Please use this identifier to cite or link to this item:
http://hdl.handle.net/11375/24814
Title: | Quantum Effects in the Hamiltonian Mean Field Model |
Authors: | Plestid, Ryan |
Advisor: | O'Dell, Duncan H.J. |
Department: | Physics and Astronomy |
Keywords: | Long-range interactions;quantum;many-body;toy model;dispersive waves;Gross-Pitaevskii |
Publication Date: | 2019 |
Abstract: | We consider a gas of indistinguishable bosons, confined to a ring of radius R, and interacting via a pair-wise cosine potential. This may be thought of as the quantized Hamiltonian Mean Field (HMF) model for bosons originally introduced by Chavanis as a generalization of Antoni and Ruffo’s classical model. This thesis contains three parts: In part one, the dynamics of a Bose-condensate are considered by studying a generalized Gross-Pitaevskii equation (GGPE). Quantum effects due to the quantum pressure are found to substantially alter the system’s dynamics, and can serve to inhibit a pathological instability for repulsive interactions. The non-commutativity of the large-N , long-time, and classical limits is discussed. In part two, we consider the GGPE studied above and seek static solutions. Exact solutions are identified by solving a non-linear eigenvalue problem which is closely related to the Mathieu equation. Stationary solutions are identified as solitary waves (or solitons) due to their small spatial extent and the system’s underlying Galilean invariance. Asymptotic series are developed to give an analytic solution to the non- linear eigenvalue problem, and these are then used to study the stability of the solitary wave mentioned above. In part three, the exact solutions outlined above are used to study quantum fluctuations of gapless excitations in the HMF model’s symmetry broken phase. It is found that this phase is destroyed at zero temperature by large quantum fluctuations. This demonstrates that mean-field theory is not exact, and can in fact be qualitatively wrong, for long-range interacting quantum systems, in contrast to conventional wisdom. |
URI: | http://hdl.handle.net/11375/24814 |
Appears in Collections: | Open Access Dissertations and Theses |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
mcmasterthesis.pdf | 6.17 MB | Adobe PDF | View/Open |
Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.