1∑
im+1=0

· · ·
NM∑
iM=0

,∀im ∈ {1, ..., Nm},

N1∑
i1=0

· · ·
NM−1∑
iM−1=0

ρi1...iM = 1,∀iM ∈ {1, ..., NM}.

Furthermore, it has been shown that the dual formulation is equivalent to the

Largrangian relaxation formulation in terms of their estimations of the lower bound

on the optimal assignment value. More specifically, we have the following theorem

[30].
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Theorem 4.5.2. Let L∗ be the optimal valuethe of problem (PD) , and J∗LR the

optimal value of the objective function of the Lagragian relaxation method, then

J∗LR = L∗, (4.5.10)

4.6 Algorithm for the assignment problem

The method to find the solution to the M -dimensional assignment problem is an

(M − 1)-step procedure shown in Algorithm 4.

µ∗ ← an optimal solution to the problem (PD);
ρ[0] ← LRsearch(c,µ∗);
f [0] ← f(ρ[0]);
δ ← f [0] −H∗, where L∗ = L(µ∗);
for k ← 1, N do /* local search */

µ← (µ1,1, . . . , µ1,N , . . . , µM,1, . . . , µM,N); /*

µi,j =

{
µ∗i,j − δ, if (i, j) = (M,k)

µ∗i,j, otherwise,
(4.6.1)

*/

ρ[k] ← LRsearch(c,µ);
f [k] ← f(ρ[k]);

end

return the assignment x[k0] with k0 = arg minMk=0 f
[k].

Algorithm 4: The top level function of the multidimensional assignment algo-
rithm

The reason for the local search operation in Algorithm 4 is that, due to numerical

errors, the solution µ∗ might not be an optimal solution to (PD). In order to mitigate

the effect of numerical errors and possible instability in the subgradient iterations,

we perform the above operations. The LRsearch step is given in Algorithm 5, where
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S
[2]
F represents the constraints in 2-D assignment problems.

4.6.1 Subgradient algorithm implementation

The subgradient method [42] is used to solve the maximization problem (PD). The

iteration scheme is given by

µ(n+ 1) = µ(n) + ∆t(n)g(µ(n)), (4.6.8)

where ∆t(n) is the step size at the nth iteration, and g(µ) ∈ ∂L(µ) is a subgradient

of L(µ) at point µ. Note that here we want to maximize the objective function H(µ).

In typical tracking problems [25], the cost coefficients are sparse arrays, meaning

that a number of cost coefficients are large enough and will not make any contribution

in the subgradient calculation. Therefore, these large cost coefficients can be regarded

as infinity. This motivate us to use sparse array data structures to represent the

costs for both memory and CPU time efficiency, and correspondingly formulate the

subgradient algorithm based on sparse array representations. The sparse array can

be implemented as a matrix C,

C =



1 3 2 c132

. . .

i j k cijk

. . .


(4.6.9)

where each row represents a cost item: the index (i, j, k) of the cost and its value cijk.

The pseudo code for 3-D assignment problems is shown in Algorithm 6. In the list

of pseudo code, we use (u, v, w) to represent the Lagrangian multipliers (µ1, µ2, µ3)
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Function LRsearch(c, µ∗):
Step 1: Solve the relaxed 2-D assignment problem:

min
ω∈S[2]

F

N1∑
i1=0

N2∑
i2=0

c
[2]
i1i2
ωi1i2 (4.6.2)

where

c
[2]
i1i2

= min
i3,...,iM

(
ci1...iM −

M∑
m=3

µ∗m,im
)
, (4.6.3)

Step 2: Fix the assignment (i1, i2(i1)) obtained in the previous step, and
solve another 2-D assignment problem:

min
ω∈S[2]

F

N1∑
i1=0

N3∑
i3=0

c
[3]
i1,i2(i1),i3

ωi1i3 (4.6.4)

to obtain the 3-D assignment (i1, i2(i1), i3(i1)), where

c
[3]
i1,i2(i1),i3

=

min
i4,...,iM

(
ci1,i2(i1),i3,i4,...,iM −

M∑
m=4

µ∗m,im
)
.

(4.6.5)

....,
Step M − 1: Fix the assignment (i1, i2(i1), ..., iM−1(i1)) obtained in the
previous step, and solve another 2-D assignment problem:

min
ω∈S[2]

F

N1∑
i1=0

N3∑
i3=0

c
[M ]
i1,i2(i1),...,iM−1(i1),iM

ωi1iM (4.6.6)

to obtain the M -D assignment (i1, i2(i1), i3(i1), ..., iM(i1)), where

c
[M ]
i1,i2(i1),...,iM−1(i1),iM

=

min
i4,...,iM

(
ci1,i2(i1),...,iM−1(i1),iM − µ∗M,iM

)
.

(4.6.7)

Step M :
// i1 = 1, . . . , N
if (i1, . . . , iM) = (i1, i2(i1), . . . , iM(i1)) then

x∗i1...iM = 1;
end
else

x∗i1...iM = 0;
end
return x∗

Algorithm 5: LR Search algorithm
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for clarity.

After getting a solution (u, v, w), we can form another sparse array

D =



1 3 2 c132 − u1 − v3 − w2

. . .

i j k cijk − ui − vj − wk

. . .


(4.6.10)

where each row represents a reduced cost item: the index of the item (i, j, k) and the

value cijk − ui − vj − wk.

4.6.2 Step size calculation

One of the key operations in the implementation of the subgradient algorithm is to

determine the step size ∆tn. In our simulation, it has been shown that the following

method is efficient [10].

∆t(n) =
L̂− L(n)

||s(n)||2
, (4.6.11)

where L(n) is the value of the objective function L in the nth iteration step, L̂ is the

estimate of the optimal value of L, and s(n) is the modified subgradient at the nth

step given by the recursive equation

s(n) = g(n) + β(n) ∗ s(n− 1), (4.6.12)
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Data: The costs in a sparse array C.
NI ← number of iterations;
// Initialization

u(0)← 0; // u = (u1, . . . , uN)
v(0)← 0; // v = (v1, . . . , vN)
w(0)← 0; // w = (w1, . . . , wN)
n=1;
while n ≤ NI do

/* The subgradient */

∆u(n)← 1; ∆v(n)← 1; ∆w(n)← 1;
for ∀(i, j, k, cijk) ∈ C do

if cijk − ui − vj − wk < 0 then
∆u(n)← ∆u(n− 1)− 1; ∆v(n)← ∆v(n− 1)− 1;
∆w(n)← ∆w(n− 1)− 1;

end
/* Solve the following 2D assignment problem */

Determine the step size ∆t(n);
u(n)← u(n− 1) + ∆t(n) ∗∆u(n);
v(n)← v(n− 1) + ∆t(n) ∗∆v(n);
w(n)← w(n− 1) + ∆t(n) ∗∆w(n);
n = n+ 1;

end

end
return optimal solution (u(n), v(n), w(n));

Algorithm 6: Subgradient algorithm based on sparse array representation of the
costs
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where g(n) is a subgradient of L(µ) at the nth step, and the coefficient β(n) is given

by

β(n) =


0; if(s(n− 1), g(n)) ≥ 0

−γ(n) (s(n−1),g(n))
||s(n−1)||2 ; otherwise;

(4.6.13)

where (s(n− 1), g(n)) is the inner product of the two vectors, and 0 ≤ γ(n) ≤ 2.

The estimate L̂ of the optimal value of L, can be obtained by solving 2-D as-

signment problems. Let us illustrate it with a two frame tracking problem. Suppose

we have N1 tracks at time k, together with two frames of measurement, z1(k +

1), . . . , zN2(k + 1) for time k + 1, and z1(k + 2), . . . , zN3(k + 2) for time k + 2. Corre-

spondingly, we need to solve the 3-D assignment problem

min
x

∑
(i,j,m)∈I3

ci,j,mρi,j,m. (4.6.14)

where ci,j,m is given in Section 4.4.

In order to get an estimate L̂ for the above 3-D assignment problem, we first

construct a 2-D assignment problem

min
x

∑
(i,j,m)∈I2

cki,jρi,j, (2D-1)

using the track data at time k, and the measurements z1(k + 1), . . . , zN2(k + 1) for

time k + 1, as described in Section 4.3.

After solving problem (2D-1), we get the (temporary) states of the N1 tracks at

time k+1. Using this information, along with the measurements z1(k+2), . . . , zN3(k+
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2) for time k + 2, we construct another 2-D assignment problem

min
x

∑
(i,j,m)∈I2

cki,jρi,j, (2D-2)

Suppose the solution to problems (2D-1) and (2D-2) are ρ1 and ρ2, respectively.

We can get an initial assignment ρ̂ as follows:

ρ̂ijk =


1, if ρ1

ij = 1 and ρ2
ik = 1;

0, otherwise;

(4.6.15)

and get an initial estimate L̂ of the total assignment cost by

L̂ =
∑

(i,j,m)∈I3

ci,j,mρ̂i,j,m. (4.6.16)

The complete flow chart of the assignment algorithm is shown in Fig. 4.6.1. The

condition (OPT) for 3-D assignment is defined as follows:

dijk ≤ 0 if ρ̂ijk = 1, (OPT)

where dijk = cijk − ui − vj − wk, as presented in Algorithm 6.
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Start

Perform LR
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Yes
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array 
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condition (OPT)

 satisfied?

Return as

the best assignment

End

Solve 2-d assignment

problems (2D-1) and

(2D-2) to get an initial

assignment and 

Figure 4.6.1: The complete flowchart of the dual assignment algorithm
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4.6.3 Alternating iteration algorithm

A more efficient way to carry out the multidimensional maximization operation can

be done by performing a two-stage iterative maximization, with the inner maximiza-

tion being a two-dimensional assignment problem. Consequently, we get an alternat-

ing direction iteration scheme as shown in Algorithm 7 for the 3-dimensional case.

The algorithm can be generalized to more general M − d assignment problems in a

straightforward manner.

NI ← number of iterations;
I2 ← {(1, 2), (1, 3), (2, 3)};
// External iteration

for k = 1 : NI do
/* Loop for every 2D combination of the indices */

for (p, q) in I2 do
r ← I2\{p, q} // Set difference /* Solve the following 2D

assignment problem */

c
[2]
ip,iq

= minir{cipiqir − µr,ir}
(v∗, w∗)← arg maxv,w

∑
i,j(c

[2]
ij − vi − wj)− +

∑
i vi +

∑
j wj

// v = (v1, . . . , vN), w = (w1, . . . , wN)
µp ← v∗ µq ← w∗

end

end
return optimal solution (µ1, µ2, µ3) to problem (PD).

Algorithm 7: Alternating direction iteration algorithm

4.7 Simulation results

In this section, we present some simulation results. Our computation environment is

a Windows 10 laptop with an Intel i7-6500U CPU. The algorithm is implemented in

MATLAB. The proposed algorithm is tested on double frame tracking problems.
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Although the state equation (4.2.1) is linear, we have nonlinear measurement equa-

tion (4.2.3). The extended Kalman filter is employed in the simulation by linearizing

the set of measurement equations:

r(k)

θ(k)

 =

√x2(k) + y2(k)

arctan( y(k)
x(k)

)

+

wr(k)

wθ(k)



≈ H(k)



x(k)

y(k)

ux(k)

uy(k)


+

wr(k)

wθ(k)


(4.7.1)

where

H(k) =
1

r(k)

 x(k) y(k) 0 0

−y(k) x(k) 0 0

 (4.7.2)

To assess the performance of the dual assignment algorithm, a series of simula-

tions with different complexities are tested using both the dual algorithm and the La-

grangian relaxation method [33]. For the LR method, the stopping criterion adopted

in the simulations is

An −Gn

Gn

< 1%, (4.7.3)

with an upper limit of 200 on the number of iterations, where An is the total cost

corresponding to the assignment result and Gn is the lower bound estimate at the

nth step.

For the dual method, the stopping criterion is n > 100 and

|Ln+1 − Ln| < 0.0001Ln, (4.7.4)
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Figure 4.7.1: Three crossing tracks with bearing measurement standard deviations
σθ = 0.006 rad.
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Figure 4.7.2: Three parallel tracks with bearing measurement standard deviations
σθ = 0.005 rad.

with an upper limit of 200 on the number of iterations, where Ln is the lower bound

estimation at the nth step.

The results are shown in Fig. 4.7.1 to Fig. 4.7.10. In these figures, the small circles

represent false alarms from noises, while the crosses and stars represent measurements

from the targets being tracked. The calculated trackes are shown in the figures by

solid lines, and the dashed point lines show the ground truths, that is, the true

trajectories of the targets. In all these simulations, the noise standard deviations are

σr = 0.2 m, σx = 0.1 m/s2, σy = 0.1 m/s2.
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Figure 4.7.3: Three parallel tracks with bearing measurement standard deviations
σθ = 0.01 rad.
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Figure 4.7.4: Five parallel tracks with bearing measurement standard deviations
σθ = 0.005 rad.
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Figure 4.7.5: Five parallel tracks with bearing measurement standard deviations
σθ = 0.01 rad.
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Figure 4.7.6: Five parallel tracks with separation of 50 meters on average,
σθ = 0.005 rad.
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Figure 4.7.7: Five parallel tracks with separation of 25 meters on average,
σθ = 0.005 rad.
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Figure 4.7.8: Ten parallel tracks with separation of 25 meters on average,
σθ = 0.005 rad.
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Figure 4.7.9: Ten parallel tracks with separation of 25 meters on average,
σθ = 0.005 rad.
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Figure 4.7.10: Ten parallel tracks with separation of 25 meters on average,
σθ = 0.005 rad.
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Figure 4.7.11: Eight parallel tracks with small separations.

Dual
method

LR method

Number of successes 97 96
CPU time (s) 1.808504 3.815358

Position RMSE (m) 1.2745 1.2616
Velocity RMSE (m/s) 2.6571 2.6586

Table 4.7.1 Performance comparison between the dual method and the Lagrangian
relaxation method based on running 100 Monte Carlo simulations, in each of which
8 targets in nearly parallel movements are tracked for 120 time steps . Here, the
number of successes is the number of simulations which give a position RMSE value
less than 20 meters, and the CPU time is the time spent on the assignment
algorithms for each simulation. The noise standard deviations are σr = 0.1 m,
σθ = 0.002 rad, σx = 0.1 m/s, σy = 0.1 m/s. The initial distance between two
neighboring targets is 30 m, the initial velocity is ux = 10 m/s, uy = 25 m/s.

The performance comparison between the dual method and the Lagrangian relax-

ation method are summarized in Tables 4.7.1 to 4.7.3. These comparisons are based

on the scenario illustrated in Fig. 4.7.11, with several different parameters. The re-

sults demonstrate that the dual approach outperforms the LR algorithm in terms of

the elapsed CPU times, and both methods have basically similar accuracy in terms

of the RMSE values.
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Dual
method

LR method

Number of successes 98 77
CPU time (s) 1.453611 3.844651

Position RMSE (m) 2.7263 2.7470
Velocity RMSE (m/s) 2.7931 2.7927

Table 4.7.2 Performance comparison between the dual method and the Lagrangian
relaxation method based on running 100 Monte Carlo simulations, in each of which
8 targets in nearly parallel movements are tracked for 120 time steps . Here, the
number of successes is the number of simulations which give a position RMSE value
less than 20 meters, and the CPU time is the time spent on the assignment
algorithms for each simulation. The noise standard deviations are σr = 0.2 m,
σθ = 0.005 rad, σx = 0.1 m/s, σy = 0.1 m/s. The initial distance between two
neighboring targets is 30 m, the initial velocity is ux = 10 m/s, uy = 25 m/s.

Dual
method

LR method

Number of successes 98 99
CPU time (s) 1.513820 3.907298

Position RMSE (m) 2.6706 2.6688
Velocity RMSE (m/s) 2.7911 2.7970

Table 4.7.3 Performance comparison between the dual method and the Lagrangian
relaxation method based on running 100 Monte Carlo simulations, in each of which
8 targets in nearly parallel movements are tracked for 120 time steps . Here, the
number of successes is the number of simulations which give a position RMSE value
less than 20 meters, and the CPU time is the time spent on the assignment
algorithms for each simulation. The noise standard deviations are σr = 0.2 m,
σθ = 0.005 rad, σx = 0.1 m/s, σy = 0.1 m/s. The initial distance between two
neighboring targets is 50 m, the initial velocity is ux = 10 m/s, uy = 25 m/s.
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4.8 Conclusions

In this chapter, we formulated the data association problem in multi-frame tracking

as multidimensional assignment problems, and applied the dual assignment algorithm

developed in the previous two chapters to compute the resulting assignment problems.

Simulations on a series of scenarios with different complexities were conducted to test

the performance of the newly proposed assignment algorithms. The results showed

that the dual assignment algorithm is faster than the Lagrangian method, while

demonstrating the same level of accuracy.
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Chapter 5

Conclusions and future work

5.1 Summary

In this thesis, we developed a novel assignment algorithm based on the idea of dual

convexification. We first developed the algorithm in three-dimensional cases. A con-

vex dual formulation was presented, then we showed that the dual formulation is

equivalent to the Lagrangian relaxation method in terms of their accuracy of ap-

proximating the optimal assignment value. Despite the above equivalence, however,

the dual formulation is much simpler and elegant than the Lagrangian relaxation

method. As a result, it was shown in the simulations on a set of random generated

assignment problems with sizes varying from 10x10x10 to 100x100x100, the dual al-

gorithm is more efficient than the Lagrangian relaxation method. Meanwhile, due to

the simplicity of the dual formulation, the newly proposed algorithm is much easier

to implement than the Lagrangian relaxation method.

Next, the dual algorithm was extended to handle more general multidimensional

assignment problems. Moreover, an effective local searching method was developed to
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further improve the accuracy. The results of simulations on four-dimensional assign-

ment problems with different sizes demonstrated that the dual algorithm outperforms

the Lagrangian method.

The newly proposed algorithm was further applied to solve assignment problems

arising from a series of multi-frame tracking problems with different complexities.

The simulation results showed that the dual algorithm is more efficient than the

Lagrangian relaxation method in this context, while maintaining the same level of

high accuracy. We conclude that the dual method will provide an efficient and effective

solution to the data association problems in multi-target multi-sensor or multi-frame

tracking applications.

5.2 Contributions made by the thesis

• Proposed a purely dual formulation for the multi-dimensional assignment prob-

lem and obtained the conditions under which the duality gap reaches zero, and

thus provided a theoretical framework for analyzing the assignment problem.

• Established the equivalence between the dual formulation and the Lagrangian

relaxation method in the sense that both provide the same lower bound on the

optimal value of the assignment problem, and thus obtained a sufficient and

necessary condition for the Lagrangian method to get the optimal assignment

value with guarantee.

• Stated that the Lagrangian relaxation procedure essentially amounts to relaxing

the binary constraint of the original assignment problem, and thus equivalent to

solving a Linear programming (LP) problem together with a search procedure
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to recover the binary constraint.

• Demonstrated that dual formulation provides a streamlined and efficient solu-

tion procedure for solving the multi-dimensional assignment problem.

• Developed a systematic algorithm for applying the dual algorithm to multi-

frame tracking problems.

5.3 Future work

The dual algorithm will be extended further to solve more general one-to-many and

many-to-many assignment problems, in order to handle the data associations arising

from extended target tracking applications.

On the other hand, an m-best algorithm based on the dual formulation will be

developed, to satisfy the requirement for ranking several different possible hypotheses

in the MHT algorithm.
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