Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/24981
Title: The Nanoscale Structure of Human Female Osteoporotic Bone Investigated by Transmission Electron Microscopy
Authors: Strakhov, Ivan
Advisor: Grandfield, Kathryn
Schwarcz, Henry P.
Department: Biomedical Engineering
Keywords: Bone;Osteoporosis;Transmission Electron Microscopy;Ion Milling;Biomaterials;Ultrastructure;Fracture;Image Analysis
Publication Date: 2019
Abstract: Bone is a complex hierarchical biomaterial constantly undergoing remodeling events initiated by cell signaling and fulfilled by migratory bone cells. In osteoporosis, a multitude of signaling factors cause bone resorption to proceed quicker than bone reformation, resulting in a lower bone mineral density (BMD) and porosity as seen by thinning of the cortex and trabeculae. However, the structural motifs of these altered regions of the skeleton have not been understood on the nanoscale. In this thesis, transmission electron microscopy (TEM) was used with an image analysis technique termed nanomorphometry, developed to enable the measurement of nanoscale structural features in human bone. Several nanoscale bone quality bioindicators relevant to the collagen fibrils and bone mineral (mineral lamellae, ML) components were defined and tested (collagen fibril diameter, interfibrillar spacing, ML thickness & ML stack thickness) among two donor cohorts of post-menopausal osteoporotic female patients and age- and sex-matched controls. In one cohort, the anatomical region investigated was the intertrochanteric crest of the femur, while in the second, the femoral neck was studied. The bone sections were prepared using an ion milling workflow yielding electron-transparent views of the bone ultrastructure. Blinded image analysis of the ultrastructure revealed that in both cohorts, the thickness of the MLs was significantly larger in osteoporotic samples versus their controls. In the former cohort, it was found that anti-resorptive drug use in the treated group did not return the ML thickness back to control levels. In the latter cohort, the ML thickness correlated more closely with the proximal femur bone mineral density (BMD) than the age of the patient. These findings suggest that the morphology of the nanoscale mineral phase is affected by osteoporosis, an effect indirectly observed by other techniques, and warrants further exploration into the implications of this effect on bone quality, fragility and strength.
Description: Bioindicators of the nanoscale structural quality of bone were investigated using ion milling and transmission electron microscopy of osteoporotic bone from human female donors.
URI: http://hdl.handle.net/11375/24981
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Strakhov_Ivan_S_2019September_MASc.pdf
Access is allowed from: 2020-09-01
2.87 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue