Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/24823
Title: SYNTHESIS OF IRON NANOPARTICLES MEDIATED BY CELLULOSE NANOCRYSTALS
Authors: Ruiz-Caldas, Maria-Ximena
Advisor: de Lannoy, Charles
Department: Chemical Engineering
Keywords: nZVI;Cellulose nanocrystals;Nanoparticles;Iron;Surface nanoroughness;Nucleation and growth;Capping agent
Publication Date: 23-Nov-2018
Abstract: Colloidally-stable zero valent iron nanoparticles (nZVI) were synthesized through a classical redox reaction of iron sulfate with minor modifications using cellulose nanocrystals (CNCs) as stabilizers. We obtained spherical nZVI particles with high surface roughness and a mean size of 130nm. Particles remain colloidally stable after more than two months. Cellulose nanocrystals play a dual role in nZVI stability: a foreign surface to encourage stable nucleation over fast aggregation and a stabilizer to prevent iron nanoparticles aggregating into fractal colloids. Our results highlight the impact of the presence of CNCs on the rates and mechanisms of nucleation, growth, aggregation, and aging of nZVI particles, indicating promise in controlling size and morphology of similarly redox-generated nanoparticles. Cellulose nanocrystal-stabilized nZVI nanoparticles demonstrate properties well-suited for enhanced soil and groundwater remediation. //Nanocomposites composed of carboxylated cellulose nanocrystals and iron (Fe-oxCNC) were prepared through a classical redox reaction of iron sulfate using TEMPO-oxidized cellulose nanocrystals (oxCNCs) as a template and stabilizer. Morphological control over Fe-oxCNC nanoparticles was realized by varying the amount of oxCNC added to the redox process. As the molar ratio between oxCNC and Fe was increased from 1 to 8, the morphology of Fe-oxCNC nanoparticles evolved from rounded iron aggregates supported by cellulose nanocrystals to thin film iron-coatings on cellulose nanocrystals. Transmission electron microscopy (TEM), Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), and chemical analyses (EDX, EELS) revealed that oxCNCs were coated by iron. Small changes to the density and type of functional groups on the CNC surface have large impacts on the morphology and the oxidation state of adsorbed iron nanoparticles.
URI: http://hdl.handle.net/11375/24823
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Ruiz-Caldas_Maria-Ximena_201809_MASc.pdf
Access is allowed from: 2019-01-08
3.41 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue