Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/24830
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorZhang, Jian-Kang-
dc.contributor.authorSun, Yi-Lin-
dc.date.accessioned2019-09-20T19:14:30Z-
dc.date.available2019-09-20T19:14:30Z-
dc.date.issued2019-
dc.identifier.urihttp://hdl.handle.net/11375/24830-
dc.description.abstractIn the simple form, a communication system includes a transmitter and a receiver. In the transmitter, it transforms the one-hot vector message to produce a transmitted signal. In general, the transmitter demands restrictions on the transmitted signal. The channel is defined by the conditional probability distribution function. On receiving of the transmitted signal with noise, the receiver appears to apply the transformation to generate the estimate of one hot vector message. We can regard this simplest communication system as a specific case of autoencoder from a deep learning perspective. In our case, autoencoder used to learn the representations of the one-hot vector which are robust to the noise channel and can be recovered at the receiver with the smallest probability of error. Our task is to make some improvements on the autoencoder systems. We propose different schemes depending on the different cases. We propose a method based on optimization of softmax and introduce the L1/2 regularization in MSE loss function for SISO case and MIMO case, separately. The simulation shows that both our optimized softmax function method and L1/2 regularization loss function have a better performance than the original neural network framework.en_US
dc.language.isoenen_US
dc.subjectAutoencoderen_US
dc.subjectDeep Learningen_US
dc.subjectMIMOen_US
dc.titleConstellation Design for Multi-user Communications with Deep Learningen_US
dc.typeThesisen_US
dc.contributor.departmentElectrical and Computer Engineeringen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Applied Science (MASc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Sun_Yilin_201909_MASc.pdf
Open Access
4.53 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue