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Lay Abstract

The Hamiltonian Mean Field (HMF) model was initially proposed as a simplified
description of self-gravitating systems. Its simplicity shortens calculations and makes
the underlying physics more transparent.This has made the HMF model a key tool in
the study of systems with long-range interactions.

In this thesis we study a quantum extension of the HMF model. The goal is to
understand how quantum effects can modify the behaviour of a system with long-range
interactions. We focus on how the model relaxes to equilibrium, the existence of
special “solitary waves”, and whether quantum fluctuations can prevent a second order
(quantum) phase transition from occurring at zero temperature.

iii



Abstract

We consider a gas of indistinguishable bosons, confined to a ring of radius R, and
interacting via a pair-wise cosine potential. This may be thought of as the quantized
Hamiltonian Mean Field (HMF) model for bosons originally introduced by Chavanis
as a generalization of Antoni and Ruffo’s classical model.

This thesis contains three parts: In part one, the dynamics of a Bose-condensate are
considered by studying a generalized Gross-Pitaevskii equation (GGPE). Quantum
effects due to the quantum pressure are found to substantially alter the system’s
dynamics, and can serve to inhibit a pathological instability for repulsive interactions.
The non-commutativity of the large-N , long-time, and classical limits is discussed.

In part two, we consider the GGPE studied above and seek static solutions. Exact
solutions are identified by solving a non-linear eigenvalue problem which is closely
related to the Mathieu equation. Stationary solutions are identified as solitary waves
(or solitons) due to their small spatial extent and the system’s underlying Galilean
invariance. Asymptotic series are developed to give an analytic solution to the non-
linear eigenvalue problem, and these are then used to study the stability of the solitary
wave mentioned above.

In part three, the exact solutions outlined above are used to study quantum fluctuations
of gapless excitations in the HMF model’s symmetry broken phase. It is found that
this phase is destroyed at zero temperature by large quantum fluctuations. This
demonstrates that mean-field theory is not exact, and can in fact be qualitatively
wrong, for long-range interacting quantum systems, in contrast to conventional wisdom.
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“It [thermodynamics] is the only physical theory of universal
content which I am convinced will never be overthrown,
within the framework of applicability of its basic concepts.”

—Albert Einstein
CHAPTER 1

Introduction
Long-range interacting many-body (LRI-MB) systems are poorly understood in the
context of statistical physics, especially compared to their short-range interacting
counterparts. A wide range of theorems, formalisms, and basic results assume, and
heavily rely upon, the constituent degrees of freedom interacting via a short-range
force and are often invalid in the presence of long-range interactions (LRIs); in these
situations proofs need to be re-evaluated on a case-by-case basis. This is true of both
the Mermin-Wagner [1, 2] and Goldstone theorems [3], and also of basic fundamental
building blocks such as the equivalence of ensembles [4–6] and even the concept of
additive energies [7]. These issues are further compounded by dynamical features of LRI-
MB systems. Conventional statistical mechanics is founded on ergodic theory which
postulates that, after any reasonably long time scale, a macroscopic system will explore
its energetically accessible phase space such that time averaged measurements are
equivalent to microcanonical averages. LRI-MB systems, however, are characterized by
extremely slow relaxation rates (taking a timescale t ∼ O(logN) to relax to equilibrium
[8–10]) and their late time behaviour, being far from equilibrium, often disagrees with
microcanonical predictions [11]; their behaviour, therefore, often resembles that of
integrable systems.

These features were well known in the astrophysical community as early as the 1920s
[14], but were strongly emphasized in the 1960s by Donald Lynden-Bell [15, 16] (see
[17–19] for a more contemporary discussion). Other communities have noted the
importance of long-range interactions. This includes the study of non-neutral plasmas
[20–24], long-range interacting spin chains [25–32], dipolar Bose gases [33–41], Rydberg
atoms [42–49], and atoms interacting via (spatially extended) electromagnetic modes in
an optical cavity [50–61]. Nevertheless, certain peculiarities specific to LRI-MB systems

1
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Figure 1.1: Comparison of the formation of a bi-cluster in the quantum and classical
HMF model with repulsive interactions. An initial (nearly) homogeneous gas of particles
(defined on a ring of unit radius) undergoes rapid, but small amplitude fluctuations. Due
to long-range interactions, this leads to an effective time-averaged focusing potential
that results in a bi-cluster. Quantum effects modify this behaviour leading to either a
dressed interference pattern or a lack of focusing altogether (depending on the strength
of the quantum effects). The left figure is taken from [12] (i.e. Chapter 2), while the
right figure is taken from [13] and has been re-scaled, and cropped to match the figure
on the left.
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(such as negative specific heats) were ignored or dismissed as being peculiar features
of gravitational systems by the statistical physics community [18]. Consequently a
unified approach to understand LRI-MB systems has largely emerged only in the past
twenty-five years (see [5, 11, 62] for reviews). Much of the recent progress in this field
can be attributed to the development of a group of exactly solvable1 toy models that
have served as testing grounds for new ideas and provided litmus tests to identify
generic behavior common across a wide range of LRI-MB systems [5]. These toy
models can provide rigorous tests for general statistical theories of LRI-MB systems,
but are also extremely useful for exploring the connection between their dynamics and
their approach towards (or stubborn resistance to) equilibrium.

From the intense research activity over the past twenty years, the Hamiltonian Mean
Field (HMF) model has emerged as the most prominent toy model for LRI-MB physics
[5, 7, 11, 63]. Often referred to as paradigmatic, the HMF model has shown a
remarkable ability to capture dynamical properties that appear across a wide range
of LRI-MB systems, whilst simultaneously exhibiting non-trivial behaviour such as a
symmetry breaking phase transition that is naively forbidden by the Mermin-Wagner
theorem. Nevertheless, its hallmark, when compared to other exactly solvable models
of LRI-MB systems (such as the Blume-Emery-Grifiths model [4], the long-range Ising
model [13], or the mean-field φ4 model [64]), is that it has non-trivial dynamics. Better
yet, these dynamics closely mimic those of a self-gravitating system, reproducing the
same dynamical behaviour that leads to Lynden-Bell [15] and core-halo statistics [11,
65–67]. Furthermore, due to its simplicity, the HMF model is amenable to large-scale
numerical simulations allowing for a direct comparison between molecular dynamics
simulations and new proposals for statistical theories of LRI-MB systems’ late-time
behaviour [11].

The HMF model describes a system of N particles of mass m on a ring of radius R
interacting via a pairwise cosine potential. It is therefore a full many-body description
of a LRI-MB system. This is equivalent to an infinite-range kinetic-XY (or O(2) rotor)
model, and this correspondence informs much of the model’s nomenclature. The HMF

1In this context this refers to a model whose canonical free-energy or microcanonical internal
energy can be found exactly in the N →∞ limit.

3
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model’s Hamiltonian can be written as

H = 1
2mR2

∑
i

L2
i + ε

N

∑
i<j

cos(θi − θj) (1.1)

where Li is the conjugate momentum to the position variable θi, ε characterizes the
interaction strength, and the 1

N
factor (known as the Kac prescription [68]) preserves

extensivity of the energy in the thermodynamic limit. The case of ε > 0 corresponds
to repulsive (or anti-ferromagnetic) interactions, while ε < 0 corresponds instead
to attractive (or ferromagnetic) interactions. As alluded to above, the HMF model
has attracted substantial attention, and its classical behaviour, both dynamical and
statistical, has been extremely well studied [13, 62, 63, 66, 69–81]. Despite this progress,
the HMF model’s quantum behaviour has remained relatively unexplored with only
preliminary studies having taken place [82, 83].

The focus of this thesis is to extend our knowledge of the HMF model and its properties
to the quantum regime, where the Hamiltonian takes the (first quantized) form [82]

Ĥ = ~2

2mR2

∑
i

(
−i ∂

2

∂θ2
i

)
+ ε

N

∑
i<j

cos(θi − θj) . (1.2)

At the time of this writing, very little research has been conducted on the extension of
known results in the HMF model to the quantum regime (which is generally true of
the theory of LRI-MB systems). This thesis focuses on three different consequences
of quantum effects for the HMF models dynamical and statistical behaviour. First,
in Chapter 2 a well known dynamical instability of the model is investigated whose
presence is related to the (lack of) thermalization in the model. Quantum effects
are found to modify this behaviour and a schematic dynamical phase diagram is
constructed. In Chapter 3 the mean-field (i.e. Gross-Pitaevskii) equations of the
model are studied and all possible stationary states are identified. Exact solutions
are found, with a fully analytic (non-trivial) solution available in two distinct scaling
limits. Finally, in Chapter 4, the exact solution of the lowest energy stationary state
is used to construct a variational ansatz for the ground state wavefunction. We find
that quantum fluctuations inhibit the formation of the clustered phase that is known
to exist classically, and was predicted on the grounds of mean-field theory. Chapter 5
summarizes the current state of affairs for the quantum HMF model, and outlines

4
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what we feel are crucial open questions and next steps that can be taken to address
them.

Literature Review and Background Material

The remainder this chapter will serve as an introduction to the motivations for, and
techniques used in, each of the three papers mentioned above. First in Section 1.1 we
give a short introduction to the (relatively) newly developed theory of LRI-MB systems
at equilibrium. This includes a short discussion of extensivity, additivity, ensemble
inequivalence, and the role of LRIs in modifying key theorems related to spontaneous
symmetry breaking. Next, in Section 1.2 we focus on the dynamical features of long-
range interacting systems. The focus here is on the derivation of the Vlasov equation,
and its implications for (non-)thermalization in LRI-MB physics. The Vlasov equation,
has emergent symmetries and conservation laws whose presence can drastically alter a
system’s dynamical behavior. We discuss how the Vlasov equation’s dynamics can
lead to the formation of so-called quasi-stationary states (QSSs), via a process known
as violent relaxation (VR). Then, in Section 1.3 we give a short-introduction to the
conventional theory of a dilute Bose-gas, paying specific attention to the case of a
finite sized system. We also overview non-local mean-field theories (i.e. a generalized
Gross-Pitaevskii equation [GGPE]) for Bose systems. Finally, in Section 1.4 we turn
our attention towards the HMF model, and the existing literature surrounding it. This
includes existing results regarding the HMF model’s quantum behaviour as well as its
features in the classical regime.

1.1 Statistical Features of Long-Range
Interactions

Why can LRIs undermine the foundations of conventional statistical mechanics? The
simplest, and most fundamental, reason is that energy cannot be additive for a LRI-MB
system. This idea is most easily illustrated by considering a simple model; namely the

5



McMaster University – Department of Physics & Astronomy – Ryan Plestid – Ph.D. Thesis

all-to-all (or infinite ranged) ferromagnetic Ising model [84]

H = − J
N

N∑
j=1

∑
i<j

σiσj , (1.3)

where σi ∈ {0, 1} is a classical spin pointing either up or down, J > 0 is a coupling
with dimensions of energy, and the factor of 1/N has been included to make the
Hamiltonian extensive (this is known as the Kac-prescription [68])

Figure 1.2: Spin configuration for the all-to-all Ising model for 2N spins partitioned into
two blocks of N spins. In this case of all-to-all interactions the energy of the left block
is minimal, EA = −J(N −1)/2, as is the energy of the right block, EB = −J(N −1)/2,
and yet the system’s energy is E = 0 6= EA + EB, and is thus non-additive. This is
the interaction between A and B is extensive, Eint ∼ O(N).

We will consider a system of spins, S, that has been bi-partitioned, S = SA ⊗ SB. We
will be interested in calculating the energy of the full system, E, and of the isolated
sub-systems, EA and EB respectively. This idea is illustrated for a particular spin
configuration in Figure 1.2, where it can be easily seen that E 6= EA + EB, even in
the thermodynamic limit. This is because the interaction energy between SA and SB
scales extensively Eint ∼ O(N); the interaction can “reach acrosss” the boundary. This

6
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is to be contrasted with the short-ranged Ising model, where the interaction between
the two blocks is limited to their shared boundary. This kind of infinite ranged model
seems pathological at first sight, however it serves to illustrate key concepts and ideas
that appear in more realistic models.

1.1.1 Scaling of Entropy

Boltzmann famously connected thermodynamics and microscopic physics, by realizing
that entropy could be defined by counting microstates via his celebrated formula

S = kB ln Ω (1.4)

where Ω is the number of accessible states given a set of constraints (such as fixed
energy). As we have discussed above, for a short-range interacting systems, the local
nature of the interactions guarantees that the energy is additive. For a microcanonical
state this has important ramifications for the entropy.

To be concrete, suppose a large system (hereafter called “the universe”) is composed of
N identical particles and is described by the Hamiltonian H(u) (where u is a microstate
of the universe). Suppose U has an energy EU , and is at equilibrium (defined as a
maximum entropy state). There are a large number, ΩU(EU), of microstates, u, with
energy H(u) = EU .

We will be interested in partitioning the universe into two systems A and B. In a
short-range interacting system, for microstates a and b we have that H(u) = H(a, b) =
H(a) +H(b) because the energy is additive in the thermodynamic limit. Therefore we
find that if our two sub-systems have average energy EA and EB respectively then

Ω(EU) =
∑
EA

Ω(EA)Ω(eU − EA) (short-range systems). (1.5)

In the thermodynamic limit the most probable energy of each sub-system dominates
the sum, and we can approximate Equation (1.5) as

Ω(EU) ≈ Ω(EA)Ω(EB) (short-range systems). (1.6)

7
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which, when coupled with Equation (1.4), immediately implies that

S(E) = S(EA) + S(EB) (short-range systems) . (1.7)

Consider, in contrast the case of a LRI-MB system. For microstates a and b we have
instead that

H(a, b) = H(a) +H(b) +Hint(a, b) (1.8)

where Hint(a, b) describes the long-range interactions between sub-system a and sub-
system b.

For concreteness let us consider the infinite-range Ising model, Equation (1.3), and
specifically consider the case of EU = 0. Let us take the universe to contain 2N spins
that are bi-paritioned into equal sub-systems composed of N spins. The criterion that
EU = 0 demands that half of all spins in the universe point down, and that the other
half point up; note that the spin configuration shown in Figure 1.2 is one example of a
configuration that satisfies EU = 0 but there are many more (most of which have a
mixture of up and down spins in both A and B). We can calculate the total number
of microstates, u, satisfying this criterion explicitly

ΩU =
(

2N
N

)
= (2N)!
N !N ! ≈

√
2× 22N
√
N

(1.9)

where we have used Stirling’s formula N ! ∼
√

2πN(N/e)N . Within this ensemble
EA = 0 and EB = 0, and so applying the above formula to each of these sub-systems
containing N spins we find

ΩB = ΩA =
(
N

N/2

)
= (N)!

N
2 !N2 !

≈ 2× 2N√
N

(1.10)

We can then compute S(EU) and compare it to S(EA) + S(EB) = 2S(EA)

S(EU) ∼ kB2N ln 2− 1
2 lnN + 1

2 ln 2 +O
( 1
N

)
(1.11)

2S(EA) ∼ kB2N ln 2− lnN + ln 2 +O
( 1
N

)
(1.12)

Thus, in this extreme example of infinite range interactions, the entropy is additive up
to errors of O(logN), and similar errors are present in short-range interacting systems

8



Ph.D. Thesis – Ryan Plestid – Department of Physics & Astronomy – McMaster University

when approximating Equation (1.5) by Equation (1.6), such that in the thermodynamic
limit

S(E) ≈ S(EB) + S(EA) . (1.13)

Notice, for example, that the spin configuration shown in Figure 1.2 contributes to
the entropy of the universe (as it has energy EU = 0) but not to the entropy of the
sub-systems (since EA � 0 and EB � 0).

1.1.2 Additivity of Energy

A more realistic situation is a spatially dependent two-body interaction potential whose
long-range behaviour is that of a power law decay i.e.

VLR(r) ∼ V∞
rα

as r →∞ . (1.14)

Consider a smoothly varying density profile ρ(x) ∼ O(1), describing a system of
particles each of which interact via the pair-wise potential V (r); for simplicity we will
take ρ(x) = ρ(|x|) to be spherically symmetric2 and the system to have a finite radial
extent R. The total potential energy of the system is given by

U =
∫

ddx1ddx2ρ(x1)ρ(x2)V (|x1 − x2|)

=
∫

ddxρ(x)
∫

ddyV (|y|)ρ(x + y)

= NΩd−1

∫ R

0
drrd−1V (r)ρ(r) .

(1.15)

where, here, Ωd−1 denotes the surface area of the d − 1 sphere and should not be
confused with the number of microstates. For a short-range interacting system, the
remaining integral would evaluate to some finite O(1) number, but for a long-range
interacting system this need not be the case. Splitting the integral into two pieces, we

2The following can be trivially generalized to spherically asymmetric densities by expanding in
spherical harmonics. This does not affect the scaling argument presented below.
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find

U = NΩd−1

[∫ R

0
drrd−1V (r)ρ(r) +

∫ R

R
drrd−1V (r)ρ(r)

]

≈ NŨ0(R) + V∞
d− α

(
Rd−α −Rd−α

)
NΩd−1

≈ NŨ0(R)− V∞NΩd−1

d− α
Rd−α + V∞NΩd−1

d− α
Rd−α

= NU0 + V∞NΩd−1

d− α
Rd−α .

(1.16)

where U0 is some order one number (with dimensions of energy) that is independent3

of R. If ρ ∼ O(1) then this implies that R ∼ O(N1/d), and so we find that the
energy scales in three different ways depending on whether or not the interactions are
long-ranged

U ∼



O(N) for α > d

O(N logN) for α = d

O
(
N2−α

d

)
for α < d

(1.17)

these three cases are referred to as short-range, marginal, and long-range. Thus, the
criterion for defining LRIs is dimensionally dependent [5, 85, 86].

Importantly, LRI-MB systems are characterized by energy scaling that is super-linear
with respect to N . Just like in the all-to-all Ising model studied above, this leads
to non-additive energies. A fundamental consequence of non-additive energies is
that the microcanonical and canonical ensembles need not be equivalent even in the
thermodynamic limit.

3Since R was introduced spuriously into the problem, the left hand side of Equation (1.16) cannot
depend on R, and so, therefore, neither can the combination Ũ0R− V∞/(d− α)×Rd−α := NU0.
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1.1.3 Ensemble Inequivalence

Typically the microcanonical ensemble is justified by appealing to ergodicity4. The
canonical ensemble is then derived by considering a large universe, U , with microcanon-
ical statistics. The universe is then partitioned into two macroscopic sub-systems; one
a bath, B, and the other our system of interest S.

The microcanonical ensemble describes the probability for the universe to be in a
microstate, u, given that the universe has an energy EU . It is defined by

ρmc(u;EU) = P (u|EU) = 1
Ω(EU)δ(H(u)− EU) (1.18)

where δ(x), is the Dirac-delta function, and Ω(EU) represent the number of microstates,
u, with energies, H(u) = EU . Note that ρmc(u;EU) assigns a uniform probability
weight to every state satisfying the energetic constraints imposed by the delta function.

We are interested in the probability of our system, S, being in microstate s, conditioned
on the universe having energy EU = E, P (s|E). Since the super-system is describable
by the microcanonical ensemble, we may trade energy for temperature by using

T =
(
∂E

∂S

)
V

(1.19)

where S is the entropy, and the subscript denotes that volume, V , has been held fixed.
Note, that this is only permissible if S(E, V ) is a concave function of energy. With
this caveat in mind, we proceed and introduce the canonical ensemble defined by

ρc(s;T ) = P (s|E) where T = ∂E

∂S
. (1.20)

Since all microstates are equally likely in the canonical ensemble we have that

ρc(s;T ) = ρmcΩB(EB) = ρmceS(EB)/kB . (1.21)

where we have used Boltzmann’s famous result S = kB ln Ω. Now, the energy, Eb, of
the bath’s microstate, b, depends on the energy of the system Es. If the energy is

4Although for some long-range interacting systems even this seemingly innocuous assumption can
break down [see Section 1.2].
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additive then Eb = E − Es, and since the bath is macroscopic we may replace Eb by
EB. Then since Es � E we may Taylor expand the entropy

S(EB) ≈ S(E)− Es
∂S

∂E
if energy is additive

= S(E)− Es/T .
(1.22)

We can therefore conclude that

ρc(s;T ) ∝ exp
[
− Es
kBT

]
, (1.23)

with β = 1/kBT the inverse temperature. Notice that two crucial assumptions were
made:

1. Energy is additive. We have shown above via microscopic considerations, that
this is not true for a LRI-MB system.

2. Entropy is a concave function of energy. This also need not be true for a LRI-MB
system, as we will discuss below.

This second feature has far reaching implications that can be understood purely at the
level of thermodynamics (i.e. without recourse to statistical physics). Since different
state functions are defined as Legendre transforms of one another, (e.g. F = E − TS),
information is lost if the entropy is not concave. This is because a Legendre transform
trades the argument of a function, for that function’s derivative. If the function is
not concave, then then there is no longer a one-to-one mapping between these two
quantities, and the transformation can not be inverted without a loss of information
[6].

In a standard course on statistical mechanics, a simple proof is given that establishes
entropy as a concave function. It goes as follows: Consider a large short-range
interacting system, U , (once again called the universe ) at equilibrium that can be
partitioned into p subsystems, all with equal energy E. Next, consider an out-of-
equilibrium configuration where r of the partitions have energy Er and q of the
partitions have energy Eq. Energy is additive (due to short-range interactions) such
that rEr + qEq = pE. Since the entropy of an equilibrium state is maximal we can
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guarantee that
pS(E) ≥ rS(Er) + qS(Eq). (1.24)

Dividing through by p and introducing λ = r/p, we have, equivalently,

S(λEr + (1− λ)Eq) ≥ λS(Er) + (1− λ)S(Eq) (short-range systems) , (1.25)

which proves that entropy is a concave function of energy (with a similar argument
proving it to be a concave function of any of its arguments).

This proof does not hold up for long-range interacting systems precisely because energy
is not additive. We do not have the condition that rEr + qEq = pE, but instead that
rEr + qEq +H ′int = pE +Hint where H ′int is the net interaction energy of the various
sub-sytems. This prevents us from taking Equation (1.24) and re-expressing it in the
form Equation (1.24). Rather, we arrive at

S(λEr + (1−λ)Eq +H ′int−Hint) ≥ λS(Er) + (1−λ)S(Eq) ( long-range systems) ,

(1.26)
and this does not imply concavity.

Thus the lack of additivity in LRI-MB systems both invalidates the typical proof of
ensemble equivalence, and can lead to non-concave entropies. This is reminiscent of
(but conceptually distinct from) the Maxwell construction for a non-concave pressure
curve as a function of the energy. The (generalized) Legendre transform of a non-
concave function will itself be concave, and so if a system has an entropy function with
a convex intruder, its free energy will not contain the information about this intruder.
Thus, upon inverting the Legendre transform, we find a different internal energy U ′

than we started with. This loss of information is what underlies the inequivalence of
ensembles as emphasized in [5, 6].

1.1.4 Thermodynamic Limit

In the prototypical example of a short-range interacting gas the thermodynamic limit
is derived by considering a finite sized system, of volume V , with a fixed number
of particles N . Then, the limit is defined by considering N → ∞, L → ∞, with
N/Ld = ρ fixed. What is the appropriate limit for a system with LRIs?
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The range of a long-range interaction introduces a new length scale into the problem
whose influence persists in the L→∞ limit. Furthermore, the number of interacting
pairs scales faster than O(N) [and as fast as O(N2)], whereas the kinetic energy
scales linearly with N . This precludes a naive N →∞ scaling as it would lead to a
trivial limit that is entirely dominated by the interaction energy; this is, of course, not
physical. The underlying dynamics allow for the exchange of kinetic and potential
energy, and identities such as the virial ratio for self-gravitating systems guarantees
that both the interaction and kinetic energies will be of the same order.

Indeed, as will be discussed in Section 1.2, a long-range interacting system’s momentum
can be trivially re-scaled by choosing a dynamical time scale. For long-range interacting
systems the dynamical time-scale is naturally N -dependent (because energy is non-
extensive). One simple way to both ensure that energy is extensive, and that there
is a non-trivial thermodynamic limit (where the kinetic and potential energies are
allowed to compete with one another) is the so-called Kac prescription, wherein the
long-ranged potential is rescaled VLR → VLR/N . In this case, the volume should be
held fixed while N →∞. For instance, if we considered a Hamiltonian

H =
∑
i

p2
i

2m +G
∑
i<j

V (xi − xj) , (1.27)

the Kac prescription would dictate that we introduce a new parameter g = GN such
that the Hamiltonian could be written as

H =
∑
i

p2
i

2m + g

N

∑
i<j

V (xi − xj) , (1.28)

then the thermodynamic limit would correspond to N →∞, with the volume V , and
coupling, g, held fixed. Then, the sum ∑

i<j Vij is manifestly O(N2) and the interaction
energy is O(N) such that energy is extensive and the potential and kinetic energies
are of the same order.

1.1.5 Mean-Field Theory and Symmetry Breaking

One powerful technique in statistical mechanics is mean-field theory whose, simplifying
assumption involves ignoring statistical fluctuations and correlations. By imposing an
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extraneous constraint on a statistical system its analysis is often greatly simplified.
The successes and limitations of mean-field theory for short-range interacting systems
are well understood and reviewed elsewhere [87, 88]. It is generically expected that
long-range interacting systems are better described by mean-field theory, with many
authors claiming that mean-field theory is exact [70, 82, 83, 89–94] (although see [81,
95, 96] for some interesting counter-examples). In this section we discuss mean-field
theory contrasting its implications for long- and short-range interacting systems.

As an illustrative example of a short-range interacting system let us consider the
mean-field treatment of the nearest-neighbour Ising model. Interactions between
neighbouring spins are replaced by an averaged value, namely the magnetization M ,

H = −J
∑
〈ij〉

σiσj → −JzM
∑
i

σi (1.29)

where z is the coordination number of the lattice (e.g. z = 2d for a d-dimensional
square lattice), and m̄ = 〈σi〉.

This simplifying assumption can allow us to understand certain qualitative features of
the model’s behaviour if fluctuations are small. Famously, in the Ising model, mean-
field theory predicts a second-order phase transition from a disordered to an ordered
state that breaks the model’s underlying Z2 symmetry. Within mean-field theory, the
transition is predicted to occur for any lattice geometry and in any dimension. This
can be seen straightforwardly by considering the related single-particle problem of a
single Ising spin in a magnetic field Beff. For an inverse-temperature β this implies
that

m̄ = 〈σ〉 =
∑
σ σe−βBσ∑
σi e−βBσ = tanh(−βBeff). (1.30)

In our original problem the effective-, or mean-field, magnetic field B is generated by
the nearest neighbour spins such that Beff = −J∑〈ij〉 σj . Assuming that∑〈ij〉 σj = zm̄,
and demanding that this solution is self-consistent requires that

tanh(−Beffm̄) = tanh(βJzm̄) = m̄ (1.31)

This can only happen if the slope of the tanh curve at the origin is greater than unity
(see Figure 1.3), and so predicts that if βJz > 1 there is an ordered phase, while if
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(b) βJz = 0.8

Figure 1.3: Two possible solutions to Equation (1.31). If, as in (a), zβJ > 1, then
three solutions exist, whereas if zβJ < 1, as in (b), then only one solution exists.

βJz < 1 there is not. Famously, this prediction fails completely in one-dimension [87,
88], as we will discuss below.

We can make this kind of mean-field argument less ad hoc to better understand its
limitations. Consider re-writing the Ising model’s partition function, by re-organizing
the sum over microstates s = {σi} into a set of conditional sums

Z =
∫ 1

−1
dm

∑
s|m

e−βH[s] :=
∫ 1

−1
dme−βF(m,β) (1.32)

where a conditional microstate s|m denotes any collection of spins {σi} satisfying
1
N

∑
i σi = m, and where we have introduced an effective free-energy F(m,β). This

is the Landau free-energy, typically inferred from phenomenological considerations,
although it could in principle be calculated from first principles. The Landau free
energy is more powerful than the mean-field theory outlined in the previous section.
Once give, the Landau free energy, also allows us to compute fluctuations such as
〈m2〉β − 〈m〉2β, and can therefore serve to diagnose problems with mean-field theory
(which completely neglects fluctuations).

Using the Landau free-energy the average value of the magnetization m̄ is then given
by

m̄ := 〈m〉β =
∫ 1
−1 dm me−βF(m,β)

Z
(1.33)

The mean-field theory of the preceding paragraph is equivalent to minimizing the
Landau free energy (i.e. it is a saddle-point approximation). If the free-energy becomes
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very flat, then a saddle-point approximation may be unjustified. This can lead to not
only quantitative disagreement but also qualitatively wrong predictions. For example,
as mentioned above, in one-dimension the predictions of mean-field theory are brutally
wrong for the Ising model. This is a generic consequence of short-range interacting
systems, because the energetic cost of excitations will be dwarfed by the entropy
created by producing them. For instance, in the context of the Ising model the failure
of mean-field theory can be attributed to the proliferation of domain walls whose
energetic cost is simply J , but whose entropy scales as kB log(L/a) (since the boundary
of a domain wall can occur at any lattice site). For L� a domain walls (i.e. disorder)
will proliferate because the entropic profit will always outweigh the energetic penalty
[87]. Thus, as was first pointed out by Landau, in a one dimensional short-range
interacting system, at finite temperatue no phase transitions can take place (although
at zero temperature phase transitions are possible with the Ising model providing an
explicit example).

Notice that this argument crucially relies on the scaling of the energy (being O(1)) and
the entropy (being O(logL)]. As we have already outlined, for even marginal interac-
tions where V (r1− r2) ∼ 1/(r1− r2)d the energy per-particle scales logarithmically. In
contrast, the entropy is largely insensitive to the range of interactions. Consequently,
the entropy gain disorder can, in certain cases, be balanced by its energetic cost.

A different kind of behaviour can also lead to the invalidation of mean-field theory.
If a system has low-lying excitations then their fluctuations can lead to mean-field
theory being qualitatively wrong. This idea is most easily illustrated by considering a
generalization of the Ising model known as the O(2) vector, or XY , model. Instead of
decorating a lattice with discrete variables σi we will instead consider a two-component
vector, ~si = (cos θi, sin θi)T , of unit length, ~s · ~s = 1. The model is defined, for nearest
neighbour interactions, by the Hamiltonian

H = −J
∑
〈ij〉

~si · ~sj (1.34)

In this case, using the same arguments as above, but allowing for a spatially varying
order parameter ~φ(x), we can construct an effective free-energy functional given by

F [φ(x)] =
∫

ddxK(T )∇iφα∇iφα +M(T )φαφα + Λφαφαφβφβ + ... (1.35)
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where K, M , are phenomenological parameters that can in principle be calculated
from the underlying microscopic Hamiltonian, and the ellipsis represent terms that
are of O(φ6) or higher, or that contain higher powers of derivatives; assuming that
φ(x) is small, and smooth, theses terms are of lesser importance and can be neglected
in our discussion. Suppose that for some value of T = Tc, the parameter M vanishes
becoming negative for T < Tc and positive for T > Tc, such that M = m(1− T

Tc
) and

that K(Tc) = κ 6= 0, and Λ(Tc) = λ 6= 0, the system will minimize its effective free
energy, F , by acquiring a non-zero homogeneous profile

φα(x)φα(x) = v2 =
m
(
1− T

Tc

)
2λ . (1.36)

This condition defines a degenerate manifold of states each of which corresponds to a
different orientation of the spins. Importantly, each of these distinct states is connected
to one-another by a continuous O(2) symmetry transformation.

To study this we can assume that a given direction has been spontaneously chosen, and
then study fluctuations about this point. Let us assume (without loss of generality)
that ~φ0(x) = (v, 0)T , then let us write

~φ =
√
v + ρ

cos θ(x)
sin θ(x)

 (1.37)

such that the effective free energy can be re-written

F =
∫

ddx(2vλ− 2v2λ)ρ+ λρ2 + κ(∇ρ)2

4(v + ρ) + κv(∇θ)2 + κρ(∇θ)2 (1.38)

Notice that θ never appears without an accompanying derivative. This is a direct
consequence of the “broken” O(2) symmetry. In fact the symmetry has not been broken
at all, but is rather being realized non-linearly via a shift symmetry; Equation (1.38)
is invariant under θ(x)→ θ(x) + α.

If we assume that terms appearing in the free-energy that are of quartic-order in
the fields or higher (such as |∇θ|4) then we can approximate F by keeping only the
lowest-order terms; this is often referred to as the Gaussian approximation. Then,
since a term such as 1

2m
2θ2 is forbidden by the shift symmetry, θ(x)→ θ(x) + α, the
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only term that can appear inside the free-energy at quadratic order is |∇θ|2. This
line of reasoning then suggests that the two-point correlation function is given in
momentum space by

〈|θ(k)|2〉 =
∫
Dθe−βFθ(k)θ(−k) (1.39)

Approximating the free energy by F ≈
∫

ddx1
2 |∇θ|

2 =
∫

ddk 1
2k

2|θ(k)|2 then reduces
the above integral into a product of independent Gaussian integrals over different
Fourier modes. 〈|θ(k)|2〉 is the variance of the mode labeled by k and is therefore
〈|θ(k)|2〉 = 1/(βk2).

The application of the Gaussian approximation at very small values of k, however,
is somewhat suspect. Since |∇θ|2 → k2|θ(k)|2, the limit of k → 0 naively invalidates
the Gaussian approximation; the saddle-point becomes less and less steep in this
limit, and eventually one would expect quartic corrections to modify the integral’s
behaviour. In fact (surprisingly) if a continuous symmetry is spontaneously broken,
the naive reasoning applied above turns out to be exactly correct. This result is
known as Goldstone’s theorem [3, 97], which states that if a continuous symmetry is
spontaneously broken, then there must be an accompanying gapless excitation (often
called a Goldstone boson).

One consequence of Goldstone’s theorem is that the energy cost of fluctuations in the
radial direction (i.e. the Higgs mode ρ) is much higher than in the angular direction.
We may therefore neglect fluctuations of ρ and replace it by its average value 〈ρ〉 = 0
leading to

F ≈ κv
∫

ddx (∇θ)2 (1.40)

from which we can calculate fluctuations in the angular direction (assuming the
background configuration φ0)

〈θ(x)θ(x)〉β,φ0 =
∫ ddk

(2π)d 〈|θ(k)|2〉β,φ0

= 1
βκv

∫
ddk 1

k2

∝ T
∫ Q

0
dkkd−3

(1.41)

where Q is a cut-off that we have introduced. We are mostly interested in the role
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played contributions to the integral from low-kS modes, and we see that in sufficiently
low-dimensional systems the contributions from such modes is sufficiently large to
render fluctuations in the angular direction to be infinite. Thus, our assumption of a
symmetry broken state φ0, is not self-consistent. If such a state were prepared, thermal
fluctuations would rapidly explore the entirety of the low-energy manifold resulting in
a state with a restored O(2) symmetry.

This result is a special case of the Mermin-Wagner theorem [1], which states that for
short-range interacting systems spontaneously broken symmetries are not allowed in
d ≤ 2 at any finite temperature. Why is this the case? It is true that in any dimension,
at low temperatures, low-lying states can be excited, so what makes low-dimensional
systems so prone to their effects?. What is crucially different in d = 1 or d = 2 is the
number or density of such low-lying states. For states labeled by momentum k, with
dispersion E(k) ∼ k2 the density of states in d dimensions is scales as ρ(E) ∼ Ed/2−1

and so in higher dimensions low-lying excitations are comparatively rare.

This situation changes when long-range interactions are taken into consideration (see
e.g. [5, 25, 26, 98–100]). Notice that, as far as a lattice model is concerned, the
role of higher dimensionality is to increase the coordination number of each lattice
site. Thus, the suppression of fluctuations in higher dimensional systems may be
ascribed to the greater connectivity between neighbouring lattice sites. In this way,
it is intuitive to expect that long-range interactions may have a similar effect as an
increased dimensionality. Thus, a long-range interacting system is less susceptible to
low-lying excitations, and it is possible for a LRI-MB system to spontaneously break
continuous symmetries in any dimension.

1.2 Dynamical Features of Long-Range
Interactions

In the last section we focused on the ways in which LRIs can modify a system’s
equilibrium behaviour. In reality the applicability of statistical mechanics rests on
the assumption that ensemble averages are equivalent to time averaged quantities
for a many-body system. Typically this is justified by appealing to ergodicity; if a
system can sample all of its energetically available phase space within the duration of
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one measurement, then a time average will be equivalent to a microcanonical average.
Studies of the Boltzmann equation provide important evidence that short-range
collisions will drive a classical short-range interacting system towards equilibrium.

This is not the case for LRI-MB systems. Although the microscopic laws governing
their dynamics appear only superficially different when compared to a short-range
interacting system, the equations governing their average behaviour in phase space
are fundamentally distinct. Because the interactions from far-distant particles can
dominate over local short-range interactions, a mean-field description is justified; this
is known as the Vlasov equation [5, 9, 10, 24]. Importantly, distributions which are
stable with respect to the Vlasov equation need not be equilibrium states. Thus, the
thermalization of long-range interacting systems is very different than short-range
interacting systems. They tend to flow to so-called quasi-stationary states (QSS) which
are stable over very long time scales [often of O(logN)]. Only after this very long time
scale do short-range collisional effects then drive the system to its thermodynamic
equilibrium. In this section we will introduce the Vlasov equation, and emphasize one
of its associated relaxation mechanisms known as violent relaxation.

1.2.1 The Vlasov Equation

We begin by considering a phase space distribution for N point particles in Eulerian
phase space coordinates Q and P ,

f(Q,P, t) = 1
N

N∑
i=1

δ(Q− qi(t))δ(P − pi(t)) (1.42)

where Q and P are Eulerian coordinates and qi(t) and pi(t) are to be thought of as
Lagrangian coordinates evolving according to Hamilton’s equations for a Hamiltonian

H =
∑
i

p2
i

2m +
∑
i<j

V (qi − qj) (1.43)

q̇i = ∂H

∂pi
ṗi = −∂H

∂qi
. (1.44)
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Taking the total time derivative of Equation (1.42) we find

d
dtf(q, p, t) = ∂f

∂t
+ 1
N

N∑
i=1

δ(Q− qi)
d
dtδ(P − pi) + δ(P − pi)

d
dtδ(Q− qi)

= ∂f

∂t
+ 1
N

N∑
i=1

δ(Q− qi)
dpi
dt δ

′(P − pi) + δ(P − pi)
dqi
dt δ

′(Q− qi)

= ∂f

∂t
− 1
N

N∑
i=1

δ(Q− qi)
∂H

∂qi
δ′(P − pi) + pi

m
δ(P − pi)δ′(Q− qi)

(1.45)

where we have applied the time derivatives only to the Lagrangian coordinates qi(t)
and pi(t). Next, we have

δ(Q− qi)
∂H

∂qi
=
∑
j

δ(Q− qi)
∂V (qi − qj)

∂qi

=
∑
j

δ(Q− qi)
∂V (Q− qj)

∂Q

=
∑
j

∫
dQ′∂V (Q−Q′)

∂Q
δ(Q− qi)δ(Q′ − qj)

= δ(Q− qi)
∫

dQ′∂V (Q−Q′)
∂Q

∑
j

δ(Q′ − qj)

= δ(Q− qi)
∂

∂Q

[
N
∫

dQ′V (Q−Q′)dP ′f(P ′, Q′, t)
]
,

(1.46)

and we therefore define the mean-field potential Φ(Q,P, t) via

Φ(Q, t) = N
∫

dQdP ′f(P ′, Q′, t)V (Q−Q′) (1.47)

we then find

d
dtf(q, p, t) = ∂f

∂t
+ 1
N

N∑
i

(
−∂Φ
∂Q

)
δ(Q− qi)δ′(P − pi) + P

m
δ(P − pi)δ′(Q− qi)

= ∂f

∂t
− ∂Φ
∂Q

∂f

∂P
+ P

m

∂f

∂Q
.

(1.48)
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Since the total number of particles N =
∫

dQdPf(Q,P, t) is conserved, so too must
d
dtf . We then find the exact relation

∂f

∂t
+ P

m

∂f

∂Q
− ∂Φ
∂Q

∂f

∂P
= 0. (1.49)

This is referred to as the Klimontovich equation and its solution is equivalent to the full
N -body solution of Newton’s or Hamilton’s equations. If we average over an ensemble
of initial conditions it is useful to decompose a given distribution into its ensemble
average, and its deviation from that average

f (α)(Q,P, t) = 〈f(Q,P, t)〉+ 1√
N
δf (α)(Q,P, t) (1.50)

where α indexes different members of the ensemble such that

f0(Q,P, t) := 〈f(Q,P, t)〉 = 1
M

M∑
α=1

f (α)(Q,P, t) . (1.51)

Substituting Equation (1.50) into Equation (1.49) and using the fact that 〈δf〉 = 0
(while 〈δfδΦ〉 does not) we find that the average distribution then satisfies the following
equation

∂f0

∂t
+ P

m

∂f0

∂Q
− ∂Φ0

∂Q

∂f0

∂P
= 1
N

〈
∂δΦ
∂Q

∂δf

∂P

〉
. (1.52)

with Φ0 = Φ[f0] and where we have introduced the fluctuations of the mean-field
potential defined via

Φ[fα] = Φ[f0] + 1√
N
δΦ(α) . (1.53)

Equation (1.52) provides an exact description of the dynamics. Notice that this has
the same form as the Boltzmann equation with the terms on the right hand side, being
analogous to a collision integral, and the averaged mean-field potential Φ0 playing
the role of a fluctuating background potential. The Vlasov equation emerges as the
leading order approximation to this equation in the N →∞ limit, and is given by

∂f0

∂t
+ P

m

∂f0

∂Q
− ∂Φ0

∂Q

∂f0

∂P
= 0. (1.54)

This constitutes a kind of dynamical mean-field approximation in which fluctuations
about a dynamical background are neglected. This approximation can be justified by
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showing that the difference between two sets of initial data f (a)
0 and f (b)

0 is bounded in
time, and will grow at most exponentially in time [8]. Since the averaged phase space
distribution is related to the exact (i.e. discrete) one by a finite error (of size 1/

√
N)

this implies that the exact dynamics are well approximated by the Vlasov equation up
to times at least of O(logN) [11]. Numerical investigations of explicit examples have
shown that most LRI-MB systems are described by the Vlasov equation up until times
of O(Nν) with ν a system specific exponent; for example in the HMF model ν ≈ 1.7
[73]. Finite size “collisional” effects appearing on the right-hand side of Equation (1.52)
could also serve to influence the late time behaviour of the exact solution, however
their influence will only appear at polynomialy late times. This argument has been
made rigourous with the most famous proof being given by Hepp and Braun [8].

1.2.2 Collisionless Relaxation

The Vlasov equation has been extensively studied [10, 20, 21] and its consequences for
the dynamics of a long-range interacting system are very important for understanding
relaxation and thermalization. Given that thermalization is typically attributed to
short-range collisions, and that we have just argued that the influence of these collisions
is subdominant, a simple picture for thermalization emerges. First, the system evolves
according to Equation (1.52), early time dynamics may be highly non-trivial, however
after a long time (but sufficiently short such that Equation (1.52) still applies), the
system will tend towards an attractor of the Vlasov equation. Many such attractors are
stable, and can be infinitely long-lived with respect to the Vlasov equation; these are the
aforementioned QSS. Eventually, the QSS will undergo “collisional” relaxation, whether
due to sub-dominant short-range interactions, or finite-N statistical fluctuations that
can mimic their effects. On extremely long time scales, these collisional dynamics will
eventually lead to the system relaxing to microcanonical equilibrium as described in
Section 1.1. This picture can be formalized as a perturbative solution to the kinetic
theory in a series in 1/N see e.g. [10, 101].

This section will focus on the regime of collisionless relaxation. Collisionless relaxation
occurs via three distinct mechanisms: phase mixing, violent relaxation, and Landau
damping [11, 19]. Phase mixing is effectively a static, non-interacting effect. Violent
relaxation involves an interplay between phase mixing, and energy transfer via coherent
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oscillations of the mean-field potential Φ(Q,P, t). Landau damping results from
energetic exchange between wave-like excitations and single particles which results in a
non-dissipative damping mechanism. While interesting in its own right, the mechanism
of Landau damping will not concern us for the rest of this thesis and, in what follows,
we will focus on violent relaxation, which is important in the context of Chapter 2.

Phase mixing is the simplest of the three mechanisms, being essentially a relaxation
mechanism driven by a fixed background potential. For example, consider an initial
phase space distribution for an ensemble of pendula. Suppose the distribution lies
between two phase space orbits of the pendulum, as sketched in Figure 1.4. Since
neighbouring points in phase space evolve with differing velocities they will separate
linearly in time and form filiments. Strictly speaking this does not lead to relaxation
until we consider a coarse graining procedure where phase space is averaged over cells
of size ∆Q ×∆P . This coarse grained distribution will relax to an equilibrium. A
similar phenomenon may occur in a system exhibiting chaos,

Violent relaxation, is not a single-body effect. In contrast to phase mixing, energy
transfer is mediated by the time-dependance of the mean-field potential. To understand
this consider a test particle moving in the dynamical background potential U(Q, t).
The energy of the test particle is conserved for a static potential, however, for a time-
dependent potential the energy of our test particle can change dE/dt = ∂U/∂t. In a
LRI-MB system the background potential becomes our mean-field potnetial U → Φ,
and there are many such test particles. Furthermore, the time-dependance of Φ(Q, t)
is modified based on the energy gained, or lost, by the full ensemble of test particles;
Φ mediates energy transfer, which modifies the dynamics, which in turn modifies the
dynamics of Φ.

How does this energy transfer lead to relaxation? Consider a gas of particles interacting
via an attractive interaction potential, whose mean-field pontential, for simplicity,
will be assumed to have a fixed shape but whose depth changes with time. Suppose
at t = 0 the distribution of energies is tightly peaked around E = 0, and that the
mean-field potential is negiligbly small. Attractive interactions will lead to a collapse
instability, and the mean-field potential will develop minimum, and its depth will
increase. As time proceeds, some of the particles will sit in the well of the mean-field
potential, without gaining energy; they will represent a large population with E < 0.
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Figure 1.4: Sketch of an initial phase space distribution for an ensemble of pendula
at early times (a) and (b), intermediate times (c), and late times (d). Due to the
asychronous orbits the distribution forms filaments over time tending towards a space-
filling curve that paints the entire space between the orbits. On a coarse grained scale
of resolution ∆Q×∆P this is well approximated by the microcanonical ensemble.
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Other particles will fall into the well, which grows deeper and deeper, these particles
will have large kinetic energies. After some time t, those collapsed particles will begin
escaping the well, but as they do so the system will become more homogeneous. The
well, therefore, will become less deep as these particles escape, and they will exit with
more kinetic energy than they entered with; these particles represent a population
of particles with E > 0. These kind of dynamics are illustrated in the HMF model
in Chapter 2. Thus, a time-varying potential can widen the distribution of particle
energies in much the same way that short-range collisions can in a conventional gas.

The key ingredient in violent relaxation is a time varying potential. During periods
of rapid change in the phase space distribution, energy can be re-distributed, and
in periods during with the dynamics are more calm, can relax via phase mixing (or
Landau damping). As we will see in Chapter 2 (and as was first elucidated in [13, 72]
c.f. Section 1.4.2) for a repulsive LRI-MB system such as the HMF model with ε > 0,
the argument outlined above does not lead to rapid violent relaxation because negative
energy states cannot be easily accessed. Nevertheless, a time varying potential can
still transfer energy, and, because this energy transfer is correlated with the dynamics,
this can lead to coherent formation of structures that are completely absent in an
equilibrium statistical treatment.

1.2.3 Quasi-Stationary States

As outlined above, LRI-MB systems described by the Vlasov equation have a variety of
relaxation mechanisms at their disposal, however, unlike a short-range system they do
not necessarily relax towards a Maxwell-Boltzmann (or otherwise “equilibrium”) steady
state. Instead the Vlasov equation has an infinite number of stationary states [11]
many of which are stable with respect to the Vlasov equation. Since on very long-time
scales (of O(N)) we expect collisional relaxation, the stablizers of the Vlasov equation
are often refered to as QSS. Unlike a short-range system, which of these states the
system is driven towards can be sensitive to initial conditions and cannot necessarily
be inferred from statistical considerations alone. Nevertheless there are some statistical
theories that can successfully describe the late-time behaviour of LRI-MB systems.

One such theory is Lynden-Bell statistics. Motivated by the incompressible nature of
Vlasov flow (df0/dt = 0) Donald Lynden-Bell conjectured that the late time limit of a
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self-gravitating system would tend towards a Fermi-Dirac like phase space density with
a temperature set by the mass of the distribution [11, 15]. This kind of generalized
statistics was later found to be broadly applicable to LRI-MB systems, although
noticeable disagreement with numerical simulations was noted for initial data that was
far from virialized [102]. In more recent years it has been discovered that Lynden-Bell
statistics can be modified to account for non-virial distributions with the resultant
statistics being known as core-halo statistics [11, 67]. Although inessential for the
rest of this thesis it is worth mentioning that the HMF model played a key role in
illustrating the physical mechanism underlying core-halo formation [66].

In certain cases certain dynamical features can drive a model towards a given QSS.
For example in the case of core-halo statistics, where the core refers to an ensemble of
low energy states that are well-described by Lynden-Bell statistics, and the halo to
an ensemble of high energy particles that are not. This high-energy halo is formed
dynamically due to residual fluctuations in the mean-field potential that resonantly
eject particles from the Lynden-Bell core, which removes kinetic energy from the
core, and damps the mean-field potential’s oscillations. Without these oscillations the
Lynden-Bell core stabilizes. In Section 1.4.2 we discuss a particular QSS of the HMF
model which is driven by rapid fluctuations in the mean-field potential, but whose
formation time is very slow.

1.3 Theory of Bose Gases

Gases are amongst the simplest many-body systems and understanding the role played
by weak interactions in these systems has often served as bedrock upon which to build
theories of generic, and often times more complicated, systems. Historically important
examples include Boltzmann’s H-theorem for a collisional quasi-ideal gas, the free
Fermi-gas and its extension to the theory of Landau Fermi-liquids, and non-neutral
plasmas which were responsible for the derivation of the Valsov equation. One further
example is given by dilute Bose gases. For short-ranged weak interactions a microscopic
theory can be constructed whose perturbative solution yields tremendous insight into
the formation of quasi-particles in quantum many-body system.

In this section we will review some key concepts underlying the theory of a Bose gas,
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and explain how the theory is extended to account for long-range interactions. This
will include a description of Bose-Einstein condensates (BECs) and Gross-Pitaevskii
theory, which can be interpreted as the classical field equations for a Bose gas. This
theory will be generalized to incorportate long-range interactions, and a brief review of
two famous applications of the generalized Gross-Pitaevskii equation (GGPE) equation,
one to Bose stars, and the other to dipolar BECs.

1.3.1 The Ideal Bose Gas

We will begin by considering the (grand-canonical) thermodynamics of an ideal non-
relativistic Bose-gas confined to a finite sized box of length L, of definite particle
number Ntot. The system is described by the Hamiltonian

Ĥ =
∫ L

0
ddx ~2

2m∇iΨ̂†(x)∇iΨ̂(x). (1.55)

Strictly speaking the correct ensemble for describing this system is the canonical
ensemble, however the system is short-range interacting, and we should expect that
the grand-canonical and canonical ensembles will give equivalent results. Being an
ideal Bose gas, if the system is described by the grand canonical ensemble with a
chemical potential µ, then the average occupation number of each momentum mode k
is given by

ngc(k, T, z) = 1
z exp[βE]− 1 , (1.56)

independent of dimension, where z = eβµ is the fugacity. The chemical potential
µ is both restricted to be negative µ ≤ 05, and to be self consistent such that the
grand-canonical average of the total particle number agrees with the total number of
particles 〈N〉gc = Ntot. Mathematically this is expressed as

∑
k

n(k, T, z) = Ntot . (1.57)

5The chemical potential is defined as µ = ∂E/∂N at fixed entropy and volume. Naively adding a
particle will increase the entropy and energy of the system, and thus to keep the entropy constant
the energy must decrease.
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If the grand-canonical ensemble is a good description of the system then n(k, T, µ) =
ngc(k, T, µ), and the chemical potential can be found by solving

∑
k

ngc(k, T, z) = Ntot . (1.58)

At sufficiently low temeperatures, solutions to this equation are not compatible with
the constraint that µ ≥ E0. Notice that ngc(k, T, z) is a monotonically increasing
function of z for all values of k. Therefore, if z is decreased, the sum on the left-hand
side of Equation (1.58) will also decrease. Since z ∈ (0, 1]), if

∑
k

ngc(k, T, z = 1) ≥ Ntot , (1.59)

then there will always exist a fugacity z′ < 1 such that ∑k ngc(k, T, z′) ≥ Ntot If,
instead, for z = 1 we find that the sum over all states is less than the total number of
particles in the gas ∑

k

ngc(k, T, z = 1) < Ntot , (1.60)

then no value of the fugacity (or chemical potential) can consistently describe our gas
of Ntot particles within the grand-canonical ensemble. This implies that the number
distributions are not described by the grand-canonical ensemble n(k, T, z) 6= ngc(k, T, z).
Rather, in addition to the thermal population of states, there must be an O(N)
contribution arising from a macroscopic occupation of a single particle state, i.e.

n(k, t, z) = n0δ(k) + nex(k, T ) (1.61)

where nex(k, T ) = ngc(k, T, z = 1).

To make our discusion more explicit we can consider the L → ∞ limit in three
dimensions for a cubic box of length L. Dividing both sides of Equation (1.57) by
L3, the sum tends towards an integral and we find that the total number of particles
per unit volume ntot = Ntot/L

3, in the grand-canonical ensemble for z = 0 is given by
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[103]

ntot(z = 0) = 4π
(2π)3

∫ ∞
0

dkk2ngc(k, T, z = 0)

= ζ(3
2)
(
mkBT

2π~2

)3/2 (1.62)

where ζ is the Riemann-Zeta function. Thus, for a fixed number density ntot this
identifies a critical temperature

kBTc = 2π~2

m

[
ntotζ(3

2)
]3/2

(1.63)

such that for temperatures below the critical temperature T < Tc the condensate
franction scales as

n0 = ntot

[
1−

(
T

Tc

)3/2]
. (1.64)

The above discussion can be generalized to an arbitrary dimension, or instead to an
arbitrary density of states g(E). In this case Equation (1.62) becomes

ntot(z = 0) =
∫ ∞

0
dEg(E)ngc(k, T, z = 0) . (1.65)

For a density of states g(E) = CαE
α, we find

ntot(z = 0) = CαΓ(α)ζ(α)(kBT )α , (1.66)

with the case of d = 3 corresponding to α = 3/2. Importantly, in the limit that α→ 1+

(i.e. taking the limit from above), the right-hand side diverges since ζ(1+ε) ∼ 1/ε+O(1).
Thus, as α→ 1 the critical temperture tends to zero. This is a reflection of the Mermin-
Wagner theorem. A BEC way be interpreted as a spontaneous breaking of the U(1)
symmetry (Ψ→ eiθΨ) of Equation (1.55), and this is formally equivalent to the O(2)
symmetry in the XY model Equation (1.34), In the next section we will see this same
result re-appear in the presence of short-ranged repulsive interactions.
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1.3.2 The Dilute Bose Gas

Real Bose gases are not ideal, for instance a gas of hydrogen (or Lithium, or Rubidium)
interacts via the van der Waals interaction as well as other short-range forces. If,
however, the gas is dilute then collisions will be relatively rare and this justifies
neglecting the interactions. In fact, the dilute Bose gas can be solved via perturbation
theory, as demonstrated by Bogoliubov [104] in 1947 and this solution allows us to
critically evaluate the validity of the dilute gas approximation a posteori.

We are, in principle, interested in studying the following Hamiltonian

H =
∫

ddx ~2

2m∇iΨ̂†(x)∇iΨ̂(x) + 1
2

∫
ddxddyΨ̂†(y)Ψ̂†(x)Ψ̂(x)Ψ̂(y)V (x− y) (1.67)

The perturbative solution to the many-body problem for this Hamiltonian may be
obtained diagramatically via a resummation of an infinite series of Feynman diagrams
[105]. Such an approach, while intellectually satisfying, is equivalent to using an
effective Hamiltonian; this is the approach we will outline below.

We may construct an effective Hamiltonian capable of reproducing all of the behaviour
of Equation (1.67) when it is applied within its regime of validity; namely low temper-
atures, low energies, long wavelengths, and low densities. The effects of interactions
can be mimicked, at leading order in a long-wavelength expansion, by an effective
contact interaction [106]. This may be phrased in terms of effective field theory [107]
as has been outlined in detail for dilute Bose gases [108–112]. The first two terms in
the low energy expansion are given by

H =
∫

ddx ~2

2m∇iΨ̂†(x)∇iΨ̂(x) + g

2

∫
ddxΨ̂†(x)Ψ̂†(x)Ψ̂(x)Ψ̂(x) . (1.68)

This Hamiltonian must reproduce all of the physics of Equation (1.67), order-by-order
in perturbation theory, and this requirement can allow us to determine g. The simplest
such matching calculation can be found in the two-body sector. Working to leading
order in g one finds [103, 113]

g = 4π~2a

m
for d = 3 , (1.69)
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where a is the three-dimensional scattering length that can be measured in a two-
body scattering experiment. The algebraic relationship between g and the scattering
length varies with dimension, however the requirement is always that scattering length
obtained using the first order Born approximation for Equation (1.68) reproduces the
scattering length obtained from the full two-body potential in Equation (1.67). For
the rest of this section we will use Equation (1.68) with the understanding that it is
an effective Hamiltonian valid at low energies and long-wavelengths.

1.3.3 Bogoliubov Theory

To study the influence of interactions on a BEC, it is convenient to re-express Ψ̂ in
the Fourier basis

Ψ̂(x) =
∑

k

1√
V

eik·xâk (1.70)

which leads to the momentum-space representation of Equation (1.68)

H =
∑

k

~2k2

2m â†kâk + g

2V
∑

k,q,p
â†p+q−kâ

†
kâqâp (1.71)

For a condensed state |Ω〉, the expectation value 〈Ω| â†0â0 |Ω〉 ∼ O(N) while all other
operators’ expecation values 〈Ω| âk 6=0 |Ω〉 ∼ O(1). It is therefore convenient, to replace
â0 by

√
N0 which is equivalent to working with a set of coherent states6. This the

leads to

H =
∑

k

~2k2

2m â†kâk + gN2
0

2V + gN0

2V
∑

k
â−kâk + â†−kâ

†
k + 4â†kâk +O

(
n0/

√
N0

)
(1.72)

6A Bogoliubov theory can also be constructed for Fock states of definite total particle number N .
Although technical details differ, the physical conclusions are the same [114].

33



McMaster University – Department of Physics & Astronomy – Ryan Plestid – Ph.D. Thesis

trading N0 for N = N0 +∑
k 6=0 â

†
kâk we find

H =
∑

k

~2k2

2m â†kâk

+ 1
2g
g
(
N2 − 2N ∑

k â
†
kâk

)
2V + 1

2gn
∑

k

(
â−kâk + â†−kâ

†
k + 2â†kâk

)
+O

(√
N
)

= gN2

2V +
∑

k

(
~2k2

2m + gn

)
â†kâk + 1

2gn
∑

k

(
â−kâk + â†−kâ

†
k + 4â†kâk

)
,

(1.73)

where n = N/V is the density. this can be re-arranged as

H = gN2

2V +
∑

k

(
~2k2

2m + gn

)
â†kâk + 1

2gn
∑

k

(
â−kâk + â†−kâ

†
k

)
. (1.74)

This Hamiltonian can be diagonalized by introducing new creation and annihilation
operators via a Bogoliubov transformation

bk = cosh θkâk − sinh θkâ
†
−k (1.75)

where θk satisifies
coth 2θk = ~2k2

2mgn + 1 (1.76)

Using this transformation Equation (1.71) can be re-expressed as

H = E
(0)
b +

∑
k
~ωb(k)b̂†kb̂k (1.77)

where

~ωb(k) =

√√√√~2k2

2m

(
~2k2

2m + gn

)
, (1.78)

and E(0)
b is the energy of the Bogoliubov vacuum |0〉b (satisfying b̂k |0〉b = 0).
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1.3.3.1 Depletion of the Condensate

Notice that the Bogoliubov vacuum is not the same as the “atomic” vacuum,

âk |0〉b =
(
b̂k cosh θk + b̂†−k sinh θk

)
|0〉b = sinh θk |−k〉 6= 0 . (1.79)

therefore, the ground state of Equation (1.77) is not a macroscopically occupied
eigenstate of â†0â0, nevertheless, provided that the average value occupation of this
state is macroscopic [i.e. 〈â†0â0〉 ∼ O(N)], our assumption is justified. We can
therefore test if our approach is self-consistent by computing the quantum depletion of
the condensate at zero temperature. This is found by considering the occupation of
all modes other than â†0 |0〉a. At T = 0 this is given by

∑
k 6=0
〈0| â†kâk |0〉b =

∑
k 6=0

sinh2 θk 〈0| b̂kb̂
†
k |0〉b =

∑
k 6=0

sinh2 θk . (1.80)

while at finite temperature, where 〈b̂†kb̂k〉gc = ngc(k, T, z) we find instead

∑
k 6=0
〈â†kâk〉gc =

∑
k 6=0

ngc(k, T, z)
(
cosh2 θk + sinh2

θ k
)

+ sinh2 θk (1.81)

with the added term, proportional to ngc(k, T, z), accounting for thermal depletion of
the condensate. We must confirm the validity of our Bogoliubov approach a posteori
by checking that the condensate fraction is still macroscopic [i.e. O(N)]. Using

cosh2 θk =
~2k2

2m + gn+ ~ωb(k)
2~ωb(k) (1.82)

sinh2 θk =
~2k2

2m + gn− ~ωb(k)
2~ωb(k) (1.83)

we can evaluate Equations (1.80) and (1.81) explicitly. For d = 3 focussing on just
Equation (1.80) in the continuum limit we find [113]

nex(T = 0) = 4π
(2π)3

∫ ∞
0

dkk2
~2k2

2m + gn− ~ωb(k)
2~ωb(k) =

√
64na3

9π (1.84)

This introduces us to an important fact. If na3 � 1 the condensate is only slightly
affected by the presence of interactions and we have validated our assumption of a
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macroscopic condensate a posteori. If instead na3 & 1 then our approach is not self-
consistent, interactions destroy the condensate, and our naive pertrubative approach
is not sufficent.

By considering the same calculation in lower dimensions we can also learn something
interesting about the behaviour of our gas. At low values of k both sinh2 θk and cosh2 θk

areO(1/k) as k → 0 as is the thermal number density ngc(k, T, z) ∼ O(1/k). Therefore,
for T 6= 0, the thermal depletion of the condensate has a long-wavelength contribution
scaling as

∫
dk kd−1 × 1

k2 which is divergent for d ≤ 2. This is a manifestation of
the Mermin-Wagner theorem, and in fact, Equation (1.68) can be re-written in a
density-phase representation that is formally equivalent to the XY-model. Similar
considerations show that the quantum depletion of the condensate scales as

∫
dk kd−1× 1

k

such that in one-dimension, even at zero temperature, the condensate is destroyed.

1.3.3.2 Gross-Pitaevskii equation

When the depletion of the condensate is small (T � Tc and na3 � 1), we can use a
classical approximation to study Equation (1.68) [103, 113]. The resultant equation of
motion is known as the Gross-Pitaevskii equation (GPE) and is given by

i~∂tΨ = − ~2

2m∇
2Ψ + g|Ψ|2Ψ . (1.85)

Importantly, it is not the bare potential V (x1 − x2) of Equation (1.67) that appears
in Equation (1.85). This is because if one were to study the classical field limit of
Equation (1.67) one would neglect short-distance correlations. Using Equation (1.68)
we include these short-range correlations implicitly in the coupling g [113].

Stationary states of the GPE correspond to minimizers of the energy functional

E [Ψ] =
∫

ddx
(
~2

2m |∇Ψ|2 + g

2 |Ψ|
4 − µ|Ψ|2

)
(1.86)

where µ is the chemical potential of the gas. These stationary states can be written
as Ψ(x, t) = e−iµt/~ψ(x). The trivial stationary state of the GPE is homogeneous, i.e.
ψ(x) = 1/

√
V , and minimizes the energy Equation (1.86).
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Given a stationary state of Equation (1.85), its stability can be investigated by a
linearization procedure.

Ψ(x, t) =
[
ψ(x) +

∑
α

Uα(x)e−iωαt + V ∗α (x)eiω∗αt
]
e−iµt/~ (1.87)

Working to linear order in Uα and Vα then leads to the coupled equations

ωαUα =
[
− ~2

2m∇
2 + 2g|ψ|2 − µ

]
Uα + gψ2Vα (1.88a)

− ωαVα =
[
− ~2

2m∇
2 + 2g|ψ|2 − µ

]
Vα + gψ2Uα , (1.88b)

which gives the normal modes and frequencies of excitations about a background
profile. Dynamical stability can be checked by studying the spectrum of eigenvalues
{ωα}. If any eigenvalue has a non-vanishing imaginary part then the stationary state
is not stable.

In addition to the ground state, there can also be non-trivial spatially varying solutions.
The type of solution, stability, and general properties depends sensitively on dimen-
sionality. For example, for d = 2, vortices can form, while in d = 1 Equation (1.85)
is an integrable equation and supports solitons. For g < 0 Equation (1.85) supports
bright solitons. In this case attractive interactions pull the particles together, and
the cost of gradient energy pushes them apart. This can be easily understood in the
density-phase representation where Equation (1.85) takes the form

∂tρ+ ∂x(ρv) = 0 (1.89a)

∂tv + v∂xθ = −∂x
[
−|g|ρ+ ~2

2m
∂2
x

√
ρ

√
ρ

]
(1.89b)

where v = ∂xS. The bracketed expression contains two terms: first, −|g|ρ (the non-
linearity) acts as a self-consistent potential; second, the Bohmian potential (whose
gradient is often called the quantum pressure) reflects the energetic cost of gradients in
the density profile. The competition between the attractive density-density interaction
and the quantum pressure is what determines the shape of a bright soliton whose
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profile is given by [113]
ρ(x) = n0

cosh2
(
x
ξ

) , (1.90)

with ξ =
√

2m|g|n0, often called the healing-length, being the natural length scale of
the GPE. This result can be generalized to a moving solitary wave by performing
a Galilean boost ψ(x) → eikxψ(x − vt) where k = mv/~. In this moving frame the
density is given by

ρ(x, t) = n0

cosh2
(
x−vt
ξ

) . (1.91)

1.3.4 Bose Gases with Long-Range Interactions

A system of Bosons interacting via a long-range potential is very similar to a short-
range interacting one. It is also amenable to a mean-field treatment, and much of the
machinery of the previous section carries over verbatim.

The key difference is that we do not introduce an effective Hamiltonian as we did going
from Equation (1.67) to Equation (1.68). This is because for the short-range interacting
systems we could re-package any short-distance correlations, and their influence on
long-distance physics, into an effective coupling constant g. For a long-range potential
this is no longer sensible since it is precisely the long-range effects of the potential
that we wish to consider. In similar systems (such as dipolar Bose gases [115] and
self-gravitating Bose stars [116, 117]), it has long been the standard of the community
to work directly with the bare interaction potential .

This can be seen directly if one attempts to match scattering amplitudes in the two-
body sector, because scattering amplitudes for a long-range potential are not analytic
at k = 0 [118] and this inhibits a Taylor series expansion in momentum space. This
problem of non-analytic scattering amplitudes occurs even for “short-ranged” van der
Waals forces [119].

1.3.4.1 Bogoliubov Theory

If a large condensate fraction exists a Bogoliubov approach is still justified, with the
only modification being that we must keep the structure of the long-range interaction
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in our description. Once again we must check whether the condensate is depleted by
interactions a posteori. Taking Equation (1.71) and promoting g → gq we have

H =
∑

k

~2k2

2m â†kâk + 1
2V

∑
k,q,p

gqâ
†
p+qâ

†
k−qâpâp . (1.92)

Assuming a uniform condensate we find, in direct analogy with Equation (1.74)

H = g0N
2

2V +
∑

k

(
~2k2

2m + gkn

)
â†kâk + 1

2
∑

k
gkn

(
â−kâk + â†−kâ

†
k

)
. (1.93)

Thus, all of the equations for the dilute Bose gas carry through, but with the con-
tact interaction being replaced by the bare interaction ( gδ(x − x′) → V (x − x′) =∑

k gkeik·(x−x′) ). We may therefore calculate the quantum depletion by using Equa-
tion (1.80) and making the aforementioned substitution

nex(T = 0) = 4π
(2π)3

∫
dkk2

~2k2

2m + gkn− ~ω̃b(k)
2~ω̃b(k) (1.94)

where we have introduce the long-range Bogoliubov frequencies

~ω̃b(k) =

√√√√~2k2

2m

(
~2k2

2m + gkn

)
. (1.95)

Foldy evaluated this integral for the Coulomb potential gk = 4πe2/k2 and found [120]

nex(T = 0) ∝
(

1
na3

B

)1/4

(1.96)

with aB the Bohr radius. Thus for a long-range interacting gas, the depletion of the
condensate vanishes in the high-density limit.

1.3.4.2 Generalized Gross-Pitaevskii equation

Provided a gas is sufficiently cold and quantum fluctutations do not deplete the
condensate, we may reasonably expect a mean-field theory with the bare potential,
as opposed to an effective one, to provide a good description of LRI-MB system
of indistinguishable bosons; this expectation has been demonstrated rigourously for
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self-gravitating bosons [89], the charged Boson gas [121], and for dipolar bose gases
[122]. This equation, often called a Generalized GPE (GGPE) is inherently non-local
and takes the form

i~∂tΨ = − ~2

2m∇
2Ψ + Φ(x, t)Ψ (1.97a)

Φ(x, t) =
∫

ddxV (x− x′)|Ψ(x′, t)|2 (1.97b)

where Φ is referred to as the mean-field potential. Famous equations of this form
include the GGPE for a dipolar Bose gas, where [115, 122]

Vdd(x− x′) = 1− 3 cos2 θ

4π|x− x′|3
(1.98)

where cos θ = x · x′/(|x||x′|), and the Schrödinger-Poisson (or Schrödinger-Newton)
equation [82, 89, 117] where

Vdd(x− x′) = G

|x− x′|
. (1.99)

1.4 The Hamiltonian Mean-Field Model

Having outlined the most important features of LRI-MB systems, and reviewed the
theory of a Bose gas, we are now in a position to discuss the HMF model’s history
in context. Originally proposed as a simple, solvable, toy model, it has shown a
remarkable ability to capture and elucidate key features present in a wide range of
LRI-MB systems.

Classically the model may be viewed as describing either a gas of particles confined to
a periodic domain, or as an all-to-all rotor model; these two pictures are illustrated in
Figure 1.5. The Hamiltonian is given by

H =
∑
i

1
2L

2
i + ε

N

∑
i<j

cos(θi − θj) . (1.100)

It is convenient to note that the Hamiltonian can be re-written in terms of the average
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(a) (b)

Figure 1.5: Two interpretations of the HMF model. We may think of a lattice of rotors
interacting via an infinite-range XY interaction (a), or equivalently of particles on a
ring interacting via a pair-wise cosine potential (b).

magnetization M = 1
N

∑
i(cos θi, sin θi)T

H =
∑
i

1
2L

2
i + 1

2NεM
2 . (1.101)

The motivation for proposing the HMF model was to be able to find a model that
was exactly solvable, but could also be easily simulated on a computer, and that
isolated features of long-range interactions. This seems obvious in the context of
this thesis, but prior to the mid-90s almost all of the interest on LRI-MB systems
centred around self-gravitating fluids, and non-neutral plasmas, both containing a
Coulomb-like interaction. This has the added complication of including a short-range
singularity that can complicate numerics, and potentially result in “exotic” behaviour
that is not cause by LRI.

The HMF model’s greatest strength has been its ability to bridge the divide between
dynamics and statistical mechanics. Its numerical tractability has allowed for large
scale (and consequently trust worthy) molecular dynamics simulations that can be
performed on a laptop. This has allowed for direct tests of microcanonical predictions,
investigations into out-of-equilibrium phase transitions, and from virialized “galactic”
dynamics.

In this section, we will focus on three existing studies of the HMF model. First we
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will outline the earliest works on the model’s canonical phase diagram. Then we will
discuss a peculiar dynamical property of the HMF model, wherein it can be driven
away from equilibrium. Finally, we will outline work done in the early 2010s on the
quantum HMF model [82, 83]. This will set the stage for the rest of the thesis.

1.4.1 Canonical Phase Diagram

The HMF model can be solved exactly in the N → ∞ limit [5, 63]. For ε > 0 the
model’s canonical phase diagram does not exhibit a phase transition. Thus we will
consider the case of ε < 0 in this section. We begin by writing the partition function
including an external field B

Z =
∫ N∏

i=1
dθidpi exp[−β(H −NB ·M)] (1.102)

the integration over the conjugate momenta can be performed easily. Then, using
the magnetization representation of the Hamiltonian Equation (1.101) the partition
function can be decoupled via the identity

e−β|ε|NM2/2 = const×
∫

dy1dy2 exp
[
−N y2

2β|ε| + M · y
]
. (1.103)

This then allows all of the integrals over the angular varibles to be carried out (since
they have all be decoupled) leaving only an integral over y1 and y2. The partition
function is then (up to irrelevant constant pre-factors)

Z =
∫

dy1dy2 exp
{
−N

[
y2

2β|ε| − I0(y + B)
]}

. (1.104)

where I0(z) =
∫ 2π

0 exp[z cos θ] is the modified Bessel funciton of order zero. This
integral can be evaluated asymptotically as N →∞ using Watson’s Lemma yielding

βf = lnZ
N
∼ βf0 + inf

y

[
y2

2β|ε| − ln I0(|y + B|)
]

+O
( 1
N

)
, (1.105)
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then, because I0(z) is monotonically increasing, this is always minimized when y is
parallel to B so we find.

βf ∼ βf0 + inf
y

[
y2

2β|ε| − ln I0(y +B)
]

(1.106)

For ε > 0 (repulsive interactions) the minimizing value of y is y? = 0 for all temperatures
at zero field B and there is no phase transition; however, for ε < 0 (attractive
interactions) this is no longer true. In this case the minimizer, y?, solves

I1(y? +B)
I0(y? +B) −

y?
β|ε|

= 0 (1.107)

Giving

βf ∼ βf0 +
[
y2
?

2β|ε| − ln I0(y? +B)
]
. (1.108)

The average magnetization is given by 〈|M|〉 = β∂F/∂B evaluated at B = 0, which
gives

〈|M|〉 = I1(y?)
I0(y?)

= y?
β|ε|

. (1.109)

The solution to Equation (1.107) is y? = 0 for βε < 2, whereas for βε ≥ 2 a new
solution appears at y? 6= 0. This results in the magnetization undergoing a second-order
phase transition since 〈|M|〉 = y?. Thus, the HMF model is exactly solvable, and
its equilibrium phase diagram exhibits a non-trivial phase transition for attractive
interactions.

As emphasized in the introduction, different ensembles can yield different results for
a LRI-MB system. In the HMF model, this turns out not to be the case, and the
canonical ensemble is equivalent to the microcanonical one. In the microcanonical
ensemble the phase transition is driven by the internal energy per particle u which
can be related to the temperature via

u = 1
N

∂ lnZ
∂β

= T

2 −
|ε|
2 M2 . (1.110)

This allows for the canonical ensembles predictions to be compared directly with
molecular dynamics simulations which can be carried out at fixed energy, and their
long-time behaviour compared to our equilibrium predictions.
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1.4.2 Dynamical Formation of Bi-Clusters

From the HMF model’s inception it was noted that molecular dynamics simulations
showed a propensity towards the formation of a bi-cluster (composed of two nearly
Dirac-delta-like density peaks spaced on opposite sides of the ring). This behaviour
occus for repulsive interaction (ε > 0), for initial conditions very close to thermodynamic
equilibrium (i.e. homogeneous density and vanishing velocity) [63].

As was discussed in Section 1.2.1, the dynamics of the HMF model can be expected to
evolve under the Vlasov equation, and to be driven towards a QSS. The thermodynamic
equilibrium is certainly one such state, and given that we are considering initial
conditions very close to equilibrium, we expect that the system will relax towards
thermodynamic equilibrium, or at least stay nearby, even when its dynamics are
governed by the collisionless relaxation in the Vlasov equation.

Antoni and Ruffo [63] studied this question by preparing water bag initial data, consist-
ing of a box-distribution of velocities f(θ, L, 0) = Θ(v − |L|)ρ(θ), with ρ(θ) generally
taken to be very slowly varying. For v > 0 the expectation of quasi-equilibrium dynam-
ics is borne out, and the state simply fluctuates around the equilibrium distribution.
Shockingly, however, for smaller values of v the system is driven far away from equilib-
rium forming a bi-cluster. This is energetically possible because, as emphasized by
Equation (1.101), the interaction energy vanishes provided that the magnetization does
as well. Thus, a bi-clustered state has very low energy, since 〈M〉 = 0. Nevertheless,
bulk quantities, such as 〈 1

N

∑
i cos 2θi〉 differ substantially from their thermodynamic

predictions.

The first analytic understanding of this phenomenon came half a decade later [13, 72]
by studying the Vlasov equation in the “zero-temperature” limit corresponding to an
infinitesimally thin spread in velocities. In this case the phase space distribution can
be approximated (at early times) as f(θ, L, t) = ρ(θ, t)δ(L− v(θ, t)). This leads to a
set of Euler equations (in reduced variables)

∂tρ+ ∂θ(ρv) = 0 (1.111a)

∂tv + v∂θv + ∂θΦ = 0 (1.111b)
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Φ(θ, t) =
∫ 2π

0
dθ′ cos(θ − θ′)ρ(θ′) . (1.111c)

Perturbing around a homogeneous density distribution, these equations can be lin-
earized and solved in a basis of Fourier modes. It is found that only the k = ±1 Fourier
components oscillate, with a frequency given by ωpl = 1/

√
2. This linear analysis does

not reveal the origin of the bi-clusteron its own, but instead is a building block that
can be used to construct an analysis which does explain the late-time bicluster.

Using multi-scale methods, and time-averaging over the fast plasma oscillations, an
effective equation that governs the slow evolution of the density. For an initial departure
from equilibrium of size A, the time scale on which the bi-cluster forms is tbc ∼ O(1/A).
We therefore introduce a slow timescale, T such that Tbc ∼ O(1). We therefore define
T = At. Then, the effective equation governing the slow time dynamics is

∂T v + v∂θv + ∂θ

[
ωpl

8 cos2 θ
]

= 0 . (1.112)

The origin of the bi-cluster is now clear. The linearized dynamics lead to fast oscillations,
that, when time averaged, result in a shallow focusing potential. On very long-time
scales the effect of the weak focusing potential is to drive the system towards a bi-
clustered state. The mean-field potential Φ drives rapid linear dynamics which result
in an energy exchange, slowly converting small amounts of potential energy into kinetic
energy. The systems’ dynamics prefer a bi-clustered state, despite being extremely
close to the equilibrium distribution initially. This dynamical process is similar to
violent relaxation in that a rapidly varying mean-field potential allows the system to
transfer energy. Unlike for attractive interactions however, the time scale of energy
transfer is much longer than the time scale governing the dynamics of the underlying
mean-field potential Φ.

The formation of the bi-cluster is interesting not only because it shows marked departure
from equilibrium behaviour, but also because it is persistent. The bi-cluster reoccurs
and its lifetime lengthens upon each recurrence. In fact, it can be shown that if
an effective time-averaged Lagrangian is constructed, in complete analogy with the
multi-scale approach outlined above, that the bi-cluster is the equilibrium state of the
associated effective time-averaged Hamiltonian. Thus, the bi-cluster is a state that
the equilibrium state of an emergent Hamiltonian different than the HMF model.
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1.4.3 The Quantum HMF Model

The bosonic quantum HMF model can be written, in second quantized notation, as
[82]

HBose =
∫

dθΨ̂†
(
− ~2

2mR2∂
2
θ

)
Ψ̂ + ε

N

∫
dθdθ′Ψ̂†(θ)Ψ̂†(θ′)Ψ̂(θ′)Ψ̂(θ) cos(θ − θ′)

(1.113)
for fields satisfying the bosonic commutator identity

[Ψ̂(θ), Ψ̂†(θ′)] = δ(θ − θ′) (1.114)

or for fermions

HFermi =
∫

dθΦ̂†
(
− ~2

2mR2∂
2
θ

)
Φ̂ + ε

N

∫
dθdθ′Φ̂†(θ)Φ̂†(θ′)Φ̂(θ′)Φ̂(θ) cos(θ − θ′)

(1.115)
with fields satisfying the fermionic anti-commutator relation

{Φ̂(θ), Φ̂†(θ′)} = δ(θ − θ′) . (1.116)

For the remainder of this thesis we will focus on HBose. Both Equations (1.113)
and (1.115) were introduced and studied by Chavanis [82, 83]. He focused on the
equilibrium properties of the HMF model drawing close analogy with the theory of
Bose stars. A first step in studying Equation (1.113) is to note that the Hamiltonian
is governed by one dimensionless ratio χ = ~/

√
mR2|ε|. This governs the relative

strength of the kinetic energy relative to the potential energy. Chavanis studied the
GGPE associated with Equation (1.113) both with and without contact interactions
(adding a term proportional to

∫
dθ|Ψ|4 to the Hamiltonian) , written in terms of χ

this is given by
iχ∂tΨ = −χ

2

2 ∂
2
θΨ + sgn(ε)Φ(θ, t)Ψ (1.117a)

Φ(θ, t) =
∫

dθ′|Ψ(θ′, t)|2 cos(θ − θ′) (1.117b)

Chavanis was able to numerically solve these equations to find the ground state and
found that for for attractive interactions (i.e. sgn(ε) = −1) if χ >

√
2 then the
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ground state is a homogenous gas, whereas for χ <
√

2 the condensate wavefunction
develops a non-trivial spatial variation. This is indicative of spontaneous symmetry
breaking, and suggests that the HMF model undergoes a quantum phase transition.
Chavanis was able to numerically solve for the magnetization (in this context defined
as M =

∫ 2π
0 |Ψ(θ)|2 cos θ) as a function of χ.

In addition to studying the lowest energy state, Chavanis also studied linearized
dynamics about the homogeneous phase. For this purpose, he included not only
the long-range interaction, but also short-range interactions by adding a g|Ψ|2 to
Equation (1.117a). The normal mode frequencies are then given by

ω(k) = ω̃b(k) (1.118)

where ω̃b(k) is given by Equation (1.95) with g(k) = sgn(ε)
2 δ|k|,1 + g

2π . In the limit of
g → 0 where we recover the HMF model this gives

ω2(k) =


(

sgn(ε)
2 + χ2

2 k
2
)
χ2

2 k
2 if k = ±1

χ4

4 k
4 else

. (1.119)

This result agrees with the linearized analysis of the Euler equations for the classical
HMF model in the zero-temperature limit. This is not surprising since by using the
density-phase representation, the GGPE for the HMF model can be re-written as

∂tρ+ ∂θ(ρv) = 0 (1.120a)

∂tv + v∂θv + ∂θΦ = −∂x
[
χ2

2
∂2
x

√
ρ

√
ρ

]
(1.120b)

Φ(θ, t) =
∫ 2π

0
dθ′ cos(θ − θ′)ρ(θ′) . (1.120c)

which are identical to the classical Euler equations but with the added quantum
pressure term.
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Summary

LRI-MB systems are different than those with short-range interactions. They have
unique features that modify both their statistical and dynamical behaviours. A system
with LRI is not restricted by the Mermin-Wagner theorem, and can spontaneously
break symmetries in low-dimensions; a related topic is the improved accuracy of
mean-field theory for LRI-MB systems.

The HMF model is a prolific toy model that can be used to investigate and elucidate
many novel aspects of long-range interacting systems. Its dynamics display violent
relaxation, and it is known to exhibit a spontaneously broken continuous symmetry
providing a concrete example of “violating” the Mermin-Wagner theorem. The quantum
limit of the HMF model has been seldom studied, with only its equilibrium physics
(as described by mean-field theory) having been given significant attention.

In the rest of this thesis we present three different studies of the bosonic HMF model.
In Chapter 2 we extend the theory of the bi-cluster the quantum regime by studying
the HMF model’s GGPE. In Chapter 3 we find exact solutions to the same GGPE.
We classify an infinite set of stationary states, and identify them as solitons that are
stabilized by long-range interactions. Finally, in Chapter 4 we use the exact solutions of
Chapter 3 to go beyond mean-field theory and study many-body quantum fluctuations.
We are particularly interested in understanding whether symmetry breaking persists
at zero temperature.
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“I consider the basic urge for for disequilibrium in self-
gravitating systems to sound the death knoll of Boltzmann’s
hypothesis....it is probable that no equilibrium can exist
even in theory!”

—Donald Lynden-Bell CHAPTER 2
Quantum Violent Relaxation

Ryan Plestid, Perry Mahon, and D.H.J. O’Dell
Violent relaxation in quantum fluids with long-range interactions
Phys. Rev. E 98, 012112; doi: 10.1103/PhysRevE.98.012112
Copyright 2018 by the American Physical Society

As emphasized in Section 1.2, LRI-MB systems approach equilibrium in a very different
way than short-range interacting systems. Rather than relaxation being driven by
collisions, LRI-MB systems have a variety of relaxation mechanisms at their disposal.
In this paper we study the dynamics of the HMF model’s GGPE paralleling previous
studies in the classical regime. We focus on initial conditions that are focusing on
initial conditions that are nearly homogeneous with small sinusoidal variations in
their velocity profiles (or equivalently with weak phase gradients). We focus primarily
on the hydrodynamic formulation of the GGPE, as expressed in Equations (1.120a)
to (1.120c), to made broader contact with other quantum fluids.

In the case of attractive interactions we study the HMF model’s Jeans instability and
observe what is essentially violent relaxation (as it is known within the astrophysical
community). In contrast, for repulsive interactions we focus on the bi-cluster reviewed
in Section 1.4.2. In both cases we find that the semi-classical limit can be understood
in terms of catastrophe theory, the background of which is explained in a self contained
manner in Sec. VII of the paper.

Our major focuses are as follows
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• How can a semi-classical theory of trajectories be used to understand the quantum
dynamics?

• Does the attractive case display behaviour remniscent of classical violent relax-
ation? How do quantum effects modify the dynamics?

• Do the bi-clusters of Section 1.4.2 form in the quantum HMF model? Are the
classical model’s biclusters diffused by quantum pressure?

• Does the χ→ 0 limit commute with the t→∞ and N →∞ limits?
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Violent relaxation is a process that occurs in systems with long-range interactions. It has the peculiar feature of
dramatically amplifying small perturbations, and rather than driving the system to equilibrium, it instead leads to
slowly evolving configurations known as quasistationary states that fall outside the standard paradigm of statistical
mechanics. Violent relaxation was originally identified in gravity-driven stellar dynamics; here, we extend the
theory into the quantum regime by developing a quantum version of the Hamiltonian mean field (HMF) model
which exemplifies many of the generic properties of long-range interacting systems. The HMF model can either
be viewed as describing particles interacting via a cosine potential, or equivalently as the kinetic XY model with
infinite-range interactions, and its quantum fluid dynamics can be obtained from a generalized Gross-Pitaevskii
equation. We show that singular caustics that form during violent relaxation are regulated by interference effects
in a universal way described by Thom’s catastrophe theory applied to waves and this leads to emergent length
scales and timescales not present in the classical problem. In the deep quantum regime we find that violent
relaxation is suppressed altogether by quantum zero-point motion. Our results are relevant to laboratory studies
of self-organization in cold atomic gases with long-range interactions.

DOI: 10.1103/PhysRevE.98.012112

I. INTRODUCTION

Quantum many-body (QMB) systems with long-range in-
teractions (LRI) are increasingly being realized in laboratory
experiments with cold atomic and molecular gases where
inherently long coherence times are suited to investigating
dynamics. Examples include atomic Bose-Einstein conden-
sates (BEC) with magnetic dipole-dipole interactions [1–12],
cold polar molecules [13–18], trapped ions [19–22], Rydberg
atoms [23–30], and atoms inside high-finesse optical cavities
which interact via the cavity modes that extend over the entire
cavity [31–36]. There are also new approaches in the pipeline,
such as using optical waveguides or photonic band gap crystals
to engineer electromagnetic modes and hence mediate highly
controlled long-range interatomic interactions [37–39].

This progress in trapped atomic and molecular systems has
fostered broad interest in LRI both in and out of equilibrium
[40–50]. While the focus has been on spin and Hubbard
models, the versatility of these systems also allows for new
regimes not seen in traditional condensed matter systems,
including gravitylike attractive 1/r interactions [51–53], and
also cosine-type interactions that occur between atoms in
optical cavities [54–62].

Historically, the motivation for studying LRI has come from
astrophysics and plasma physics: the range of the gravita-
tional and Coulomb interactions, respectively, are such that
all particles experience a common, essentially mean field,
potential. In nonequilibrium situations, this potential becomes

*plestird@mcmaster.ca
†dodell@mcmaster.ca

time dependent and drives a rapid, collisionless relaxation
mechanism, known as violent relaxation, which efficiently
mixes phase space [63]. This process is nonergodic and hence
profoundly different from relaxation in systems with short-
range interactions. Nevertheless, universality still emerges:
pioneering work in the 1960’s by Lynden-Bell [64] on the
statistical mechanics of violent relaxation in stellar and galactic
dynamics introduced a fourth type of equilibrium distribution
which is related to both the Fermi-Dirac distribution and
equipartition of energy per unit mass. More recent research has
generalized Lynden-Bell statistics to two-parameter Core-Halo
distributions [65–68] which can also handle the case of far-
from-virialized initial conditions and the following two-stage
picture of relaxation from a nonequilibrium state has emerged
[69,70]: First, there is violent relaxation, the timescale of
which does not depend on the number of particles N , and
results in long-lived nonequilibrium configurations known as
quasistationary states (QSS). Second, at long times, there
is the more familiar collisional relaxation towards Maxwell-
Boltzmann equilibrium, however, this occurs at times of order
Nδ , where δ � 1 [71,72]. Therefore, in the thermodynamic
limit N → ∞ the lifetime of the QSS diverges and the system
remains out of equilibrium indefinitely, which has implications
for thermalization. Violent relaxation is now recognized as
the cornerstone of statistical theories describing the QSS that
dominate transient behavior in systems with LRI. Since these
QSS are formed by nonergodic dynamics, they are not captured
by conventional statistical treatments.

In this paper, we are interested in the following thematic
questions: Does violent relaxation take place in quantum
systems? Do QSS exist and do they display new length
scales and timescales? Do these modifications survive in the
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FIG. 1. Nonequilibrium phase diagram for the quantum HMF
model with repulsive interactions (ε > 0). Violent relaxation leads to
quasistationary states which are very slowly evolving nonequilibrium
configurations; for the HMF model these are the bicluster states. On
this semilog plot, the vertical axis measures the initial deviation from
equilibrium quantified by v0 = Aωpl cos θ which is the initial velocity
field due to small plasma oscillations [see Eq. (D1)]. The horizontal
axis captures quantum effects via the effective Planck constant
χ = h̄/

√
|ε|mR2. When χ � 1 and χ � 2Aωpl the system forms

a bicluster at late times [see Fig. 5(f)]. By contrast, for χ � 1, the
k = ±1 modes dominate and the system continues to undergo plasma
oscillations without relaxing [see Eq. (11) and Fig. 5(b)]. Finally,
for χ � 1 all Fourier modes experience a free Schrödinger-type
dispersion relation and violent relaxation is suppressed by quantum
zero-point motion [see Fig. 5(a)]. The gray region denotes initial
conditions that invalidate the short-time linear response procedure
detailed in Eqs. (14) and (15).

thermodynamic limit? We base our analysis on the Hamiltonian
mean field (HMF) model [72–77] which over the last two
decades has become one of the main theoretical tools for
investigating many-body systems with LRI (see Refs. [69,70]
for reviews). It offers the advantage of being analytically
tractable at equilibrium, and is known to capture dynamical
features present in more complicated systems [67,70,74,76].
Moreover, the HMF model is directly relevant to describing
cold atoms in optical cavities where self-organization and
the nonequilibrium Dicke phase transition have been inten-
sively studied both theoretically [54–62] and experimentally
[32,78–82]. Our work, therefore, has experimental relevance
but for brevity’s sake we only consider closed systems and
do not include effects that would model cavity pumping and
decay. However, in separate work we have shown that the type
of QSS we observe (wave catastrophes) have the fundamental
property of structural stability, even against decoherence, and
hence survive in cavities weakly coupled to the environment
[83]. Wave catastrophes can also be seen in simulations by
others [84] of microcavity polaritons using a driven damped
Gross-Pitaevskii equation.

A key part of our results is summarized in the nonequilib-
rium phase diagram in Fig. 1 which depicts the end results of
violent relaxation in a quantum version of the HMF model.
The vertical axis gives the magnitude of initial perturbations

− − − − − −

FIG. 2. Long-range interactions tend to amplify initial perturba-
tions. We illustrate this feature here with the Newtonian trajectories
of 52 particles obeying the classical HMF model with (a) attractive
(ε < 0) and (b) repulsive (ε > 0) interactions. At t = 0, the particles
are spaced evenly around the ring with very slightly varying initial
velocities vi(θ,0) = 0.005 cos θ . In both cases, the LRI cause the
particles to cluster and this behavior repeats such that the envelopes
of the trajectories form a quasiperiodic series of cusp-shaped caustics
(or “chevrons”[75,76]). However, there are key differences: First, the
attractive interactions give rise to a single cluster point (monocluster)
around the ring whereas repulsive interactions produce two cluster
points (bicluster), and second there are very different timescales
associated with the two cases with the repulsive case being much
slower (note the different scales on the time axes).

from equilibrium, i.e., initial velocity fluctuations v0, and
the horizontal axis measures the effective Planck constant χ

which, of course, is entirely absent in classical systems. We
find that quantum effects increasingly stabilize initial plasma
fluctuations, thereby suppressing violent relaxation, such that
by the time the deep quantum regime (designated the free
Schrödinger phase) is reached quantum zero-point motion of
higher lying modes dominates the plasma oscillations.

A second strand to the story we present here concerns
the nature of the QSS and their connection to caustics. In a
landmark paper on the large scale structure of the universe,
Arnold, Shandarin, and Zeldovich [85] considered a self-
gravitating mass distribution and showed that initially smooth
perturbations evolve into singular caustics upon which the
density diverges (for a recent update to this work see [86]).
These caustics take universal shapes described by the so-called
catastrophe theory due originally to Thom and Arnold [87–89]
and include cusps, swallowtails, beak-to-beaks, and Zeldovich
pancakes [90]. Likewise, as shown in Fig. 2, the dynamics
of the classical HMF model also leads to cusp catastrophes
[75,76,91,92] which are the structurally stable catastrophes
found in two dimensions (1 space + 1 time).

One might expect quantum effects to smooth classical
singularities and this is indeed what we find; however, what
is remarkable is that quantum effects enter in a universal way,
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replacing the caustics with characteristic interference patterns
known as wave catastrophes that introduce new length scales
and timescales [93,94]. For instance, cusp catastrophes become
Pearcey functions (see Fig. 7). Wave catastrophes obey a set
of scaling relations as the wavelength is varied, and thus, as
quantum effects are switched on the new length scales and
timescales of the QSS scale in a universal way. Once again,
the nonergodic nature of the classical limit plays a crucial role
as caustics are formed by the cooperative behavior of families
of trajectories and are dissolved by ergodic dynamics.

The rest of this paper is organized as follows: In Sec. II we
provide examples of violent relaxation in the classical HMF
model and formulate a classical hydrodynamic description. In
Sec. III we describe a theory for the quantum hydrodynamics
for the HMF model based on a generalized Gross-Pitaevskii
equation (GGPE). Our numerical solutions of the GGPE are
presented in Sec. IV where we explore how quantum effects
modify the QSS. In Sec. V we sketch out the multiscale analysis
first used for describing QSS analytically in Ref. [76], and
show how this is modified by quantum effects. In Sec. VI we
explain how we arrived at the nonequilibrium phase diagram
shown in Fig. 1, and in Sec. VII show how the interference
patterns decorating the quantum biclusters can be understood
using catastrophe theory. In Sec. VIII we argue that the
thermodynamic limit N → ∞ and the classical limit h̄ → 0 do
not commute, and we make our concluding remarks in Sec. IX.
There are also five appendices covering details omitted in the
main text.

II. VIOLENT RELAXATION IN THE
CLASSICAL HMF MODEL

The HMF model, despite its name, provides an exact
description of a many-body system in one dimension. Defined
on a ring of radius R, it describes N particles interacting
via a pairwise potential varying as cos (θi − θj ), and has the
Hamiltonian

H =
∑

i

L2
i

2mR2
+ ε

N

∑
i<j

cos(θi − θj ), (1)

where each angular momentum Li and position θi form a
canonically conjugate pair (Li,θi). When two particles sit on
top of one another, the potential is repulsive (attractive) when
ε > 0 (ε < 0). The explicit 1/N factor in the interaction term,
known as the Kac prescription [95], enforces extensivity of
the Hamiltonian [69]. Experiments with cold atoms trapped in
linear optical resonators formed of two mirrors where the atoms
interact via the sinusoidal mode of a quasiresonant optical field
[60] are described by Hamiltonians closely related to Eq. (1).
A complementary interpretation of Eq. (1) is as a kinetic XY

model [96] with an infinite-range interaction, and therefore,
another physical realization is provided by polar molecules in
optical lattices [97–99].

There are two distinct types of dynamics in the HMF model
which are illustrated in Fig. 2. The first case has attractive
interactions [sgn(ε) = −1] as shown in Fig. 2(a). These lead
to a Jeans-type collapse into a monocluster at a single point
around the ring which then spreads out and revives periodically,
with a timescale that is directly determined by the strength

of the interparticle interaction. The second case has repulsive
interactions [sgn(ε) = 1] and is shown in Fig. 2(b). One again
finds clustering but now at two points on opposite sides of
the ring. Furthermore, it arises on vastly longer timescales and
corresponds to a QSS.

When the number of particles becomes large, a kinetic-
theory description in terms of the phase space density f (θ,L,t)
becomes appropriate. The fact that the number of pairwise LRI
scales as O(N2) whereas collisional terms are O(N ) suggests
one can neglect collisions in this regime. In this case, f (θ,L,t)
obeys the conservation law [100]

df

dt
= ∂tf + θ̇∂θf + L̇∂Lf = 0, (2)

which is known as the collisionless Boltzmann or Vlasov
equation (see [101] for a discussion of the difference between
the Boltzmann and Vlasov equations.) In fact, Hepp and Braun
[102] have rigorously shown that as N → ∞ the Vlasov
equation provides an exact description of the dynamics of an
N -body classical system with pairwise LRI.

Biclustering was first identified in numerical simulations
[91,92] seeded by a “water-bag”-shaped initial distribution in
phase space: f (θ,L,t = 0) ∝ �(θ0 − |θ |) × �(L0 − |L|). In
this paper, we are interested in the low-temperature regime
where the water bag becomes thin in the L direction. This both
causes the lifetimes of the QSS to diverge in the classical theory
[76], and also allows for a natural point of contact between
our quantum (low-temperature) treatment and the classical
dynamics. In the limit 	L → 0, each point in space can be
assigned a definite velocity, i.e., f (θ,L,0) = ρ(θ )δ[v(θ ) − L],
and Eq. (2) can be reexpressed in a Euler (i.e., hydrodynamic)
form. This is what constitutes the zero-temperature approxima-
tion. It is convenient to introduce a new time τ = t/

√
mR2|ε|

and velocity v(θ ) = v(θ )
√

mR2|ε|, and to normalize the den-
sity via

∫
dθρ = 1. Written in terms of these quantities, the

Euler equations are given by

∂τρ + ∂θ (ρv) = 0, (3a)

∂τ v + v∂θv + sgn(ε)∂θ� = 0 (3b)

and can be interpreted as the equations of motion for a fluid
undergoing adiabatic and inviscid flow [103]. Here,

�(θ,τ ) =
∫ π

−π

dφ ρ(φ,τ ) cos(θ − φ)

= M(τ ) cos[θ − ϕ(τ )] (4)

is the mean field potential (for the zero-temperature case) found
by summing up the long-range interactions amongst all the
particles. It is related to L̇ in Eq. (2) via the Euler-Lagrange
equation L̇ = −ε∂θ�.

The last line of Eq. (4) represents a remarkable simplifi-
cation that is proved in Appendix A: the mean field potential
always assumes the same cosine functional form specified by
just two time-dependent parameters: the depth, or magnetiza-
tion M(τ ), and a phase ϕ(τ ). Thus, �(θ,t) is highly constrained
and can only change its depth and position around the ring.
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III. QUANTUM FLUID DYNAMICS:
GROSS-PITAEVSKII THEORY

Chavanis [104] has previously investigated the equilibrium
properties of the quantum HMF model using the Gross-
Pitaevskii theory, finding that when ε < 0 quantum effects
can stabilize against the Jeans instability. We focus instead
on dynamics which take on a heightened importance in the
presence of LRI.

The full quantum description is in terms of a many-body
wave function ψ(θ1,θ2, . . . ,θN ,τ ), where the set {θi} of N

independent angles refer to the particle positions. However,
if we consider indistinguishable bosons, in the large-N regime
and at very low temperatures, the system can be expected to
Bose condense. If all the bosons enter the condensate, then ψ

can be written as a product of single-particle wave functions
[i.e., ψ = ∏N

i=1 ϕ(θi)] which must be found self-consistently
due to the effect of interactions. This is the Hartree description
and treats the N -particle system in terms of a condensate wave
function ψ(θ1,θ2, . . . ,θN ,τ ) → �(θ,τ ), which depends on a
single spatial coordinate and obeys a nonlinear wave equation,
the Gross-Pitaevskii equation [105,106].

Bose condensation therefore naturally leads to a mean field
description (equivalent to a hydrodynamic description) and we
will assume this situation in our treatment of the quantum
problem. In this context, it is important to point out that
the Mermin-Wagner theorem [107–109], which forbids Bose
condensation in infinite one-dimensional systems with short-
range interactions, does not apply here because our system has
both finite size and LRI. The mean field description for a Bose-
condensed system is provided by the Gross-Pitaevskii theory
which becomes exact in the thermodynamic limit N → ∞.

A. Generalized Gross-Pitaevskii equation

Consider the Gross-Pitaevskii energy functional

E[�,�∗] = Nh̄2

2mR2

∫
|∂θ�|2dθ + Nε

2

∫∫
|�(θ ′)|2

× cos(θ − θ ′)|�(θ )|2dθ dθ ′. (5)

Here, the condensate wave function is normalized to unity:∫
dθ |�|2 = 1, which ensures that Eq. (5) is extensive. The

equation of motion for � is given by taking the func-
tional derivative ih̄∂�/∂t = δE/δ�∗. One thereby obtains the
GGPE for the HMF model [104]

iχ∂τ� = −χ2

2
∂2
θ � + sgn(ε)�(θ,τ )�, (6a)

where �(θ,τ ) =
∫ π

−π

|�(φ,τ )|2 cos(θ − φ)dφ (6b)

is the Hartree or mean field potential. The parameter χ :=
h̄/

√
|ε|mR2 serves as a dimensionless Planck’s constant, and

we have rescaled time by introducing τ = t/
√

mR2|ε|. Using
the fact that |�(φ,τ )|2 is the probability density equivalent to
the particle density ρ(φ,τ ) in the zero-temperature classical
theory discussed in Sec. II, the quantum Hartree potential
similarly reduces to the cosine form given in Eq. (4).

For LRI, the Gross-Pitaevskii theory is valid in the high
density limit where correlations are weak: for an early

discussion in the context of the charged Bose gas, see
Ref. [110]. The validity of the Gross-Pitaevskii treatment with
LRI has also been established rigorously for boson stars [111]
and most recently for dipolar BECs [112]. For a more detailed
discussion of the validity of the Gross-Pitaevskii theory for our
system, see Appendix B.

B. Quantum Euler equations

The GGPE can be recast in a hydrodynamic form that
closely resembles the classical Euler equations. Expressing the
generally complex condensate wave function as � = √

ρeiS/χ

we can transform Eq. (6) into two coupled equations describing
the evolution of the density ρ and a velocity profile v = ∂θS.
The dynamics is then controlled by the quantum Euler, or
Madelung, equations [104]

∂τρ + ∂θ (ρv) = 0, (7a)

∂τ v + v∂θv + sgn(ε)∂θ� = −∂θ

(
χ2

2

∂2
θ

√
ρ√

ρ

)
. (7b)

The expression on the right-hand side is often referred to
as the quantum pressure; physically it arises from zero-point
kinetic energy. Here, it is written as the gradient of the so-called
quantum potential

Q = χ2

2

∂2
θ

√
ρ√

ρ
(8)

and is the only formal mathematical difference between the
classical Euler equations, given in Eqs. (3a) and (3b), and the
quantum ones.

The quantum versus classical aspects of the system can be
better appreciated by writing the Gross-Pitaevskii energy func-
tional (5) in terms of the hydrodynamic variables ρ and v [104]:

E[�,�∗] = 1
2 〈v2〉ρ + 1

2 〈�〉ρ + 〈Q〉ρ = Tcl + Ucl + EQ,

(9)

where the averages are taken over the density ρ(θ ).
When χ = 0, this agrees with the classical result in the
zero-temperature approximation. We refer to the contribution
of the quantum pressure term as the quantum energy EQ. The
remaining terms resemble their classical counterparts: the
kinetic energy and the mean-field potential energy are denoted
by Tcl and Ucl, respectively.

C. Linear response: Plasma oscillations
and Bogoliubov dispersion

In this work, we focus on initial conditions that are close
to equilibrium. When violent relaxation occurs, it counterin-
tuitively moves us out of this regime, but linear response still
plays a key role at short times. Linearizing the hydrodynamic
equations (7a) and (7b) about a spatially homogeneous con-
densate with density ρ0 = 1/2π with zero velocity v0 = 0 we
obtain

∂τρ1 + ρ0∂τ v1 = 0, (10a)

∂τ v1 + ∂θ

[
sgn(ε)�[ρ1] + χ2

4ρ0
∂2
θ ρ1

]
= 0 (10b)
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which describe small excitations about the condensate. In
this linear approximation, each Fourier component evolves
as an independent oscillator with frequency ωk given by the
Bogoliubov dispersion relation [104]

ω2
k = 1

2

[
1
2χ2k4 + sgn(ε)δ|k|,1k2

]
. (11)

In the limit χ → 0, and for repulsive interactions (ε > 1),
we recover the classical plasma frequency ωpl = 1/

√
2 [76],

with quantum corrections only appearing at the quadratic level
ω±1 ≈ ωpl + O(χ2). The δ|k|,1 term reflects the fact that with a
uniform density only the k = ±1 modes feel the long-range
cosine interaction and are therefore responsible for plasma
oscillations. By contrast, the other modes (k �= ±1) evolve as
free massive particles with frequency ωk = (1/2)χ k2, which is
a purely quantum effect. Referring back to the nonequilibrium
phase diagram Fig. 1, these quantum modes are responsible for
the “free Schrödinger” regime on the right-hand side. In the
classical case, these modes have zero frequency and so take an
infinite time to appear. When the interactions are attractive
(ε < 1), the frequency is imaginary in the classical limit
indicating the Jeans instability, but quantum effects stabilize
the system providing χ >

√
2 [104].

We can estimate the importance of quantum effects by
comparing the magnitude of EQ to that of the total classical en-
ergy. During classical plasma oscillations, the energy alternates
between Tcl and Ucl such that these two terms are on average
of equal magnitude and we can compare EQ against either of
them. We therefore expect classical-like behavior provided∣∣∣∣EQ

Ucl

∣∣∣∣ � 1 (short times), (12)

where we have stressed that the above argument applies on
timescales on the order of the inverse Bogoliubov frequency
Eq. (11). In the classical limit, this corresponds to the timescale
shown in Fig. 2(a), whereas the timescale of the bicluster in
Fig. 2(b) is much longer, and so we may anticipate this criterion
to be insufficient in understanding the role of quantum effects
on the bicluster.

IV. NUMERICAL RESULTS: VIOLENT RELAXATION
IN THE QUANTUM REGIME

We now present the results of our numerical simulations
of the full GGPE for equivalent initial data to that used in
Fig. 2. In the case of the bicluster we have to contend with
the very different timescales provided by the fast microscopic
plasma frequency and slow the revival time. This makes the
computation quite challenging, but from the physical point of
view this is why biclusters are examples of QSS and hence
relevant to understanding late-time behavior and possible
thermalization. The fate of these structures in the quantum
theory is therefore of great interest. The details of our numerical
methods can be found in Appendix C.

A. Attractive interactions (ε < 0): Jeans instability
in the quantum regime

In the case of attractive interactions, the mean field potential
� favors clustering and this results in the Jeans-type instability.
In the classical theory, this occurs even for infinitesimal

interactions and leads to a cusp caustic with divergent density
as shown in Fig. 2(a). However, the Bogoliubov dispersion
relation (11) predicts that quantum zero-point motion stabilizes
the system if χ >

√
2. We have confirmed this threshold

numerically. An explicit realization of the quantum Jeans
instability is presented in Fig. 3 for χ = 10−3. We see that
quantum effects temper the caustic and replace it with an
interference pattern such that the density is always finite.

It is important to note that the classical and quantum
dynamics only differ qualitatively after the formation of the
first cusp, as can be seen by comparing to Fig. 4 where we plot
the trajectories of noninteracting test particles which simply
feel the force generated by the mean field potential �(θ,τ )
obtained in making Fig. 3 (this is the quantum analog of
the test-particle model discussed in Ref. [70]). This can be
easily understood by appealing to energy conservation, and in
particular to Eq. (9). At early times 〈|∂θ

√
ρ|2〉 � O(1) and

consequently EQ � O(χ2) � |Ucl|. However, the classical
dynamics leads to a folding of the phase space distribution
(see Fig. 6), or equivalently a pointwise divergent density
profile, and this eventually makes the quantum energy relevant,
EQ  Ucl, at which point interference effects kick in.

B. Repulsive interactions (ε > 0):
Bicluster in the quantum regime

Biclustering is surprising not only because it exists at all
(in the presence of repulsive interactions), but also because it
occurs at half the wavelength of the mean field cosine potential.
These mysterious features can be explained within the classical
theory by using a multiscale analysis [76] that will be discussed
in Sec. V. However, in order to put our quantum results in
context, it is worth quoting the main result now, namely,
that there is an emergent single-particle (i.e., noninteracting)
description with the effective potential

Veff = A2ω2
pl

8
cos 2θ. (13)

Apart from the cos 2θ spatial dependence, we note that the
depth of Veff is proportional to the square of the amplitude of
the initial plasma fluctuations, and that this predicts a periodic
revival of biclusters with period Tbc = π/(

√
2Aωpl). We shall

adopt this as our timescale when plotting the dynamics in the
repulsive regime, and note that it is generally much longer than
the plasma period used for the attractive case.

In Fig. 5, we plot solutions of the GGPE in the repulsive
case. In the top row, we vary the effective Planck constant χ ,
and in the bottom row we vary the magnitude of the initial
velocity perturbations v0(θ ) = Aωpl cos θ .

All plots have an initially homogeneous density profile
ρ0 = 1/2π . The top left-hand panel of Fig. 5(a) corresponds
to the strongly quantum regime χ � 1 where we see that the
clustering has been almost completely eliminated. Moving to
the right, χ is decreased towards the semiclassical regime
and biclustering appears, although this by itself does not lead
to structures closely resembling the classical case and the
temporal period is quite different from the classical bicluster
formation time Tbc. In fact, to retrieve something resembling
the classical behavior, we also need the initial plasma wave’s
amplitude Aωpl to not be too small as illustrated by the bottom
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FIG. 3. Quantum Jeans instability: dynamics of the density profile
ρ(θ,τ ) for attractive interactions (ε < 0) with initial conditions ρ0 =
(1 + 0.01 cos θ )2 and v0 = 0 with χ = 10−3. Interference tempers
the (singular) classical caustic and replaces it with a characteristic
interference pattern. The dynamical timescale is set by ωpl ≈ ω1 =
Im(i/

√
2)

√
1 − χ 2/2 [Eq. (11)].

row in Fig. 5. We emphasize that this increase in classical
behavior as Aωpl is increased occurs for a fixed value of χ .

Our numerical simulations suggest that while the semiclas-
sical condition identified on energetic grounds in Eq. (12) may
be necessary for realizing violent relaxation in the quantum
regime, it is certainly not sufficient: one also needs a perturba-
tion away from equilibrium that is large enough to overcome
quantum fluctuations.

V. QUANTUM PRESSURE AND THE BICLUSTER

As alluded to above, the emergence of the Jeans insta-
bility for attractive interactions can be accurately diagnosed
via a straightforward linearization of the quantum problem
(Bogoliubov theory). Furthermore, the criterion for classical
behavior given in Eq. (12) is also obeyed in the presence of
attractive interactions. By contrast, the repulsive case is more
subtle and the bicluster’s underlying mechanism is inherently
nonlinear. It therefore requires a more sophisticated analysis
even in the classical regime. To understand this behavior, we
first sketch (details are relegated to Appendix D) the derivation
of the effective potential Veff(θ ) in the classical limit, which was
first presented in [75,76], and argue that the same procedure
can be carried out in the quantum regime provided χ � 1.
This then provides an effective single-particle picture where
semiclassical intuition applies.

Starting from the classical Euler equations (3a) and (3b),
and performing the analogous linearization procedure to that
outlined in Sec. III C, one finds a set of independent Fourier
modes all of which have zero frequency, with the exception of
the k = ±1 modes which oscillate with the plasma frequency

FIG. 4. Trajectories of test particles, each computed by solving
Newton’s equations for a particle moving in a given external potential
V (θ,τ ) = −Mχ [ρ(τ )] cos θ . This is exactly the mean field potential
�(θ,τ ) computed numerically in the quantum dynamics shown in
Fig. 3, where Mχ [ρ(τ )] is the self-consistent magnetization.

ωpl = √
2. This defines a “fast” scale, wherein small oscilla-

tions of the first Fourier component take place. Anticipating the
bicluster that takes place on long timescales, a slow variable
T = Aτ is introduced which reflects the fact that the timescale
at which nonlinear effects become important is dictated by A,
the amplitude of the initial plasma wave. Next, the velocity field
may be decomposed into a fast part v1 evolving under the linear
equations, and a slow part u(T ) that is influenced by nonlinear
effects (the variations of the density can be neglected). A time
average then yields

∂T u + u∂θu = − 〈v1∂θv1〉T := − 1

A2
∂θVeff(θ ),

where Veff(θ ) = A2ω2
pl

8
cos 2θ. (14)

This is a forced Burgers equation governing the flow of the ve-
locity field. The forcing term involves an effective potential Veff

with half the wavelength of the mean field potential �. Thus,
we have obtained the nontrivial result that the slow variables
are governed by a different potential than the original. Burgers’
equation is well known to give rise to shock waves where
the velocity field becomes multivalued and hence the equation
breaks down [113,114] and one needs some physical criterion
for determining the fate of the system after the shockwave. In
our problem, these shockwaves are the caustics associated with
clustering. As depicted in Fig. 6, they occur when the “sheet”
of initial data in phase space folds over. When projected onto
the (θ,τ ) plane, we obtain cusp-shaped caustics: there are three
trajectories passing through each spatial point inside the cusp
and one outside. Two of the trajectories coalesce at each point
along the cusp edges (known as fold lines) and three coalesce
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FIG. 5. Dynamics of the density profile ρ(θ,τ ) for ε > 0 in the log χ -Aωpl plane in correspondence with the different regimes plotted
in Fig. 1. The initial conditions in all panels are ρ0 = 1/2π and v0 = Aωpl cos θ and time has been rescaled by Tbc. For χ � 1 no bicluster
develops (a). For Aωpl < χ � 1 (b) classical plasma oscillations occur, and a very weak π periodic focusing occurs, but is dispersed by the
quantum pressure before the classical focusing time Tbc. In (c)–(f) χ is held fixed while the plasma amplitude Aωpl is tuned. This has the
effect of a deeper effective potential Veff [see Eq. (15)], and consequently a more classical-like pattern emerges. This change of behavior is
captured by the nonequilibrium phase diagram shown in Fig. 1, and is discussed at length in Sec. VI. (a) χ = 5.0 × 101, Aωpl = 5.0 × 10−3. (b)
χ = 5.0 × 10−1, Aωpl = 5.0 × 10−3. (c) χ = 2.5 × 10−3, Aωpl = 5.0 × 10−3. (d) χ = 2.5 × 10−3, Aωpl = 1.3 × 10−2. (e) χ = 2.5 × 10−3,
Aωpl = 2.5 × 10−2. (f) χ = 2.5 × 10−3, Aωpl = 5.0 × 10−2.

at the cusp tip, which is the most divergent part of the caus-
tic. Quantum mechanically, the cusp is therefore associated
with three-wave interference giving rise to the characteristic
patterns we observe in Fig. 3, and in the more semiclassical
panels in Fig. 5, which will be discussed further in Sec. VII.
This highly coherent (nonergodic) dynamics is a consequence
of the long-range nature of the two-body potential.

How do these semiclassical arguments fare in the deep
quantum regime where quantum zero-point motion can domi-
nate? The essential ingredient in obtaining the forced Burgers
equation is the presence of two well-separated timescales.
Therefore, provided ωk=±1 � ωk �=±1, the above analysis is
valid with the caveat that we must include the effects of
the quantum pressure. This condition is naturally satisfied
provided χ � 1, as can be clearly seen from Eq. (11). Naively,
by appending the full quantum pressure to the right-hand side
of Eq. (14) we find

∂T u + u∂θu = − 1

A2
∂θ [Veff + Q]

= − 1

A2
∂θ

[
A2ω2

1

8
cos 2θ + χ2

2

∂2
θ

√
ρ√

ρ

]
, (15)

while a more sophisticated analysis would subtract off the
linearized part of the quantum pressure whose influence is
accounted for by the Bogoliubov dispersion relation (11).
Nevertheless, Eq. (15) correctly predicts the parametric com-
petition between the quantum pressure and the classical ef-
fective potential induced by the time-averaged linear plasma
oscillations.

We therefore have two distinct semiclassical limits gov-
erning the nonlinear dynamics of the HMF model. On short
timescales, the condition χ � 1 is sufficient to ensure that
plasmalike oscillations occur, while the much more stringent
condition that χ � 2Aωpl is required to ensure that the quan-
tum pressure does not disperse the bicluster. As before, such
conditions can be reexpressed in terms of energetics where
they assume the form∣∣∣∣EQ

Ucl

∣∣∣∣ � 1 (short times),∣∣∣∣ EQ

〈Veff〉ρ

∣∣∣∣ � 1 (long times). (16)

We emphasize that while the above analysis uses a sinusoidal
velocity profile as an initial condition, the results are not overly
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FIG. 6. The formation of a cusp catastrophe: illustration of how
a line of initial data in phase space (i.e., a vanishingly thin water-bag
distribution) is folded over by the dynamics. Projecting down onto
the θ -t plane produces a cusp-shaped envelope on which the density
of trajectories diverges. This cusp catastrophe is structurally stable
against perturbations and hence occurs generically without the need
for special initial conditions. In the case of the bicluster, this folding
occurs simultaneously at two symmetric points around the ring.

sensitive to this choice. This parallels the classical case, where a
thin, but finite, spread in the momentum of an initial water-bag
distribution still leads to the clustering phenomenon discussed
above. Likewise, in the quantum case, deviations from the
initial conditions chosen above do not have a dramatic effect
on the dynamics.

VI. NONEQUILIBRIUM PHASE DIAGRAM

We have already highlighted the fact that systems with LRI
take an anomalously long time to come to equilibrium and,
therefore, rather than equilibrium states, they are characterized
by their QSS. This motivates the out-of-equilibrium phase
diagram presented in Fig. 1 which we now explain.

The horizontal axis measures the effective Planck constant
χ and the vertical axis measures the initial amplitude of the per-
turbation from equilibrium due to plasma oscillations. This is
equivalent to a dependence on the initial energy of the system.
As we are working with a closed system with conserved energy,
we may interpret this behavior in the microcanonical ensemble
as a proxy for temperature in the canonical ensemble. We
emphasize, however, that the bicluster itself is not predicted by
a canonical treatment, i.e., a system at equilibrium with a heat
bath [74]. Rather, this behavior is inherently nonequilibrium
and driven by the long-range interacting nature of the HMF
model.

To distinguish the possible regimes, it useful to return to
Fig. 5, where results are shown first for Aωpl fixed as χ is tuned
[Figs. 5(a)–5(c)], and subsequently for χ fixed as Aωpl is tuned
[Figs. 5(c)–5(f)]. In the first three figures, the most prominent
feature is the changing timescale, which is a consequence of

Eq. (11), and in particular the dependence of ωk=±1 on χ .
Additionally, it is clear that the amplitude of modulations is
dramatically different between the three figures, and this is
most easily understood on energetic grounds. Initially, all three
simulations have all of their energy stored as Tcl = 1

4A2ω2
pl. In

each case, however, the energetic cost of density modulations
is very different. In Fig. 5(a), the system behaves essentially
as a free-Schrödinger equation which forms a standing wave,
such that ρmax � A, while in contrast both Figs. 5(b) and 5(c)
are driven at least partially by the interplay between linear
plasma oscillations and nonlinear effects as evidenced by the
excitation of a π -periodic density wave. The consequences are
markedly different, however, in that the density modulations in
Fig. 5(b) are a perturbation about a homogeneous background,
whereas in Fig. 5(c) they are the O(1) effect that dominates
the density profile, and which signals the onset of nonlinear
effects.

In Figs. 5(c)–5(f), we can see the emergence of the wave
version of the cusp catastrophe as Aωpl is made larger and
larger. This enhances nonlinear effects allowing them to dom-
inate the free-Schrödinger dispersion of the quantum pressure.
Eventually, a clear bimodal cusplike profile emerges, which
signals the validity of the time-averaged treatment, and by
association the presence of violent relaxation.

With these features in hand, we may construct a nonequi-
librium phase diagram shown in Fig. 1. Note that our initial
conditions are limited to the linear regime so that two well-
separated timescales exist and we can perform a multiscale
analysis. The crossover between the biclustered regime and
the plasma oscillation regime occurs when χ ≈ 2Aωpl. This is
predicted by Eq. (15) and confirmed by the emergence of O(1)
density fluctuations, but the absence of interference effects, in
Fig. 5(c). The crossover between the plasma-dominated and
free-Schrödinger regimes is found by considering Eq. (11),
and we take χ ≈ 1. Plotting these, as in Fig. 1, we see that the
free-Schrödinger regime does not overlap with the bicluster
regime for any combination of χ and Aωpl.

VII. WAVE CATASTROPHES

The cusp-shaped caustics seen in Figs. 2 and 4 result from
(imperfect) focusing of classical trajectories, and they are
described by Thom’s famous catastrophe theory [87–89]. The
utility of this theory is that, for each dimension, structurally
stable singularities only take on certain universal shapes. Struc-
tural stability implies stability against perturbations and hence
these objects occur in a wide range of physical phenomena
without the need for special symmetry or fine tuning. This
universality also extends into the wave or quantum realm
where catastrophes give rise to wave patterns known as wave
catastrophes or diffraction integrals [93]. Using a path integral
approach provides a rather well-defined connection between
the classical and quantum dynamics which we now discuss;
details can be found in Appendix E.

Catastrophes are organized into a hierarchy specified by
their codimension, with the higher catastrophes containing
the lower ones. The simplest is the fold which is generated
by the cubic function Sf (C1,s) = C1s + s3, while the cusp,
which is made of two folds, is generated by a quartic function
Sc(C1,C2; s) = C1s + C2s

2 + s4. The parameters {C1,C2} are
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known as control parameters: the fold has one, whereas the
cusp has two. In the present problem these are the spatial and
temporal coordinates, while the state variable s parametrizes
paths (e.g., the initial angles θ0 around the ring at τ = 0, see
Fig. 4 and also Appendix E). In more physical language, a
generating function is an action and its saddles give rise to the
classical paths via the principle of stationary action ∂S/∂s = 0.
Catastrophes are associated with coalescing saddles. The fold,
being cubic, has two possible stationary points which coalesce
on the caustic itself at C1 = 0. The cusp has three possible
stationary points: these coalesce in pairs as one crosses either
of the two fold lines specified by C1 = ±√

8/27(−C2)3/2, and
the most singular point is the tip of the cusp at C1 = C2 = 0
where all three stationary points coalesce together.

The fact that a catastrophe can be expressed in terms of
an action provides a route to quantization motivated by the
Feynman path integral prescription. Here, one sums over all
paths, not just the classical ones, and the amplitude associated
with each path is exp(iS/h̄). In this way, one obtains the wave
catastrophes [93]

�(C) = 1√
h̄

∫ ∞

−∞
eiS(C;s)/h̄ ds, (17)

which are the universal wave functions replacing the divergent
classical catastrophes. In the case of the fold, the cubic action
gives rise to the Airy function Ai(x) [94]:

�f (C1) = 1√
h̄

∫ ∞

−∞
ei(C1s+s3)/h̄ ds

= 2π

31/3h̄1/6 Ai

(
C1

31/3h̄2/3

)
. (18)

This implies that as h̄ is varied, the overall amplitude of the
fold caustic diverges as h̄−1/6 while the fringe spacing vanishes
as h̄2/3. The exponent 1/6 is known as the Arnold index and
the exponent 2/3 is known as the Berry index.

For the cusp one obtains

�c(C1,C2) = 1√
h̄

∫ ∞

−∞
ei(C1s+C2s

2+s4)/h̄ ds (19)

= 1

h̄1/4 Pe

(
C2

h̄1/2 ,
C1

h̄3/4

)
, (20)

where

Pe(a,b) =
∫ ∞

−∞
ei(bt+at2+t4) dt (21)

is the Pearcey function [115] which is a two-dimensional
complex-valued function that is tabulated in mathematical
handbooks [116]. We can read off the Arnold index for the
cusp as being 1/4 and the two Berry indices are 1/2 and
3/4. The cusp caustic generated by classical paths (obeying
∂�c/∂s = 0) is plotted in Fig. 7(a) and the Pearcey function
in Fig. 7(b).

By comparing Fig. 7(b) with Figs. 3, 5, and 8 we indeed
identify the characteristic Pearcey pattern as must be the
case on the grounds of structural stability [89]. Thus, the
new length scales and timescales introduced by quantum
effects in the HMF problem are of universal origin and have
nontrivial scaling properties that differ from naive expectations

FIG. 7. Classical trajectories in two dimensions will generically
form cusp-shaped caustics where the density of trajectories diverges,
as shown in (a). In the wave or quantum theory interference removes
the singularity and replaces it with a universal wave function, the
Pearcey function Pe(a,b), which is valid in the immediate locale of
the caustic. In (b) we plot |Pe(a,b)|. Note that this function contains
interesting subwavelength features such as vortices at its nodes. (a)
Cusp catastrophe. (b) Pearcey function.

based on the Schrödinger equation. Replacing h̄ in the above
formulas by χ shows that the magnitude of the spatial density
modulations scale as |�c|2 ∼ χ−1/2, while the length scales
and timescales vary as ∼ χ−3/4 and ∼ χ−1/2, respectively.

FIG. 8. Quantum biclusters: dynamics of the density profile
ρ(θ,τ ) for repulsive interactions (ε > 0) with initial conditions
ρ0 = 1/2π and v0 = Aωpl cos θ . This simulation used Aωpl = 0.01,
χ = 0.005, and included Fourier components up to kmax = 58. The
timescale is in units of the classical bicluster formation time Tbc =
O([Aωpl]−1) which is two orders of magnitude larger than the inverse
plasma frequency ω−1

pl relevant in the attractive case.
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These results hold close to the origin of each cluster; further
away nonuniversal effects creep in (finite system size and
interference between Pearcey functions). In particular, in Fig. 8
we see well-defined Pearcey functions at the first clustering
events but as time progresses the interference patterns become
altered, which occurs both because of interference with the tails
of the earlier Pearcey functions and also because the underlying
classical cusps become narrower with time [76].

VIII. COMMUTATIVITY OF THE THERMODYNAMIC
AND CLASSICAL LIMITS

The noncommutativity of the N → ∞ and t → ∞ limits
for systems with LRIs is well known [117], and gives rise to
the characteristic feature that if N → ∞ first a nonequilibrium
state will never relax to Maxwell-Boltzmann equilibrium.
Furthermore, in single-particle quantum mechanics there is an
analogous situation for the h̄ → 0 and t → ∞ limits, such that
completely different results are obtained in the semiclassical
and adiabatic limits [118] and also in quantum systems whose
classical limit is chaotic [119]. We shall now discuss whether
the N → ∞ and h̄ → 0 limits commute in order to complete
the final link between these three important limits.

A significant hint comes from comparing the classical
and quantum Euler equations [Eqs. (3) and (7), respectively]
and noting that the former is obtained from the full Vlasov
equation (2) via the zero-temperature approximation. The
zero-temperature approximation ignores thermal fluctuations
of the momentum f (θ,L) ≈ ρ(θ )δ[v(θ ) − L] and hence gives
rise to a well-defined velocity profile v. The same effect is
realized in the quantum case by a different mechanism: BEC
gives rise to a well-defined phase S(θ ) and hence a well-defined
velocity profile via v = ∂θS. In the limit χ → 0 of Eq. (7) we
obtain exactly the classical Euler equations (3).

This is interesting because for finite time, the classical
equations of motion provide an exact description of a quantum
system in the h̄ → 0 limit [119], while the Vlasov equation
(2), which is a mean field approximation at finite N , provides
an exact description of the classical dynamics in the thermody-
namic (N → ∞) limit [102]. Additionally, motivated by work
on boson stars [111], Chavanis has argued that Eq. (6) is exact
in the thermodynamic limit [104], presumably when restricted
to Bose-condensed initial conditions.

Considering a generic quantum state as an initial condition
leads to a noncommutativity of limits as illustrated in Fig. 9.
In particular, taking the classical limit h̄ → 0, followed by the
thermodynamic limit N → ∞, leads to an exact description in
terms of the full Vlasov equation. By contrast, if the GGPE cap-
tures the leading order behavior in the N → ∞ limit, at least
for initially Bose-condensed states, then the Euler equations
are obtained; these are only a particular (zero-temperature)
limit of the Vlasov equation. This suggests that the recovery of
the full Vlasov equation requires features beyond the GGPE,
the most obvious of which are phase fluctuations. We note
in this context that Chavanis has proposed using the Wigner
function to obtain a more complete description of the quantum
dynamics [120].

Finally, we note that both χ → 0 and N → ∞ both cause
the density of states of the full quantum many-body spectrum
to diverge, and so may be expected to yield similar results.

FIG. 9. Schematic depiction of noncommutativity of the ther-
modynamic N → ∞, and classical h̄ → 0 limits for the finite time
dynamics of pure quantum states. The sequence h̄ → 0 followed by
N → ∞ takes us from the quantum to classical many-body descrip-
tions and then to the Vlasov equation which gives an exact description
of the classical dynamics in the thermodynamic limit. Conversely,
if the GGPE captures the leading order dynamical behavior in the
thermodynamic limit, then the sequence N → ∞ followed by h̄ → 0
leads to the classical Euler equations, which emerge from the Vlasov
equation in the zero-temperature approximation.

The interplay between the three limits h̄ → 0, t → ∞, and
N → ∞ for long-range interacting systems is an interesting,
and to the authors’ knowledge open, problem, and is an obvious
avenue of investigation for quantum QMB systems with LRI
in general. Its resolution may help shed light on what lessons
learned from the study of classical systems with LRI can be
carried over into the quantum regime.

IX. CONCLUSIONS AND FUTURE PROSPECTS

Motivated by ongoing success in the laboratory creating
atomic and molecular systems with LRI, we have made a
preliminary study of violent relaxation in a quantum system.
This nonergodic dynamical process is a signature of LRI and
leads to the formation of slowly evolving patterns with rich and
universal structure rather than to the more standard featureless
equilibrium state. Although we investigated the dynamics in
a specific model, namely, the HMF model, it is known to
reproduce many of the generic features of many-body systems
with LRI.

By choosing initial conditions whose long-time propagation
is well understood in the classical limit, we were able to
isolate the role played by the quantum pressure in modifying
the dynamics. The consequences for attractive interactions
(ε < 0) are fairly straightforward; whereas the classical self-
focusing forms cusp-shaped caustics in the θ -τ plane where the
density diverges, these are replaced by smooth but oscillating
Pearcey wave catastrophes in the quantum dynamics. Similar
structures have been seen (although they are often not identified
as wave catastrophes) in other studies on condensates, both
theoretical and experimental, such as BECs hitting obstacles
[121], atom optics with BECs [122–124], and self-trapping in
polariton BECs [84]. The underlying connection is nonergodic
dynamics. Indeed, wave catastrophes are expected to be a
universal feature of quantum dynamics in mean field or close
to mean field regimes [125], and more rigorous mathematical
analysis of nonlinear Schrödinger equations demonstrates this
to be true provided the nonlinearity obeys certain constraints
[126–128]. A key implication of the appearance of wave
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catastrophes in the present problem is the emergence of new
spatial and temporal scales that are not present in the classical
problem and which scale in a nontrivial way as the effective
Planck’s constant χ is varied.

The repulsive (ε > 0) dynamics also features cusp caustics
although in this case the cusps come in pairs, or biclusters, and
the timescale for their formation is generally much longer than
in the attractive case. The bicluster has special significance
because it is an example of a QSS, i.e., a slowly evolving
nonequilibrium state that is a paradigm of LRI. As in the
attractive case, the biclusters are smoothed by interference and
become Pearcey functions. Deeper in the quantum regime,
zero-point motion becomes dominant and also shifts the
timescales for cluster formation and can even stabilize some
states against clustering. The bicluster is more sensitive to
quantum pressure than the attractive monocluster and the
reduced Planck’s constant χ must be surprisingly small before
classical behavior emerges; specifically, the long-time criterion
is given by χ � Aωpl, where Aωpl is the amplitude of the
velocity fluctuations (“plasma” waves) in the initial state. At
zero temperature, one can construct a nonequilibrium phase
diagram characterizing the QSS as a function of just χ and
Aωpl which are the two dimensionless quantities specifying
the problem.

In addition to investigating the dynamics, we point out that
there is a lack of commutation between the thermodynamic
(N → ∞) and classical (χ → 0) limits. Performing the χ →
0 limit first and then N → ∞ leads to the Vlasov equation,
whereas the opposite order leads to the Euler equations. The
latter equations are a special case of the former, corresponding
to the zero-temperature limit. We hope that in the future
someone will take up the challenge this presents by including
non-mean-field quantum states that go beyond the Gross-
Pitaevskii theory (at least for finite N ) and thus examine the
implications this has for thermalization.

The HMF model provides a simple arena in which to
investigate the essential features of LRI. Atoms trapped in
optical cavities come close to realizing the HMF model
[60] and display a symmetry breaking transition from a
homogeneous to an ordered density [54–62] that has been
observed experimentally [32] and which is essentially the
same phenomenon as clustering. Although the atom-cavity
system is intrinsically open, and hence includes noise and
friction, it would be interesting to see if there are regimes,
e.g., in very high-finesse cavities, where quantum pressure
can dominate other sources of noise and stabilize the system
against ordering. Another possible realization of this work
is in “closed” XY -type spin models such as those that can
be realized with cold Rydberg gases and ensembles of polar
molecules [97–99]. Although the interactions in these systems
are not infinite ranged, they can easily extend over the entire
sample. Yet another quantum system with LRI, perhaps the
most advanced from the experimental point of view [1–12],
are dipolar BECs. The collapse instability has already been
observed in these “quantum ferrofluids” [3,4], but it would be
interesting to see whether they also display violent relaxation in
a geometry where the interactions are predominantly repulsive.

We close by emphasizing that the wave catastrophes
(Pearcey functions) studied in this paper are universal features
of dynamics. They obey self-similar scaling laws and can

therefore be regarded as nonequilibrium generalizations of
phase transitions [125,129]. We hope to expand on this line of
inquiry in the future, both for short- and long-range interacting
systems.
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APPENDIX A: SINUSOIDAL MEAN FIELD POTENTIAL

In Sec. II we claim that �(θ,τ ) always takes the form of
a sinusoid. This result may seem remarkable at first glance
but in fact follows from a well-known and very simple re-
sult. Expanding ρ(θ,τ ) = ∑

k ρ̂k(τ )eikθ , and writing �(θ,τ ) =
Re

∫ π

−π
ρ(φ,τ )ei(θ−φ)dθ one can easily see that �(θ,τ ) =

2πReρ̂1(τ )eiθ . In general, ρ̂k(τ ) = M(τ )eiϕ(τ ), where M(τ )
and ϕ(τ ) are two real-valued functions determined by solving
for the evolution of the full density profile ρ(θ,τ ). Simple
algebra yields

�(θ,τ ) = M(τ ) cos[θ − ϕ(τ )] (A1)

as claimed in the main text. This derivation applies to both
the quantum and classical Euler equations and can be easily
extended to the Vlasov equation by treating a generic phase
space density f (θ,L,τ ) as a linear combination of zero-
temperature ones.

APPENDIX B: VALIDITY OF THE
GROSS-PITAEVSKII TREATMENT

It is often stated that Bose condensation in one-dimensional
systems is forbidden due to phase fluctuations, even at zero
temperature [109]. Formally, Bose condensation implies spon-
taneous symmetry breaking of the global, and continuous, U(1)
symmetry which can be expressed in terms of the field operator
as �̂ → eiθ �̂, and according to the Mermin-Wagner theorem
[107,108], symmetry breaking is forbidden in one-dimensional
systems. However, this theorem does not apply in finite systems
such as a ring of finite radius R where the long wavelength
fluctuations which destroy the condensate are cut off by the
finite system size. Furthermore, the Mermin-Wagner theorem
assumes short-range interactions and so it does not apply
in the presence of LRIs, as evidenced by the fact that the
one-dimensional HMF model, quantum or classical, exhibits
critical phenomena such as the paramagnetic-ferromagnetic
transition [74].

In typical atomic gases the interatomic potential V (r −
r′) is deep and falls off asymptotically as r−6, being of
the isotropic van der Waals type, which is considered short
range from a statistical mechanics point of view [130]. In
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order to provide a low energy description consistent with
the Hartree approximation, V (r − r′) must be replaced by a
pseudopotential gδ(r − r′), where g = 4πh̄2as/m, as being
the s-wave scattering length [131]. This reduces the integral
in � to a purely local nonlinearity ∝ |�|2 such that the
equation of motion for � becomes the usual Gross-Pitaevskii
equation [105,106]. By contrast, if the potential is long ranged
and gently varying, like the sinusoidal potential in the HMF
model, it is neither necessary nor possible to replace it by a
δ-function pseudopotential and one instead retains the integral
in �. The Gross-Pitaevskii equation then takes the form of the
integrodifferential equation, or GGPE, given in Eq. (6). This
form of GGPE has previously been successfully employed to
treat dipolar Bose gases [132–134] and has been rigorously
justified in Ref. [112].

In the presence of long-range interactions, it is the high-
density regime where Gross-Pitaevskii theory applies. A
classic example of this is the charged Bose gas where the
criterion for weak correlation is a0(N/V )1/3 � 1, where
a0 = 4πε0h̄

2/mq2 is the Bohr radius associated with the
Coulomb interaction between particles of charge q [110]. In
other words, the interactions are weak if the Bohr radius is
large in comparison to the interparticle spacing. A related
problem is provided by boson stars where rigorous analysis
has demonstrated that the ground state energy asymptotes to
the Hartree value in the thermodynamic limit [111]. The high
density regime is realized naturally in the N → ∞ limit, and
so it is reasonable to assume that a Gross-Pitaevskii treatment
is justified for a system of indistinguishable bosons interacting
via LRI.

APPENDIX C: NUMERICAL METHOD

To solve the evolution of the GGPE we use the momentum
space representation of Eq. (C1):

iχ∂τ ak = χ2

2
k2ak + sgn(ε)�kk′ak′ := H̃kk′ak′ , (C1a)

�kk′ = 1

2
(Mδk+1,k′ + M∗δk,k′+1), (C1b)

M =
∑
k∈Z

a∗
k ak+1 =

∫ π

−π

|�(τ,θ )|2eiθdθ. (C1c)

This approach is advantageous because, unlike a generic
two-body potential, the cosine potential only couples adja-
cent momentum modes. This leads to a tridiagonal pseudo-
Hamiltonian H̃kk′(τ ) defined in Eq. (C1a), whose time depen-
dence is inherited from the evolution of the order parameter
by way of the mean field potential. The pseudo-Hamiltonian
is truncated at ±kmax and a second-order implicit integration
scheme based on the Dyson series (described below) is used
to evolve forward in time.

Given some state ak(τn) and time τn we first define a time
evolution operator Ukk′[τn,	τ ] given explicitly by

U (τn,	τ ) = 1 − i	τH̃kk′(τn), (C2)

where H̃kk′ is the pseudo-Hamiltonian appearing in Eq. (C1)
and the time step is sufficiently small so as not to invalidate
Von Neumann error analysis (i.e., 	τ < 1/2k2

max). The zeroth

order approximation of ak(τn+1) is taken to be

a
(0)
k (τn+1) = Ukk′(τn,	τ )ak′(τn). (C3)

Proceeding iteratively, the mth approximation is found by
solving the equation

U
(m−1)
kk′

(
τn+1, − 	τ

2

)
a

(m)
k′ (τn+1) = Ukk′

(
τn,

	τ

2

)
ak′(τn),

(C4)

where U (m−1) uses the (m − 1)th approximation of ak(τn+1).
This process is repeated until the overlap between successive
states is unity within one part per million. Explicit schemes
were also tested, and were found to give monotonically
increasing error in the norm of �; successful simulation of
long-time behavior considered in this paper (i.e., bicluster)
requires an implicit scheme.

Finally, we note that to simulate the semiclassical behavior
of the bicluster, it is necessary to include an unexpectedly large
number of Fourier components. This is related to representing
the small amplitude plasma wave v = Aωpl sin θ in the GGPE
form. In particular, one must Taylor expand exp[iS/χ ]. Since
v = ∂θS we have S = O(Aωpl). As is discussed in the main
text, classical-like behavior emerges when Aωpl/χ � 1, and
to obtain an accurate approximation of the wave function’s
Fourier transform requires that (Aωpl)kmax/(kmax!) � 1 where
kmax is the largest Fourier component in the simulation.

APPENDIX D: CLASSICAL DESCRIPTION OF THE
FORMATION OF THE BICLUSTER

For repulsive interactions, linearized dynamics describing
{v̂|k|=1,ρ̂|k|=1} are oscillatory; following Ref. [76] we refer to
this excitation as a plasma wave. For the initial conditions we
choose v1(θ,0) = Aωpl cos θ and ρ(θ,0) = 1/2π , where A �
1, corresponding to a uniform density plus a small position-
dependent velocity modulation v1(θ ) = Aωpl cos θ . In direct
analogy with Eq. (11), the solutions to the linearized equations
of motion with these initial conditions are [76]

ρ1 = − A

2π
sin(ωplτ ) sin θ, v1 = Aωpl cos(ωplτ ) cos θ,

(D1)
where ωpl := ω1 = 1/

√
2 denotes the plasma wave’s fre-

quency. As will be shown below, unlike for attractive interac-
tions, the formation of the bicluster is not driven directly by the
rapidly oscillating mean field potential, but rather by a slowly
evolving effective potential Veff induced by time-averaged
linear plasma oscillations.

As we first saw in Fig. 2, the bicluster forms very slowly in
comparison to the plasma period and this suggests a multiple
scales analysis [76]. Consequently, we consider v(θ,τ ) =
v1(θ,τ ) + Au(θ,T ) where T = Aτ is O(1) when the fast time
τ is O(1/Aωpl); note this hierarchy is only present for A � 1.
Inserting this expression into Eq. (3b), and averaging over
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many plasma oscillations, leads us to

A2∂T u − ω2
plA

2

2
sin(2θ ) cos2(ωplτ )︸ ︷︷ ︸

v1∂θ v1

+A2u∂θu + ω2
plA

2[cos θ∂θu − u sin θ ] cos(ωplτ ) =
∫ π

−π

ρ(θ ′,τ ) sin(θ − θ ′)dθ ′ − ∂v1

∂τ︸ ︷︷ ︸
L

time averaged ⇒ ∂T u + u∂θu = −〈v1∂θv1〉T := − 1

A2
∂θVeff(θ ) where Veff(θ ) =

[
A2ω2

pl

8
cos 2θ

]
. (D2)

In going from the first line to second line, we have used the fact
that the convolution on the right-hand side depends only on the
first Fourier component of the density ρ̂k=±1 and consequently
the quantity L vanishes at all times [135] because it satisfies
the linearized equations of motion. This gives a remarkably
simple result [75,76]: the slow velocity field u(θ,T ) obeys
a Euler equation driven by Veff(θ ) [compare with Eq. (3b),
the original Euler equation obeyed by the full velocity field].
Veff is derived from the square of the plasma wave and hence
corresponds to a potential with two minima around the ring,
giving rise to two symmetric clustering points. Furthermore,
there is negligible back-action on the plasma wave by the slow
dynamics:Veff is invariant under θ → θ + π , and consequently
only influences ρ̂k and v̂k for k even. We therefore expect the
linear dynamics of the first Fourier component to continue to
be a good approximation even at late times.

The first appearance of the bicluster state can be estimated
by considering Eq. (D2), whose characteristics are Jacobi ellip-
tic functions. Near a minimum of Veff these are approximately

cosine functions, and we can approximate Veff ≈ A2ω2
pl

4 (θ −
θmin)2. This identifies the frequency of the bicluster oscilla-
tion in the original fast time coordinate as ωeff = Aωpl/

√
2.

Consequently, the first bicluster will appear at one quarter the
oscillator period Tbc = π/2ωeff = π/

√
2Aωpl [76].

APPENDIX E: UNIVERSALITY IN SELF-FOCUSING

Pearcey functions can be expected as a generic consequence
of self-focusing in coherent quantum systems. The reasons
behind this are most easily understood in the case of linear
wave equations, however, the same underlying ideas generalize
for sufficiently weak nonlinear effects. Importantly, the HMF
model’s nonlinearity acts essentially as a linear, albeit time-
dependent, background potential, which is relatively insensi-
tive to the local structure of the wave function, and therefore
its dynamics is well modeled by linear theory.

First, let us consider the one-dimensional linear Schrödinger
equation

ih̄∂tψ = − h̄2

2
∂2
xψ + V (x)ψ, (E1)

with initial data ψ(x,0) = ψ0(x) = A(x) exp[iϕ(x)/h̄]. The
solutions of this equation may be expressed via the integral
equation

ψ(x,t) =
∫

dx ′K(x ′; x,t)ψ0(x ′)

= f (t)
∫

dx ′A(x ′)ei[Scl(x ′;x,t)+φ(x ′)]/h̄, (E2)

where we have used the fact that the propagator may be
expressed in terms of the classical action via K(x ′; x,t) =
f (t) exp[iScl(x ′; x,t)/h̄] [136]. In the limit that h̄ → 0, the
above integral is dominated by the stationary points (with
respect to x ′) of what we will now refer to as the generating
function � = Scl + φ.

The integral in Eq. (E2) is over all paths labeled by their
initial positions x ′ (see Fig. 4 for an illustration of the paths.)
We interpret x and t as control parameters of the function
�(x ′; x,t), and for a given choice of x and t we can generically
expect the stationary points of � to be locally quadratic in
x ′. If, however, we consider all values of x and t , then it is
generic that pairs of stationary points will coalesce leaving the
function � looking locally cubic (hereafter referred to as a
fold), and furthermore these cubic points may coalesce to give
locally quartic behavior � ∝ (x ′ − y ′)4 (hereafter referred to
as a cusp). Remarkably, it is not generic that these quartic
points may coalesce when one varies two control parameters
(in this case x and t) [89], and therefore these three possibilities
(saddle, fold, cusp) are exhaustive in a two-dimensional control
space.

The coalescing of saddles is in direct correspondence with
self-focusing behavior in the classical dynamics. This can
be understood as follows: a saddle represents a classical
trajectory, and a coalescing of saddles represents the focusing
of two trajectories. Catastrophe theory guarantees us that when
focusing occurs in a two-dimensional control space, we need
only consider folds and cusps. In an associated wave theory
such as the HMF model’s GGPE, this structure is inherited via
an Airy and Pearcey function structure, respectively.

This can be understood by taking Eq. (E2) and transforming
the control variables (x,t) → (C1,C2) and introducing s =
(κ/h̄)1/4(x ′ − y ′) (where κ = �(4)|y ′/4!) such that �(s; y,τ )
assumes its normal form [137]. For the cusp catastrophe this
is �(s; C1,C2) = h̄(s4 + C2s

2 + C1s) and this form is valid
when the control parameters (C1,C2) [or equivalently (x,t)]
are close to the cusp point or fold line. One can then expand
A(x ′) about s = 0 and assuming that A(x ′) = A0 + O(s), and
likewise that f (t) ≈ f0 in the vicinity of the cusp this leads to
the local form of the wave function [116]

ψ(C1,C2) ∼ f0A0

(κ

h̄

)1/4
∫

ds exp[i(s4 + C2s
2 + C1s)]

= f0A0

(κ

h̄

)1/4
Pe(C2,C1). (E3)

Similar considerations give Airy functions in coordinates
perpendicular to the fold lines.

Importantly, wave catastrophes are robust against both
perturbations in the initial data, and the precise details of the
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wave equation. This is the statement of structural stability upon
which catastrophe theory is built. This provides a justification
for identifying the structures in Figs. 3, 5(e), 5(f), and 8 as
Pearcey functions, and this claim is further vindicated by the
fact that in the classical theory these same structures are well
understood to result from the pileup of trajectories.

Finally, we comment on the robustness of these caustic
structures even in the presence of stronger local nonlinearities
such as in the GPE. One might expect that the universality
discussed above would be destroyed by a term such as

|ψ |2ψ since |ψ |2 ∼ O(1/
√

h̄) near a cusp point. Surprisingly,
however, rigorous mathematical studies have demonstrated
that even in this case the linear theory presented above is
trustworthy in the vicinity of the caustic for surprisingly large
nonlinearities. This is true both for Airy-function behavior near
a fold catastrophe [126,128], and Pearcey-function behavior
near a cusp catastrophe [127]. The fact that these structures are
robust, even against a local nonlinearity suggests, that linear
analysis should certainly hold for the much milder nonlocal
GGPE employed in this work.
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“Such, in the month of August 1834, was my first chance in-
terview with that singular and beautiful phenomenon which
I have called the Wave of Translation”’

—John F. Scott Russell

CHAPTER 3
Solitary Waves in the HMF Model:
Exact Solutions of the GGPE

Ryan Plestid, and D.H.J. O’Dell
Balancing long-range interactions and quantum pressure: solitons in the HMF model
Phys. Rev. E 100, 022216; doi:10.1103/PhysRevE.100.022216
Copyright 2019 by the American Physical Society

In this paper we explain how to determine exact stationary states of the HMF model’s
GGPE by mapping the model’s non-linear equations onto a well known linear equation
whose solutions are tabulated as special functions (Mathieu functions). We discover
that for certain parameters there are an infinite set of non-trivial stationary solutions
generalizing the results for the ground state obtained by Chavanis [82].

We identify each of these states as solitary waves in the limit that χ → 0. In this
limit the solutions are found to become highly localized, being trapped by their own
mean-field potential into a region whose spatial extent is ∼ O(χ). We are able to
provide analytic formulae describing the solitons in this same limit by leveraging
known and tabulated asympotitc formulae for the Mathieu functions. Using the same
small-χ behaviour we are able to calculate the linearized normal mode spectrum and
we establish that the full tower of solitons is asymptotically stable in the χ→ 0 limit.

Finally, we note that the analytic features of the following paper are put to extensive
use in Chapter 4 where they are used to contruct beyond-mean-field states for the
HMF model’s full many-body ground state.

67



McMaster University – Department of Physics & Astronomy – Ryan Plestid – Ph.D. Thesis

Our major focuses in this chapter are as follows

• How can the HMF model’s non-linear eigenvalue problem be mapped onto a
known linear eigenvalue problem?

• Can the stationary states of the HMF model’s GGPE be identified as solitary
waves (i.e. solitons)?

• Are these solitons stable with respect to to small perturbations?

• Can we determine analytic solutions in the small χ limit for the full set of solitary
waves?

68



PHYSICAL REVIEW E 100, 022216 (2019)

Balancing long-range interactions and quantum pressure:
Solitons in the Hamiltonian mean-field model
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The Hamiltonian mean-field (HMF) model describes particles on a ring interacting via a cosine interaction,
or equivalently, rotors coupled by infinite-range XY interactions. Conceived as a generic statistical mechanical
model for long-range interactions such as gravity (of which the cosine is the first Fourier component), it has
recently been used to account for self-organization in experiments on cold atoms with long-range optically
mediated interactions. The significance of the HMF model lies in its ability to capture the universal effects of
long-range interactions and yet be exactly solvable in the canonical ensemble. In this work we consider the
quantum version of the HMF model in one dimension and provide a classification of all possible stationary
solutions of its generalized Gross-Pitaevskii equation (GGPE), which is both nonlinear and nonlocal. The exact
solutions are Mathieu functions that obey a nonlinear relation between the wave function and the depth of the
mean-field potential, and we identify them as bright solitons. Using a Galilean transformation these solutions
can be boosted to finite velocity and are increasingly localized as the mean-field potential becomes deeper. In
contrast to the usual local GPE, the HMF case features a tower of solitons, each with a different number of
nodes. Our results suggest that long-range interactions support solitary waves in a novel manner relative to the
short-range case.

DOI: 10.1103/PhysRevE.100.022216

I. INTRODUCTION

Solitary waves are one of the most distinctive conse-
quences of nonlinearity and result from a balance between
dispersion and nonlinear forces. Their defining property is
shape-preserving (i.e., dispersionless) propagation, as first
noted in 1834 by J. Scott Russell when he observed them
on the Edinburgh and Glasgow Union Canal [1]. The phe-
nomenon has subsequently been extensively studied in clas-
sical hydrodynamics [2–5] and also in light propagating in
optical fibers [6–11] and Bose-Einstein condensates (BECs)
formed in dilute atomic gases. In the latter case, quantum
pressure (quantum zero point motion) provides the stabilizing
dispersion against collapse. Bright [12–17], dark [18–25], and
dark-bright [26,27] varieties of solitary wave have all been
observed in BECs.

In integrable systems solitary waves are guaranteed to
survive collisions with one another, and are then referred to
as solitons, i.e., elastically scattering and shape-preserving
wave packets. Well-known examples occur in the Korteweg-
de Vries equation [28–30], Sine-Gordon equation [28,29,31],
and the nonlinear Schrödinger or Gross-Pitaevskii equation
(GPE) [29,30,32]. The nonlinearity in all these wave equa-
tions appears as a local term that depends only on the wave
function at the same point. For example, the GPE has a
cubic term g�(x, t )|�(x, t )|2 where g parameterizes the sign
and magnitude of the self-coupling. However, there exist
physical systems where long-range interactions (LRIs) lead to

*plestird@mcmaster.ca
†dodell@mcmaster.ca

a nonlocal nonlinearity that can also support solitary waves.
This is the case in nonneutral plasmas [33], where there is a
net Coulomb 1/r interaction, in the Calogero-Sutherland (CS)
model [34–36], where particles interact via a 1/r2 potential,
and in dipolar BECs [37–44], where dipole-dipole interactions
lead to 1/r3 interactions. Nonlocal interactions also occur
in optical systems, such as those mediated by thermal con-
duction [45–49], and their consequences have been observed
experimentally [50,51]. The CS model is integrable and hence
supports true solitons [52–55], whereas nonneutral plasmas
are not integrable systems and only support solitary waves.
Dipolar BECs display an instability where the attractive part
of the interaction can cause the system to collapse [40]; far
from the instability solitary waves are predicted to collide
elastically and thus behave as solitons, whereas close to the
instability the collisions become inelastic due to the emission
of phonons [56]. In the BEC literature it is common not to
distinguish solitons from solitary waves and thus we use the
terms somewhat interchangeably in this paper.

In dipolar BECs solitons are usually analyzed using
a generalized Gross-Pitaevskii equation (GGPE), which is
an integro-differential equation that incorporates the non-
local nonlinearity through a Hartree-type mean-field term
of the form �(x, t )

∫
V (x − x′)|�(x′, t )|2 dx′ [56–61]. This

approach has recently been put on a rigorous mathematical
footing [62,63]; for reviews of nonlocal nonlinear Schrödinger
equations we refer the reader to Refs. [64] and [65]. It has
also been suggested that the Manakov equations [66] (which
describe both two-component BECs [67] and randomly bire-
fringent light in optical fibers [68,69]) can give rise to a so-
called algebraic nonlinearity provided the system is prepared

2470-0045/2019/100(2)/022216(16) 022216-1 ©2019 American Physical Society
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with a specific set of initial conditions [70]. Integral terms
can also appear in the equations describing the motion of
vortices in superfluids at finite temperatures; they arise, for
example, from the mutual friction between a solitary wave
along a vortex and its surrounding flow [71].

Another physically important class of nonlocal nonlinear-
ity is found in self-gravitating systems. In particular, compact
yet stable astrophysical objects made of bosons and known
as “Bose stars” have been hypothesized [72,73]. These can be
identified as solitons if the attraction due to gravity is balanced
by quantum pressure [74]. The realization that dark matter
in the universe may be bosonic and cold enough to Bose
condense into such Bose stars has driven considerable interest
in these systems [75–81]. For the most part these studies
use the nonrelativistic Schrödinger-Newton (also known as
the Schrödinger-Poisson) equations [82,83], which result in
a GGPE similar in form to both the GGPE used for dipolar
BECs and also the equation to be studied in this paper. We also
note in passing that laboratory analogues of the Schrödinger-
Newton system have been proposed in the form of atomic
BECs with a 1/r interaction provided by laser-induced dipole-
dipole interactions [84,85].

The focus of the present paper is the Hamiltonian mean-
field (HMF) model [86] which describes N particles of mass
m living on a ring. They have positions θi ∈ (−π, π ], angular
momenta Li, and interact via a pairwise cosine potential of
strength ε giving the Hamiltonian

H =
∑

i

L2
i

2I
+ ε

N

∑
i< j

cos(θi − θ j ), (1)

where I = mR2 is the moment of inertia for a ring of radius R.
Since every particle interacts with every other due to the long-
range nature of the interactions, a factor of 1/N is explicitly
included to make the energy extensive (often termed the Kac
prescription [87]). The cosine potential can be thought of as
the first nonconstant term in a Fourier series expansion of a
gravity- or Coulomb-like 1/r interaction around the ring, but
without the singularity at r = 0 that otherwise complicates
the treatment of such potentials. Another way to view the
HMF model is as a system of N rotors interacting via an
infinite range XY interaction. If ε > 0 the particle interactions
are repulsive at small distances, or equivalently, the rotors
experience an antiferromagnetic coupling and hence prefer
to antialign. If instead ε < 0 the interactions are attractive-
ferromagnetic and the rotors prefer to align. The average mag-
netization of the rotors along an axis specified by its angle ϕ to
the vertical is given by 〈cos(θ − ϕ)〉 = (1/N )

∑
i cos(θi − ϕ),

and this quantity serves as an order parameter for a symmetry-
breaking phase transition (clustering transition) which occurs
in the attractive case at low temperatures [88]. In this paper
we focus on the attractive-ferromagnetic case.

The HMF model was originally written as a toy model,
and its significance lies in the fact that it is simple and yet
able to capture many of the general qualitative properties of
systems with LRI; for reviews see Refs. [88–90]. However,
more recently it was realized that cold atomic gases trapped
in high-finesse optical cavities can directly realize the HMF

model [up to an additional term of the form cos(θi + θ j )] [91].
Here the long-range interactions are electromagnetic in origin
and mediated by optical cavity modes that can extend over the
entire gas. Ongoing experiments [92–97], many with BECs,
have demonstrated symmetry breaking and self-organization
in the atomic density distribution that is described by the HMF
model [91,98–101].

One of the most striking properties of systems with LRI
has long been appreciated by the astrophysics community: the
two-body relaxation time (also known as the Chandrasekhar
relaxation time) to thermodynamic (Boltzmann-Gibbs) equi-
librium, diverges with the number of particles trelax ∼
Ntcross/10 log[N], where tcross is the typical time for a parti-
cle to cross the system [102]. Thus, in the thermodynamic
limit N → ∞ the system never achieves thermodynamic
equilibrium. Nevertheless, when a self-gravitating system is
disturbed from equilibrium the common mean-field potential
that arises from the long-range nature of gravity becomes
time dependent and can drive a rapid, collisionless relaxation
mechanism known as violent relaxation whose timescale does
not depend on the number of particles. This efficiently mixes
phase space [102], but the process is nonergodic and the
resulting quasistationary state is not the equilibrium state
predicted by the microcanonical ensemble. However, coarse
graining of the phase space distribution function by a macro-
scopic observer averages over the increasingly fine structures
that develop during collisionless relaxation and in this way
conventional statistical mechanics approaches can be applied
[90,103–105]. The HMF model has been shown to display
violent relaxation [106–109], as well as other generic con-
sequences of LRI, including spontaneous symmetry breaking
in low dimensions, i.e., the clustering phase transition men-
tioned above (LRI violate the Mermin-Wagner theorem), and
the so-called “core-halo” statistics observed at late times in
gravitational dynamics simulations [90,104,105].

The HMF model can be extended to describe quantum
systems with LRI if we replace the kinetic energy term in
Eq. (1) by its quantum operator − h̄2

2mR2 ∂
2
θi

, and the system is
then equivalent to an infinite range O(2) quantum rotor model
[110–114]. Motivation for studying the quantum problem
comes both from cold atom experiments and the Bose star
picture of dark matter mentioned above. The equilibrium
states of the quantum HMF model have been examined in
Refs. [115,116] and the dynamics, including violent relax-
ation, were recently studied in Ref. [117], where it was found
that the automatic coarse graining of phase space at the level
of Planck’s constant h can strongly modify the relaxation
in the deep quantum regime. Furthermore, in its quantum
form the HMF model bears a resemblance to the CS model
mentioned above, which, when defined on a finite domain
with periodic boundary conditions, has a pairwise interaction
V (θi − θ j ) = 1/ sin2(θi − θ j ). Like the HMF model, the CS
model has a periodic infinite range interaction. This connec-
tion is relevant in the present context because the CS model
supports true solitons. The HMF model is not thought to be
exactly integrable, but intriguingly, classical long-range inter-
acting many-body systems are known to be described (exactly
in the N → ∞ limit [118]) by the Vlasov equation. Vlasov
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dynamics are integrable for a on-dimensional system [119],
such as the HMF model.1 Furthermore, the classical (i.e.,
h̄ → 0) limit of the GGPE corresponds to the “zero-
temperature” limit of the Vlasov equation [108,109,117].
Therefore, although the HMF model is not exactly inte-
grable, its classical dynamics are nearly integrable due to
the structure of the Vlasov equation. We speculate that the
“pseudo-integrability” extends also to the GGPE and may
allow the solitary waves (bright solitons) presented here to
scatter elastically.

Our goal in this work is to study solitary waves in the
quantum HMF model with attractive-ferromagnetic interac-
tions. We focus on the model’s associated GGPE, appropriate
for describing the dynamics of a Bose condensed state (the
HMF model, despite its name, describes a many-body system:
to obtain a GGPE we assume all the particles occupy the
same quantum state). We find that the exact solutions to
this equation are Mathieu functions that satisfy a nonlinear
self-consistency relation. As the interaction strength tends to
infinity the number of these solutions also becomes infinite
and we identify them as bright solitons each with a different
number of nodes. Both the large number of solutions and the
fact they have nodes makes them unusual when compared to
the standard local GPE case [32]. We attribute these differ-
ences to the LRI themselves and hypothesize that this might
be a generic feature.

This paper is organized as follows: In Sec. II we introduce
the GGPE for the HMF model. In Sec. III we show how to
find the full set of exact stationary solutions to the GGPE via
a self-consistent Mathieu equation, and in Sec. IV we boost
these solutions to finite velocity to obtain traveling waves.
In Sec. V we explore the regime in which the solutions can
be considered as bright solitons and discuss the parametric
dependence of the stationary solutions on Planck’s constant.
Next we discuss the asymptotic behavior of these solutions
and derive useful analytic expressions. In Sec. VI we study
their stability at leading order in the strong coupling regime
by linearizing the equations of motion and analyzing the mode
spectrum. Finally, in Sec. VII we summarize our work and
discuss future directions of investigation.

II. GENERALIZED GROSS-PITAEVSKII EQUATION

An atomic BEC with short-range interactions is described
by the standard GPE with a local cubic nonlinearity [121]

ih̄
∂�

∂t
=
[
− h̄2

2m
∇2 + Vext (x) + gN |�|2

]
�, (2)

where N is the number of atoms, �(x, t ) is the condensate
wave function normalized to unity:

∫∞
−∞ |�|2 dx = 1, Vext (x)

is a possible external potential, e.g., a harmonic trap or
periodic optical lattice potential, and the coupling constant
g parameterizes the interatomic interactions (usually of the
van der Waals type). Any stationary solution to this equa-
tion can be found in the usual way by putting �(x, t ) =

1Furthermore, the infinite set of Casimir invariants for the Vlasov
equation can mimic the effects of integrability for higher dimensional
systems with LRI; see, e.g., Ref. [120].

ψ (x) exp[−iμt/h̄], giving

μψ =
[
− h̄2

2m
∇2 + Vext (x) + gN |ψ |2

]
ψ. (3)

If this were a linear Schrödinger equation, the eigenvalue
μ would be the energy E of the state ψ . However, due
to the nonlinearity of the GPE μ is in fact the chemical
potential which is the change in energy associated with adding
a particle to the system: μ = ∂E/∂N [121]. In a waveguide
configuration, where the BEC is tightly trapped in the x and
y directions but untrapped along the z direction, the problem
becomes effectively one-dimensional. Specializing further to
the case of attractive interactions (g < 0), the stationary GPE
has the bright soliton solution

ψ0(z) = ψ0(0)
1

cosh(z/
√

2ξ )
, (4)

where ρ0 = |ψ0(0)|2 is the central density and ξ =
1/

√
2m|g|ρ0 is a characteristic length called the healing length

[121]. In the optical soliton literature this solution is called the
fundamental soliton and the coordinate z is replaced by z − vt
representing a shape-preserving waveform propagating at the
group velocity v (there is also a multiplicative phase factor we
shall not specify here) [11].

By contrast, the LRI in the HMF model lead to a nonlocal
nonlinearity [116,117]. The HMF model lives on a ring so
that the wave function obeys periodic boundary conditions
�(θ, t ) = �(θ + 2π, t ), and it also does not include an ex-
plicit potential Vext (x). Fixing the interactions to be attractive
(i.e., ε < 0), the HMF model’s GGPE can be written in
reduced variables as

iχ
∂�

∂τ
=
[
−χ2

2

∂2

∂θ2
− (θ, τ )

]
�, (5a)

where (θ, τ ) =
∫ π

−π

ρ(θ ′, τ ) cos(θ − θ ′) dθ ′ (5b)

is a nonlocal Hartree potential that depends on the integral
over the angular probability density ρ(θ, τ ) = |�(θ, τ )|2. We

have introduced the quantities τ = t×
√

|ε|
mR2 and χ , the latter

of which plays the role of a dimensionless Planck’s constant:

χ = h̄√
mR2|ε|

. (6)

Note that χ depends on the magnitude of the interaction
strength |ε|.

The seemingly complicated integro-differential equation
given in Eq. (5) can be simplified by expanding the probability
density in its Fourier components ρ(θ ′) = ∑

ρ̂keikθ ′
/2π . We

see that  depends only on ρ̂±1, which we can write in all
generality as ρ̂±1 := M(τ ) exp [∓iϕ(τ )]. From this it follows
that the Hartree potential takes the remarkably simple form

(θ, τ ) = M(τ ) cos[θ − ϕ(τ )]. (7)

The physical significance of this result is that all the individual
two-body XY potentials of the many-body theory are replaced
in the Gross-Pitaevskii theory by a single collective potential
(θ, τ ) which retains the same XY form (a cosine) but breaks
the angular symmetry by picking out a particular direction
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specified by ϕ(τ ) along which the magnetization is M(τ ).
Furthermore, because M(τ ) is the coefficient of the ±1 terms
in the Fourier expansion of the probability density, we can
always project it out from the angular probability distribution
via the integral

M(τ ) =
∫ π

−π

ρ(θ, τ ) cos(θ − ϕ) dθ, (8)

which is the continuous version of the definition of the
magnetization given in the Introduction, M = 〈cos(θ − ϕ)〉 =
(1/N )

∑
i cos(θi − ϕ).

The stationary states �(θ, τ ) = ψ (θ ) exp[−iμτ/χ ] of the
GGPE satisfy the equation

−χ2

2

∂2ψ

∂θ2
+ (−μ − M[ψ] cos θ )ψ = 0, (9)

where we have taken advantage of the fact that in the sta-
tionary case we can define our coordinates such that ϕ = 0.
As for the case of contact interactions, the eigenvalue μ

is not the same as the energy E = 〈ψ |H |ψ〉 of the state
ψ associated with Hamiltonian given in Eq. (1), but is the
chemical potential.

The stationary GGPE given in Eq. (9) has the same form
as the Mathieu equation [122]

∂2w

∂z2
+ [a − 2q cos(2z)]w = 0, (10)

whose solutions are Mathieu functions. These are denoted
cen(z; q) and sen(z; q) and have eigenvalues a = An(q) and
Bn(q), respectively. In general, Mathieu functions also depend
on a second parameter, which physically is the quasimomen-
tum. However, here the quasimomentum is fixed to be zero by
the periodic boundary conditions imposed by the ring.

There is a crucial difference between the standard Mathieu
equation and the GGPE. Whereas the former corresponds
to a linear problem where the “depth parameter” q of the
cosine potential takes a fixed specified value, in our problem
the depth of the cosine potential is the magnetization M[ψ]
which is a functional of the wave function and so depends
on the solution itself. In other words, we have a nonlinear
eigenvalue problem which, remarkably, has eigenvectors that
are Mathieu functions obeying a linear equation but which
must be supplemented by the self-consistency condition

M[ψ] =
∫ π

−π

|ψ (θ ′)|2 cos(θ ′) dθ ′. (11)

We note that this is simply a restatement of Eq. (8) for a
density ρ(θ ) = |ψ (θ )|2 that is independent of time.

An analogous situation occurs in cavity-QED where atoms
are trapped in an optical cavity pumped by a laser [123–128].
The laser light forms a standing (or traveling [129,130]) wave
inside the cavity which the atoms experience as a sinusoidal
potential via the optical dipole interaction. The atoms’ center-
of-mass wave function is therefore also determined by the
Mathieu equation. However, the interaction acts back on the
light which sees the atoms as a refractive medium. This
backaction shifts the cavity’s resonance frequency, and hence
controls the amount of laser light that can enter the cavity, by
an amount that depends on the overlap between the atomic
density distribution and the optical mode. In this way the

atomic density profile affects the depth of the sinusoidal
potential which in turn affects the atomic density profile. The
problem is therefore nonlinear and also leads to a Mathieu
equation with a parameter q that must be determined self-
consistently from the atomic wave function like in Eq. (11).
One effect of this nonlinearity is the appearance of curious
loops in the band structure that are not present in the linear
problem and which can lie in the band gaps [124,131].

Band gap loops also occur in the problem of a BEC in
an optical lattice of fixed depth, i.e., Eq. (2) with Vext (x) =
V0 cos(kx), where the nonlinearity comes purely from inter-
atomic interactions modeled by the cubic nonlinearity. This
situation has been investigated both experimentally [132]
and theoretically [133–138] where it is found that the loops
correspond to two different types of solutions: periodic trains
of solitons, i.e., spatially extended solutions [136,138], and
localized band gap solitons [137]. Despite their localization,
these latter solitons can have one or more nodes. In the HMF
problem we also have a cosine potential but it is limited
to a single period by the periodicity of the ring. This fixes
the quasimomentum to zero and hence collapses the band
structure to the center of the Brillouin zone. Still, we shall
find analogous solutions to localized band gap solitons as will
be described below.

III. SELF-CONSISTENT MATHIEU FUNCTIONS

To convert between the GGPE given in Eq. (9) and the
standard form of the Mathieu equation given in Eq. (10)
we make the identifications2 θ = 2(z + π/2) and ∂2

z = 4∂2
θ .

Multiplying both sides of Eq. (10) by a factor of −χ2/8 we
find

μ = χ2

8
a and M = χ2

4
q. (12)

The solutions we require are the ones that are 2π -periodic in
the angle θ , and these correspond to ce2n and se2n with n � 0
an integer.

To find self-consistent solutions of the GGPE we use the
following algorithm:

(1) We first treat q as a fixed parameter like in the usual
linear theory of Mathieu functions. Taking a given Mathieu
function of fixed n and q (which we denote qn) we compute
M(qn) using Eq. (11) where ψ = cen(z; qn)/

√
π or ψ =

sen+1(z; qn)/
√

π and z = (θ − π )/2.
(2) Next, we obtain χ (qn) by using Eq. (12), which gives

χ (qn) = √
4M(qn)/qn.

(3) The above two steps are repeated a large number of
times for different values of q to obtain a map between χ and
q. This must be done separately for each Mathieu function
(each value of n).

(4) Although we have treated q as a parameter upon which
χ depends, in reality the situation is reversed with qn being
determined self-consistently in terms of χ . We therefore invert
the map χ (qn) to find qn(χ ; ℵ) where we have introduced the

2The shift in coordinates is equivalent to a negative value of q and
accounts for the attractive nature of the interparticle interaction.
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FIG. 1. Self-consistent values of the potential depth, as parame-
terized by q, as a function of χ for the first four stationary solutions:
this plot shows which Mathieu functions satisfy both Eq. (9) and
the self-consistency condition (11). Using Eq. (13) we can then
find explicit expressions for the stationary state ψn(θ ; χ,ℵ). The
parameter ℵ labels the different branches of qn(χ ; ℵ). Note that both
n = 2 and n = 3 have two branches as the function turns back on
itself. This is a generic feature for n � 2.

integer ℵ to label different branches of the function in the case
that χ (qn) is not invertible. The results are shown in Fig. 1.

Noting that Mathieu functions are conventionally normal-
ized on the unit circle such that

∫ |cen(θ )|2dθ = π , and∫ |sen(θ )|2dθ = π , we define our stationary states as

ψn(θ ; χ,ℵ) = 1√
π

{
cen

[
θ−π

2 ; qn(χ ; ℵ)
]

n even

sen+1
[

θ−π
2 ; qn(χ ; ℵ)

]
n odd

(13)

where qn(χ ; ℵ) is obtained via the algorithm outlined above.
In Figs. 2 and 3 we plot some examples of these stationary
solutions for χ = 0.5 and χ = 0.05, respectively, where in the
latter case both branches of solutions exist, so we have chosen
the ℵ = 1 branch. We see that n gives the number of nodes.

According to its definition in Eq. (6), χ decreases as the
magnitude of the (attractive) interaction strength |ε| increases,
and hence the ℵ = 1 branch solutions correspond most natu-
rally to bright solitons: from Fig. 1 we see that as χ decreases
the potential, as parameterized by q, becomes deeper and the
states are more tightly bound as can be seen by comparing
Fig. 2 with 3 (see Sec. V for further justification that these
are really localized solutions). By contrast, the ℵ = 2 branch
corresponds to shallower potentials which vary only slightly
with χ . This branch continuously passes to negative χ (not
shown in Fig. 3) corresponding to repulsive interactions,
which shows that the repulsive HMF model can also support
stationary states; however, we emphasize that these states

�
2 2

1

�
2 2

1

FIG. 2. Plots of the two self-consistent stationary solutions to the
GGPE [Eqs. (5a) and (5b)] that exist at χ = 0.5. They are the n = 0
and n = 1 states, where n gives the number of modes. The solutions
are periodic with period 2π .
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FIG. 3. Plots of the first six self-consistent stationary solutions to
the GGPE for χ = 0.05. These solutions all lie on the upper branch
of Fig. 1, i.e., ψn(θ ; χ,ℵ = 1) where n ∈ {0, 1, 2, 3, 4, 5}. Note that
even for moderately small values of χ the first few stationary states
are quite well localized, and upon a Galilean transformation to finite
velocity can be interpreted as solitary wave solutions. All states are
periodic with period 2π .

generally have smaller values of q and are less localized than
their attractive interacting counterparts.

The first two solutions, ψ0 and ψ1, have only a single
branch and are shown in Fig. 2. For weak interactions (χ  1)
ones finds that q is zero so that the self-consistent Hartree
cosine potential is zero. These solutions then correspond to
ordinary sine waves (although, as shown in Fig. 4, for χ >

√
2

the energy eigenvalue or chemical potential corresponding to
ψ0 takes the value μ = 0, and thus this is a trivial solution
corresponding to an infinite wavelength, i.e., a flat density
profile). However, at a critical value of χ , which is different
for each solution, the Hartree potential switches on and the
solutions evolve continuously into Mathieu functions. For
ψ0 this occurs at χ = √

2 [116], and for ψ1 it occurs at
χ = 1/

√
3. The higher solutions behave differently, as can be

seen from Fig. 1. In their case each solution again switches
on below a critical value χ , but q takes on a finite value at
the point each solution appears (and which immediately splits
into two branches).

With the knowledge of the dependence of the qn’s upon χ

depicted in Fig. 1 we can straightforwardly obtain physical
quantities such as the chemical potentials and magnetizations

1

2
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Μ1
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Μ3

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Χ

1.0
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0.6
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0.2

0.0

0.2
Μ

FIG. 4. The eigenvalues μ of the GGPE as a function of χ for the
first four stationary solutions. μ0 and μ1 abruptly appear at critical
values of χ = √

2 and χ = 1/
√

3, respectively; for larger values of
χ the self-consistent Hartree cosine potential is zero (i.e., q = 0),
and the solutions ψ0 and ψ1 are ordinary sine waves so we have not
plotted that portion of their eigenvalues. Like in Fig. 1, ℵ = 1 and
ℵ = 2 label the two branches of the higher solutions.
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FIG. 5. The magnetization M as a function of χ for the first four
stationary solutions. With the exception of the two lowest states, the
solutions have two branches labeled by ℵ = 1 and ℵ = 2 like in
the earlier figures. Treating the magnetization as an order parameter
signifying a clustering or ordering phase transition which breaks the
angular symmetry of the system, we see that this transition is second
order (continuous), at least in the lowest two states. The fact that a
phase transition occurs in a 1D system is a special feature of LRI.

of all the stationary states. These are plotted in Figs. 4 and
5, respectively. Each chemical potential μn = ∂En/∂N gives
the change in energy of its respective state En = 〈ψn|H |ψn〉
when a particle is added to the system. From Fig. 4 we
see that the gaps between the different μn vanish linearly
as χ → 0, so that all μn tend to the common value of −1.
However, the rate at which they approach this limit is higher
the higher the state so that the largest gap is between μ0

and μ1.
Although the chemical potential is sensitive to the clus-

tering or ordering phase transition that occurs at the critical
value of χ , it is the magnetization which is usually taken
as the order parameter for the transition [88]. In particular,
examining the behavior of the magnetization M0 of the lowest
state in Fig. 4, we see that when the coupling is weak (χ  1)
the magnetization is zero but at the critical value χ = √

2
it begins to take on finite values indicating a second order
(continuous) phase transition. Similar behavior is found for
M1. However, the behavior of the magnetization of the higher
states is more complicated; nevertheless the ℵ = 1 branches
of these states, which correspond to bright solitons, tend to full
magnetization M = 1 in the strong coupling regime χ � 1.

The results given in this section generalize those obtained
by Chavanis [116] for the ground state of the quantum HMF
model. In particular, the approach described above allows one
to classify all possible stationary states of the GGPE. They
are labeled by their number of nodes n, and their depth pa-
rameter qn(χ ; ℵ). Furthermore, while the approach followed
in Ref. [116] gives an expansion for the small q properties of
the ground state ψ0(θ ; χ ), as well as the leading order result
in the strong-coupling regime χ � 1, the approach followed
here is valid for all values of χ and, upon computation of
qn(χ ), provides an analytic expression for ψn(θ ). The stan-
dard large and small q asymptotics of the Mathieu functions
[122] can then be used to obtain analytic approximations for
qn(χ ; ℵ = 1).

The fact that the GGPE admits a tower of stationary
solutions ψn(θ ; χ,ℵ), each labeled by its number of nodes n

and branch ℵ, is quite distinct from the case of the local GPE
where there is only a single stationary bright soliton solution,
i.e., the nodeless fundamental soliton given in Eq. (4). In par-
ticular, the GGPE’s tower of stationary solutions should not
be confused with the so-called “higher order solitons” found
in the local GPE which can display multiple peaks and nodes
at certain instants of time [6,11,139]. These higher order
solitons are time-dependent combinations of the fundamental
and do not correspond to the individual stationary solutions
we describe above. Indeed, as famously shown by Zakharov
and Shabat [140], the inverse scattering transform method can
be applied to the local GPE and in general gives rise to a
nonlinear superposition of multiple fundamental solitons and
continuous waves (see p. 21 in Ref. [9] and p. 245 in Ref. [11]
for a summary of these results).

IV. BOOSTED SOLUTIONS

The same solutions as already described for the stationary
case can be transformed to traveling waves with velocity v by
performing a Galilean boost:

ψn(θ )e−iμnτ/χ → ψn(θ − vτ )eivθ/χ e−i(μn+v2/2)τ/χ . (14)

In order that these wave functions still satisfy the periodic
boundary conditions we require that v/χ = n with n ∈ Z.
The existence and classification of these wave functions is the
main result of our work. In the next section we will see when
they can be considered to be solitary waves.

V. EMERGENCE OF SOLITONS AT STRONG COUPLING

Having established the existence of nontrivial stationary
and traveling waves we will now argue that the crucial soli-
tonic property of localization emerges in the strong-coupling
regime χ � 1. Finally, we show how in this same limit an
explicit asymptotic series for the depth parameter qn(χ ) can
be obtained.

A. Localization in the strong-coupling regime

In the limit of strong coupling the Hartree mean-field
potential is deep relative to the kinetic energy, and the mag-
netization can be expected to saturate to unity. It then follows
via the relation q = 4M/χ2 that this limit corresponds to large
values of q, and we will see that this is indeed the case.

As q → ∞ the eigenvalues, A and B, of the Mathieu
equation display the well-known asymptotic behavior as a
function of q [122],

An(q)

Bn+1(q)

}
∼ −2q

[
1 − 1√

q
(2n + 1) + O

(
1

q

)]
, (15)

from which we can identify that the low-lying states are bound
within a deep well3 whose minimum is spontaneously chosen

3The spectrum is that of a harmonic oscillator with anharmonic
corrections occurring at O(1/q).
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around the ring. There are two classical turning points:

θ±
turn ∼ ± (4n + 2)1/2

q1/4
+ O

(
1

q1/2

)
. (16)

At distances |θ | � 2θ+
turn the wave function is exponentially

suppressed and consequently the state is localized in a region
around the mean-field potential’s minimum (as can be seen
in Fig. 3). The size of this region shrinks with q and shows
that localized stationary states emerge in the strong-coupling
regime, and, by Galilean invariance, so too do finite-velocity
traveling solitons. Thus, we identify the solutions as solitary
waves because they can be arbitrarily localized and their shape
is determined by a competition between quantum dispersion
and a classical mean-field potential, , which is the source of
the nonlinearity in Eq. (5).

We may quantify the regime in which soliton-like solutions
appear by estimating a critical value q(c)

n above which the sta-
tionary state is sufficiently narrow to be considered localized
relative to the spatial extent of the unit circle. Demanding that
θ+

turn < π/4 implies that for q satisfying

q � qc(n) = 64

π4
(2n + 1)2 ≈ 2

3
(2n + 1)2, (17)

or equivalently4 for χ satisfying

χ � π2/8

2n + 1
≈ 1.23

2n + 1
, (18)

the stationary states discussed above are well localized.
From Eq. (16) we see that for fixed n the stationary states’

widths tends to zero and are localized within an interval
of size �θ ∼ O(1/q1/4) centered about the minimum of the
mean-field potential. This suggests approximating the cosine
potential as a quadratic potential well, and a thorough analysis
reveals that this can be done provided the turning point
structure of the problem is preserved. The stationary solutions
in this regime are parabolic cylinder functions [141–144]:

ψn(θ ; q) ∼
[ √

q

2π (n!)2

]1/4{Dn(ζ ) n even

cos
(

1
2θ
)
Dn(ζ ) n odd

, (19)

where ζ = 2q1/4 sin(θ/2) [see Eqs. (A4) and (A5) for a more
extensive discussion].

B. Magnetization and Hartree potential depth
in the strong coupling regime

We seek to compute the magnetization

M(qn) =
∫ π

−π

dθ |ψn(θ ; q)|2 cos θ (20)

in the strong coupling regime. Expanding the wave function in
terms of parabolic cylinder functions, and changing variables
to ζ = 2q1/4 sin(θ/2), we obtain

M(q) =
∫ 2q1/4

−2q1/4

dζ

q1/4

⎡⎣ 1 − ζ 2

2
√

q√
1 − ζ 2

4
√

q

⎤⎦|ψn(ζ ; q)|2. (21)

4Taking M ∼ O(1) as q → ∞.

A Taylor expansion of (1 − ζ 2

2
√

q )/
√

1 − ζ 2

4
√

q and knowledge

of integrals of the form

I (k)
n,m =

∫ ∞

−∞
dζ Dn(ζ )Dm(ζ )ζ k (22)

allows one to compute asymptotic expressions for the magne-
tization as a function of q, the details of which can be found
in Appendix A. We find

M(qn) ∼ 1 − 1√
q

[
2n + 1

2

]
+ O

(
1

q3/2

)
. (23)

This equation applies to the branches of solutions labeled by
ℵ = 1 in Fig. 1.

With this result we may now compute χn(q) = √
4M/q,

which can subsequently be inverted yielding

qn(χ ; ℵ = 1) ∼ 4

χ2

[
1 − 2n + 1

4
χ − (2n + 1)2

32
χ2

]
, (24)

where, again, ℵ = 1 denotes the branch of qn(χ ) to which our
asymptotic analysis applies.

The above asymptotic analysis is only sensible provided
that χ is sufficiently small such that dispersive effects are
weak relative to the mean-field Hartree potential. Quantita-
tively we require that Eq. (18) is satisfied; for n = 0 and n = 1
this occurs for values of χ � 1.

C. Energy in the strong coupling regime

An analytic expression for the energy of a solitary wave can
also be obtained in the small-χ limit. The energy functional
(i.e., Hamiltonian) for the HMF model is

E =
∫

ψ∗
[
−1

2
χ2∂2

θ

]
ψ dθ − 1

2
M[ψ]2

= μn + 1

2
M[ψn]2, (25)

where in the second equality we have used Eq. (9). The small-
χ behavior of the magnetization M is given by Eqs. (23) and
(24),

M ∼ 1 − 2n + 1

4
χ, (26)

while the chemical potential’s behavior can be found by using
the large-q asymptotics of an ∼ −2q + (4n + 2)

√
q, which,

when written in terms of χ , gives

μn = χ2

8
× an ∼ χ2

2
[−2q(χ ) + (4n + 2)

√
q(χ )]

∼ −1 + 3

4
(2n + 1)χ. (27)

Thus we have

En ∼ −1

2
+ 2n + 1

4
χ, (28)

such that the energy increases linearly with n at leading order
in χ ; a nonperturbative graph of the energy’s n dependence
can be obtained by combining the curves plotted in Figs. 4
and 5.
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VI. LINEAR STABILITY ANALYSIS

In order to understand whether the solitary waves analyzed
in the previous two sections are stable, we study their lin-
earized equations of motion in the soliton’s rest frame. Since
we identify these solutions as being solitary waves in the
limit that χ → 0, and since for n � 2 the solutions exist only
for small values of χ , we restrict our analysis to the ℵ = 1
branch of solutions in the limit that χ → 0 such that a large-q
expansion is justified.

We consider stability of the soliton solutions with respect
to perturbations of the Bogoliubov form

�(θ, τ ) = [ψn(θ ) + δψn(θ, τ )]e−iμτ/χ , (29)

δψn(θ, τ ) =
∑

α

Uα (θ )e−iωατ/χ + V ∗
α (θ )eiω∗

ατ/χ , (30)

which have real frequencies if the unperturbed solution is
stable, and complex frequencies if it is dynamically unstable
[32]. Substituting this ansatz into Eq. (5), working to first
order in Uα and V ∗

α , and collecting terms varying in time
as e−iωατ/χ and eiω∗

ατ/χ , respectively, one finds the following
coupled equations for the normal modes:

ωU (θ ) = (Ĥn − μn)U (θ ) − (θ )ψn(θ ), (31)

−ωV (θ ) = (Ĥn − μn)V (θ ) − (θ )ψn(θ ), (32)

where we have used the reality of the soliton, ψ∗
n = ψn (since

we are in the rest frame of the solitary wave). The subscript α

has been left implicit, Ĥn = − 1
2χ2∂2

θ − M[ψn] cos θ , and we
define the linearized mean-field potential as

(θ ) =
∫ π

−π

[U (θ ′) + V (θ ′)]ψn(θ ′) cos(θ − θ ′) dθ ′. (33)

It is convenient to decompose both U (θ ) and V (θ ) in terms of
the set of Mathieu functions orthogonal to ψn, which we will
denote by {φm}. Note that these solutions are complete and
satisfy the linear equation

Ĥnφm = − 1
2χ2φ′′

m + M[ψn] cos(θ ) φm = λmφm, (34)

where λm is related to the eigenvalue am of Eq. (10) via
λm = χ2am/8 [cf. Eq. (12)]. Importantly, M[ψn] is the mag-
netization induced by the soliton solution ψn and is inde-
pendent of φm. Explicitly, we have U (θ ) = ∑

m umφm(θ ) and
V (θ ) = ∑

m vmφm(θ ) where um and vm are c-numbers and
m �= n. This final condition ensures that our linear operator
is diagonalizable [145].

To find the frequencies {ωα}, we take Eqs. (31) and (32)
and operate on both sides with

∫
dθφm(θ ). By virtue of the

orthogonality relations
∫

φmφ� dθ = δm� and
∫

φmψn dθ = 0,
this projects out the mth element of {φm} and allows us to
express Eq. (31) in terms of the coefficients u� and v� via

ωum = (λm − μn)um −
∑
� �=n

Fm�(u� + v�), (35a)

−ωvm = (λm − μn)vm −
∑
� �=n

Fm�(u� + v�), (35b)

where the quantity Fm� is defined as

Fm� = IC
�,nIC

m,n + IS
�,nIS

m,n, (36)

and where the integrals IC
�,n and IS

�,n are defined in terms of
the mean-field solutions via

IC
m,n =

∫ π

−π

φm(θ )ψn(θ ) cos θ dθ, (37a)

IS
m,n =

∫ π

−π

φm(θ )ψn(θ ) sin θ dθ. (37b)

We may interpret Fm� as a matrix operator acting on the vector
(u + v)� such that the equations can be cast in the form

ωn

(
u
v

)
= 1√

q

(
Dn − Fn −Fn

Fn −(Dn − Fn)

)(
u
v

)
. (38)

Here Dn is a diagonal matrix with Dm,m
n = √

q(λm − μn)
along the diagonal, while the matrix elements of F are re-
lated to those of F via Fm� = √

qFm�. Physically, Dn tells
us whether an orthogonal Mathieu function φm has a larger
or smaller eigenvalue (chemical potential) as compared to
the soliton ψn. The matrix Fn is the mode-to-mode coupling
induced indirectly by the soliton.

Explicit expressions for the matrix elements Fm� and Dm,m
n

can be obtained in the large-q (i.e., small-χ ) regime. As
outlined in Appendix B, by making large-q expansions of the
integrals IC

m,n and IS
m,n, then at O(1/

√
q) only IS

m,n contributes
to Fm� with the explicit (leading order) formula being

IS
m,n ∼ 1

q1/4
(
√

n + 1δm,n+1 + √
nδm,n−1). (39)

Higher order terms connect states with m = n ± 2, m = n ±
3, etc. Likewise, to find the large-q behavior of Dn, we can
use the large-q asymptotic formula for the eigenvalues of the
Mathieu equation [122]:

μn ∼ χ2(qn)

8

{
−2q + 2(2n + 1)

√
q + 1

8
[(2n + 1)2 + 1]

}
,

(40)

λm ∼ χ2(qn)

8

{
−2q + 2(2m + 1)

√
q + 1

8
[(2m + 1]2 + 1)

}
.

(41)

Notice that both λm and μn are multiplied by the same value
of χ2, which corresponds to the soliton’s self-consistent depth
parameter qn. At leading order this implies that Dm,�

n ∼ 2(m −
n)δ�,m, and that all of Fn’s nonvanishing entries are contained
within a 2×2 block composed of �, m = n ± 1 (unless n = 0)
given by (

n
√

n(n + 1)√
n(n + 1) n + 1

)
. (42)

This implies that in the strong-coupling regime the pertur-
bations about the soliton are weakly interacting, with the
exception of the two Mathieu modes whose eigenvalues are
closest to the soliton’s chemical potential. These two modes
actually couple with a strength that is O(n) such that solitons
with a higher number of nodes mediate stronger interactions
than those with fewer nodes. By contrast, if n = 0 (i.e., if
we are perturbing around the lowest energy soliton), then
intermode coupling does not exist at O(1/

√
q) and Fn is

diagonal at leading order, having all vanishing entries except
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for F11
n = 1. We focus now on n � 1 after which we will

return to n = 0 as a special case.
By rewriting Eq. (38) in terms of u + v and u − v, it can be

easily seen that the eigenvalues of the above matrix equation
are determined by the condition that

Det
[
qω2

n1− (
D2

n − 2FnDn
)] = 0. (43)

The spectrum of D2
n − 2FnDn is the same as that of D2

n except
for the two eigenvalues that are determined (for n � 1) by the
2×2 matrix (

4n + 4 −4
√

n(n + 1)
4
√

n(n + 1) −4n

)
, (44)

whose eigenvalues are independent of n and given by λ1=0
and λ2 = 4. We thereby find that the entire spectrum is
positive, indicating stability, except for one entry which is
marginal at this order, being neither positive nor negative.

To elucidate the stability of the mode corresponding to
λ1 we must calculate subdominant corrections to IS , and
λm − μn. This can be achieved using first-order perturbation
theory for which we need the eigenvector corresponding to λ1

at leading order, which is given by

v1 = (
√

n/(2n + 1),
√

(n + 1)/(2n + 1))T . (45)

If we denote the subdominant corrections as δDn and δFn

(such that Dn → Dn + q−1/2δDn and Fn → Fn + q−1/2δFn)
then, the first-order perturbative correction to the eigenvalue
is given by

λ1 ∼ 1√
q
vT

1 [{Dn, δDn} − 2(δFnDn + FnδDn)]v1, (46)

where the curly braces denote an anticommutator. Using
Eqs. (40) and (41) we find for δDn

δDn =
(

1
4 (10n + 4) 0

0 1
4 (−6 − 10n)

)
. (47)

The relevant matrix elements of F are F�m with �, m = n ± 1
which can be represented as a 2×2 matrix

δF =
(

− 3
4 n2 − 3

8

√
n(n + 1)(2n + 1)

− 3
8

√
n(n + 1)(2n + 1) − 3

4 (1 + n)2

)
(48)

such that

λ1 ∼ 1√
q

× n(1 + n)

2n + 1
for n � 1. (49)

Thus, for n � 1 all of the eigenvalues λ are positive definite,
such that ωm is always real, and the solitons are dynami-
cally stable. The typical frequencies are given by ωm ∼ 2√

q

|m − n| ∼ χ |m − n|, while the smallest frequency is paramet-
rically smaller being given by ω1 = ±√

λ1/q ∼ O(χ3/2).
As mentioned above, the case of the n = 0 is different.

Here the zeroth eigenvector is v1 = (1, 0)T , and it turns out
that its eigenvalue is small λ1 ∼ O(1/q), If we define the
matrix M = D2

n − 2FnDn, then we have that

M =
⎛⎝M11 0 M13

0 M22 0
M31 0 M33

⎞⎠, (50)

where the zeros stem from the fact that IC
0,m = 0 if m is odd.

As we will soon see, M13 and M31 are both O(1/
√

q) while
M33 is O(1), and we can therefore calculate the correction to
λ1 within second-order perturbation theory

λ1 ∼ M11 + M13M31

M11 − M33
+ O(q−3/2) for n = 0. (51)

Explicit formula for M11, M13, and M31 in terms of IS
0,m and

�m = λm − μ0 are given by

M11 = q�2
1 − 2q�1IS

0,1IS
0,1, (52)

M13 = −2q�3IS
0,1IS

0,3, (53)

M31 = −2q�1IS
0,1IS

0,3, (54)

M33 = q�2
3 − 2q�3IS

0,3IS
0,3. (55)

The large q behavior of �m can be found by using Eq. (28.8.1)
of Ref. [122] and the next-to-next-to leading order expression
for χ (qn) given in Eq. (A18). To compute IS

0,m we make use of
Eqs. (28.8.3) to (28.8.7) from [122] at next-to-next-to leading
order accuracy. At the level of accuracy required to compute
λ1 the results are

q1/4IS
0,1 ∼ 1 − 3

8
√

q
− 19

256q
, (56)

q1/4IS
0,3 ∼ −3

√
3/2

8
√

q
, (57)

√
q�1 ∼ 2 − 3

2
√

q
+ 3

16q
, (58)

√
q�3 ∼ 6. (59)

Substituting these expressions into Eqs. (52) to (55) we find

M11 ∼ 13

32q
+ O

(
1

q3/2

)
, (60)

M13 ∼ 9
√

3/2

2
√

q
+ O

(
1

q

)
, (61)

M31 ∼ 3
√

3/2

2
√

q
+ O

(
1

q

)
, (62)

M33 ∼ 36 + O

(
1

q1/2

)
. (63)

Then, using Eq. (51), we arrive at

λ1 ∼ 1

8q
for n = 0. (64)

Thus, the n = 0 soliton is also stable (as it must be since it is
the lowest energy stationary state). Curiously, while all of the
other solitons’ smallest normal mode frequencies are O(χ3/2),
the ground state’s lowest lying normal mode frequency is
actually O(χ2) since ω1 = √

λ1/q ∼ O(χ2).

VII. CONCLUSIONS

We have shown that the GGPE for the HMF model ad-
mits exact solutions in the form of Mathieu functions com-
plemented by a self-consistency condition on the depth of
the Hartree potential they generate. These solutions can be
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boosted to finite speeds (providing the phase associated with
the flow satisfies the periodic boundary conditions). In the
strong coupling regime (χ � 1) the solutions can be arbi-
trarily highly localized, and thus we interpret them as bright
solitons. A linear stability analysis in the same strong coupling
regime shows that they are stable against perturbations when
the interactions are attractive.

The fact that the solutions: (1) arise in a periodic potential,
(2) are localized, and (3) come in towers with increasing
numbers of nodes, means that they have properties in common
with gap solitons [137]. However, the periodic potential in
the HMF case is self-generated, whereas in the standard
gap soliton case the periodic potential is imposed externally.
Furthermore, in contrast to the bright soliton solutions of the
standard GPE which are stabilized by a |ψ |2ψ nonlinearity,
the HMF model’s solitons are stabilized by a nonlocal non-
linearity [ψ](θ ) = M[ψ] cos θ , where the depth is given by
the magnetization M[ψ]; see Eq. (5b).

The approach followed in this work not only allows us to
identify solitary wave solutions, but also to find and classify
all possible stationary states for both attractive and repulsive
interactions at arbitrary coupling strength (we focused on the
attractive case). Furthermore, in the strong coupling limit the
self-consistency condition can be developed analytically in
an asymptotic series so as to provide a completely explicit
analytic solution. Given that exact solutions of nonlinear
models are few and far between, this illustrates once again that
the HMF model is rather special even though it is not thought
to be integrable.

One possible reason for the existence of a richer family
of solutions (i.e., the tower of solutions) in comparison to
the standard short-range attractive system, where the GPE
supports a single nodeless bright soliton [i.e., the fundamental
soliton given in Eq. (4)], is that the self-consistency condition
in the latter case is much more restrictive: both the depth
and shape must match. By contrast, in the HMF case the
mean-field potential is generated by the coherent addition of
the microscopic cosine (XY) interactions and thus inherits a
cosine form where only the depth needs to be self-consistently
determined. We conjecture that this coherent addition across
the sample is a generic feature of LRIs and suggests that such
systems deserve closer examination as a potential setting for
solitons.

An interesting future direction of research would be to
study collisional properties of the bright solitons (solitary
waves) identified in this work and to determine if they are
true solitons (i.e., do they collide elastically). As sketched in
the introduction, systems with LRI can be expected to behave
similarly to integrable systems. A numerical study of soliton
dynamics in the HMF model would be a natural testing ground
for this idea.

Another extension of the present work concerns the quan-
tum phase transition predicted by the HMF model’s GGPE
due to a spontaneous breaking of translational invariance at
the critical value of χ = √

2 [116]. The GGPE does not
include the effects of quantum fluctuations, and these may
inhibit this spontaneous symmetry breaking. However, our
exact solutions can serve as the building blocks of more
sophisticated quantum states that are required for studying the

role of quantum fluctuations. These effects will be discussed
elsewhere [146].
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APPENDIX A: ASYMPTOTIC ANALYSIS OF
THE SELF-CONSISTENT MAGNETIZATION

We are interested in calculating the magnetization

Mn(χ ) =
∫ π

−π

dθ |ψn(θ ; χ )|2 cos θ

=
∫ π

−π

dθ |ψn(θ ; χ )|2
(

1 − 2 sin2 θ

2

)
= 1 − 2

∫ π

−π

dθ |ψn(θ ; χ )|2 sin2 θ

2

in the strong coupling regime where χ � 1. We must consider
the cases of n even and n odd separately due to their definition
in terms of either even or odd Mathieu functions, which we
repeat here for convenience:

ψn(θ ; χ,ℵ) = 1√
π

{
cen

[
θ−π

2 ; qn(χ ; ℵ)
]

n even

sen+1
[

θ−π
2 ; qn(χ ; ℵ)

]
n odd.

(A1)

The strong coupling regime is equivalent to q  1 in the
conventional Mathieu equation. When applied to the HMF
model, this means that one can study the regime in which
q  1, compute the magnetization and by extension χ (q) =√

4M(q)/q, and then invert this expression to find how q
depends on χ .

Consequently, it is convenient for computational purposes
to consider q, rather than χ as a fixed parameter, and later
invert the relationship between them as described above.
Integrals such as Eq. (A1) are conveniently analyzed by
transforming to the coordinate ζ = 2q1/4 sin θ

2 ; doing so we
find [as in Eq. (21)]

Mn(q) = 1 − 1

2
√

q

∫ 2q1/4

−2q1/4

dζ

q1/4
|ψn(ζ ; q)|2 ζ 2√

1 − ζ 2

4
√

q

. (A2)

For the purposes of obtaining an asymptotic series in 1/
√

q
we can extend the limits of integration to ±∞,

Mn(q) ∼ 1 − 1

2
√

q

∫ ∞

−∞

dζ

q1/4
|ψn(ζ ; q)|2 ζ 2√

1 − ζ 2

4
√

q

, (A3)

where ∼ denotes an asymptotically small error as q → ∞
[122]. We can then expand the square root in the denominator
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FIG. 6. Comparison of the n = 4 exact solitary wave ψn(θ, q) for
q = 2

3 (2n + 1)2 = 54. LO denotes the leading-order Sips expansion
Eqs. (A4) and (A5), and NLO denotes the approximation including
next-to-leading order terms. As we can see, the Sips expansion
becomes accurate even at only moderately large values of q. For
q = (2n + 1)2 = 81 the exact and NLO curves become virtually
indistinguishable.

in a Taylor series and use the large-q behavior of the stationary
solutions ψn(ζ ; q).

In the limit of large q both cen(z; q) and sen(z; q)
can be expanded in terms of parabolic cylinder functions
[122,141–144]. This is easy to understand, since for n fixed
and q → ∞ the classical turning points coalesce at the min-
imum of the cosine potential. Therefore the states are con-
strained to live arbitrarily close to the potential’s minimum
and a harmonic approximation is justified. To ensure that the
turning point structure is maintained the expansion is carried
out using ξ = 2q1/4 cos z rather than the naive choice of z −
π/2. Explicitly, Sips’s expansion of the Mathieu functions in
terms of parabolic cylinder functions assumes the form [122]

cen(z; q) ∼ Ĉn(q)[Ûn(ξ ; q) + V̂n(ξ ; q)], (A4)

sen−1(z; q) ∼ Ŝn(q) sin(z)[Ûn(ξ ; q) − V̂n(ξ ; q)], (A5)

where Um(ξ ; q) and Vm(ξ ; q) are given at next-to-leading order
[i.e., suppressing terms of O(q)] by

Ûn(ξ ; q) ∼ Dn(ξ ) + 1

64
√

q

[
n!

(n − 4)!
Dn−4(ξ ) − Dn+4(ξ )

]
,

(A6)

V̂n(ξ ; q) ∼ 1

16
√

q
[n(1 − n)Dn−2(ξ ) − Dn+2(ξ )], (A7)

where Dn = Dn(ξ ) are the parabolic cylinder functions of
order n, and the normalization constants are given by

Ĉn(q) ∼
[

π
√

q

2(n!)2

]1/4[
1 + (2n + 1)

8
√

q
+ O

(
1

q

)]−1/2

, (A8)

Ŝn(q) ∼
[

π
√

q

2(n!)2

]1/4[
1 − (2n + 1)

8
√

q
+ O

(
1

q

)]−1/2

. (A9)

The accuracy of the Sips expansion even for relatively modest
values of q is illustrated in Fig. 6.

Since we have a series solution to ψn(ζ ; q) in terms of
parabolic cylinder functions, and we are interested in comput-
ing integrals

∫ |ψn|2ζ kdζ , we ultimately require knowledge
of integrals of the form

I (k)
m,n =

∫ ∞

−∞
Dm(ξ )Dn(ξ )ξ kdξ . (A10)

Then using the recursion relation [144]

I (k)
m,n = I (k−1)

m+1,n + I (k−1)
m,n+1 − (k − 1)I (k−2)

m,n , (A11)

we arrive at the following identities:

I (0)
m,n = n!

√
2π × δm,n, (A12)

I (1)
m,n = n!

√
2π × [(n + 1)δm,n+1 + δm+1,n], (A13)

I (2)
m,n = n!

√
2π × [(n + 2)(n + 1)δm,n+2

+ (2n + 1)δm,n + δm+2,n], (A14)

I (4)
n,n = n!

√
2π × 3(2n2 + 2n + 1). (A15)

Armed with these details, we may now attack the integral
in Eq. (A3). First, we note that by Eq. (A1) that in using
Eqs. (A4) and (A5) we must make the substitution z → (θ +
π )/2, which in turn implies that ξ → ζ = 2q1/4 sin(θ/2) and
sin z → cos(θ/2). Expressing all functions in terms of ζ and
then performing a Taylor expansion yields

Mn(q) ∼ 1 −
∫ ∞

−∞

dζ

q1/4

[
1√
π

]2

[Ûn(ζ ) ± V̂n(ζ )]2

[(
π

√
q

2(n!)2

)1/4
]2(

1 ∓ 2n + 1

8
√

q

)
×
(

1

2
√

q
ζ 2 ± 1

16q
ζ 4

)
, (A16)

where the upper sign corresponds to n even and the lower sign to n odd. Using Eqs. (A12) to (A14), the integral may then be
expressed in terms of I (k)

m,n as

Mn(q) ∼ 1 − 1

n!
√

2π

{
1

2
√

q
I (2)
n,n ± 1

16q

[
I (4)
n,n + n(1 − n)I (2)

n,n−2 − I (2)
n,n+2 − (2n + 1)I (2)

n,n

]}+ O

(
1

q3/2

)
= 1 − 1

2
√

q
[2n + 1] ∓ 1

16q
[3(2n2 + 2n + 1) + n(1 − n) − (n + 1)(n + 2) − (2n + 1)2] + O

(
x

1

q3/2

)
= 1 − 1

2
√

q
[2n + 1] + O

(
1

q3/2

)
. (A17)
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Having obtained the magnetization in terms of the auxiliary
parameter q, we now compute χ (q) and find at next-to-next-to
leading order

χ (qn) =
√

4Mn(q)

q
∼ 2√

q

[
1 − 1√

q

2n + 1

4
− 1

q

(2n + 1)2

32

]
,

(A18)

which may in turn be inverted to find

qn(χ ; ℵ = 1) ∼ 4

χ2

[
1 − 2n + 1

4
χ − (2n + 1)2

32
χ2

]
(A19)

as claimed in the main text. The branch labeled by ℵ = 1 is
the appropriate one since we took the auxiliary variable q to
be large.

APPENDIX B: DEFINITION AND ASYMPTOTICS
OF THE INTEGRALS IC

m,n AND IS
m,n

The following integrals appear in Eq. (36):

IC
m,n =

∫ π

−π

φm(θ )ψn(θ ) cos θ dθ, (B1)

IS
m,n =

∫ π

−π

φm(θ )ψn(θ ) sin θ dθ, (B2)

where ψn is the stationary state [given by a Mathieu function
with depth parameter q(χ )] around which fluctuations take
place, and φm is a Mathieu function orthogonal5 to ψm.

Note that both ψn and ψm, being Mathieu functions, are
strictly even or odd, and so IC

m,n = 0 identically if m + n is
odd, while IS

m,n = 0 identically if m + n is even. We can com-
pute these integrals order-by-order in 1/

√
q by re-expressing

them in terms of ζ = 2q1/4 sin θ
2 . For the sine integral we find

IS
m,n =

∫ 2q1/4

−2q1/4

⎡⎣ dζ

q1/4
(
1 − ζ 2

4
√

q

)
⎤⎦φm(ζ ; q)ψn(ζ ; q)

×
[

ζ

q1/4

√
1 − ζ 2

4
√

q

]
. (B3)

5The functions {ψm} satisify the (rescaled) linear Mathieu equation
− χ2

2 φ′′
m − M[ψn] cos θφm = λmφm.

Next, using the asymptotic formulas for Mathieu functions,
Eqs. (A4) and (A5), and working at leading order in 1/

√
q we

find

IS
m,n ∼

∫ 2q1/4

−2q1/4
dζ

ζ√
q

{
1√
π

[
π

√
q

2(n!)2

]1/4

Dn(ζ )

}

×
{

1√
π

[
π

√
q

2(m!)2

]1/4

Dm(ζ )

}

= 1

q1/4

1√
2πm!n!

I (1)
n,m

= 1

q1/4
[
√

n + 1δm,n+1 + √
nδm+1,n], (B4)

where we have made use of Eq. (A13) to move between the
second and third equalities. For Eq. (48) we require IS

m,n with
m = n ± 1 at next-to-leading order, to calculate δF . These are
given by

IS
n+1,n = q1/4

[√
n + 1 − 3(n + 1)

8
√

q

]
, (B5)

IS
n−1,n = q1/4

[
n − 3n

8
√

q

]
. (B6)

Next, turning our attention to the cosine integral we find

IC
m,n =

∫ 2q1/4

−2q1/4

⎡⎣ dζ

q1/4
(
1 − ζ 2

4
√

q

)
⎤⎦φm(ζ ; q)ψn(ζ ; q)

×
[

1 − ζ 2

2
√

q

]
. (B7)

When re-expressed in terms of parabolic cylinder functions,
we see that the O(1) piece vanishes (

∫
DmDn dζ = 0 for

m �= n), and the remaining integral (
∫

DmDnζ
2/

√
q dζ ) is

O(1/
√

q). This implies that

IC
m,n ∼ O

(
1√
q

)
. (B8)

This is subdominant to the sine integral IS
m,n ∼ O(1/q1/4) and

so can be neglected at leading order as claimed in the main
text.
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[111] T. K. Kopeć, Infinite-range-interaction M-component quan-
tum spin glasses: Statics and dynamics in the large-M limit,
Phys. Rev. B 50, 9963 (1994).

[112] N. Read, S. Sachdev, and J. Ye, Landau theory of quantum
spin glasses of rotors and Ising spins, Phys. Rev. B 52, 384
(1995).

[113] M. P. Kennett, C. Chamon, and J. Ye, Aging dynamics of
quantum spin glasses of rotors, Phys. Rev. B 64, 224408
(2001).

[114] S. Sachdev, Quantum Phase Transitions (Cambridge Univer-
sity Press, Cambridge, 2011).

[115] P.-H. Chavanis, The quantum HMF model: I. Fermions, J. Stat.
Mech. (2011) P08002.

[116] P.-H. Chavanis, The quantum HMF model: II. Bosons, J. Stat.
Mech. (2011) P08003.

[117] R. Plestid, P. Mahon, and D. H. J. O’Dell, Violent relaxation
in quantum fluids with long-range interactions, Phys. Rev. E
98, 012112 (2018).

[118] W. Braun and K. Hepp, The Vlasov dynamics and its fluc-
tuations in the 1/n limit of interacting classical particles,
Commun. Math. Phys. 56, 101 (1977).

[119] S. Ogawa and Y. Y. Yamaguchi, Linear response theory in
the Vlasov equation for homogeneous and for inhomogeneous
quasistationary states, Phys. Rev. E 85, 061115 (2012).

[120] A. Patelli and S. Ruffo, General linear response formula
for non integrable systems obeying the Vlasov equation,
Eur. Phys. J. D 68, 329 (2014).

[121] L. Pitaevskii and S. Stringari, Bose-Einstein Condensation,
International Series of Monographs on Physics (Clarendon
Press, Oxford, 2003).

[122] G. Wolf, Mathieu functions and Hills equation, in NIST Hand-
book of Mathematical Functions, edited by F. W. J. Olver,
D. W. Lozier, R. F. Boisvert, and C. W. Clark (Cambridge
University Press, Cambridge, 2010), Vol. 5, p. 966.

[123] B. Prasanna Venkatesh, M. Trupke, E. A. Hinds, and D. H. J.
O’Dell, Atomic Bloch-Zener oscillations for sensitive force
measurements in a cavity, Phys. Rev. A 80, 063834 (2009).

[124] B. Prasanna Venkatesh, J. Larson, and D. H. J. O’Dell, Band-
structure loops and multistability in cavity QED, Phys. Rev. A
83, 063606 (2011).

[125] B. P. Venkatesh and D. H. J. O’Dell, Bloch oscillations of cold
atoms in a cavity: Effects of quantum noise, Phys. Rev. A 88,
013848 (2013).

[126] H. Keßler, J. Klinder, B. Prasanna Venkatesh, Ch. Georges,
and A. Hemmerich, In situ observation of optomechanical
Bloch oscillations in an optical cavity, New J. Phys. 18,
102001 (2016).

[127] Ch. Georges, J. Vargas, H. Keßler, J. Klinder, and A.
Hemmerich, Bloch oscillations of a Bose-Einstein condensate
in a cavity-induced optical lattice, Phys. Rev. A 96, 063615
(2017).

[128] M. D. Lee, S. D. Jenkins, Y. Bronstein, and J. Ruostekoski,
Stochastic electrodynamics simulations for collective atom
response in optical cavities, Phys. Rev. A 96, 023855 (2017).

022216-15

Ph.D. Thesis – Ryan Plestid – Department of Physics & Astronomy – McMaster University

83



RYAN PLESTID AND D. H. J. O’DELL PHYSICAL REVIEW E 100, 022216 (2019)

[129] J. Goldwin, B. P. Venkatesh, and D. H. J. O’Dell, Backaction-
Driven Transport of Bloch Oscillating Atoms in Ring Cavities,
Phys. Rev. Lett. 113, 073003 (2014).

[130] M. Samoylova, N. Piovella, G. R. M. Robb, R. Bachelard, and
Ph. W. Courteille, Synchronization of Bloch oscillations by a
ring cavity, Opt. Express 23, 14823 (2015).

[131] M. Coles and D. Pelinovsky, Loops of energy bands for
Bloch waves in optical lattices, Stud. Appl. Math. 128, 300
(2012).

[132] B. Eiermann, Th. Anker, M. Albiez, M. Taglieber, P. Treutlein,
K.-P. Marzlin, and M. K. Oberthaler, Bright Bose-Einstein
Gap Solitons of Atoms with Repulsive Interaction, Phys. Rev.
Lett. 92, 230401 (2004).

[133] B. Wu and Q. Niu, Nonlinear Landau-Zener tunneling,
Phys. Rev. A 61, 023402 (2000).

[134] J. C. Bronski, L. D. Carr, B. Deconinck, and J. N. Kutz,
Bose-Einstein Condensates in Standing Waves: The Cubic
Nonlinear Schrödinger Equation with a Periodic Potential,
Phys. Rev. Lett. 86, 1402 (2001).

[135] B. Wu and Q. Niu, Superfluidity of Bose-Einstein condensate
in an optical lattice: Landau-Zener tunnelling and dynamical
instability, New J. Phys. 5, 104 (2003).

[136] M. Machholm, C. J. Pethick, and H. Smith, Band structure,
elementary excitations, and stability of a Bose-Einstein con-
densate in a periodic potential, Phys. Rev. A 67, 053613
(2003).

[137] P. J. Y. Louis, E. A. Ostrovskaya, C. M. Savage, and
Y. S. Kivshar, Bose-Einstein condensates in optical lattices:

Band-gap structure and solitons, Phys. Rev. A 67, 013602
(2003).

[138] M. Machholm, A. Nicolin, C. J. Pethick, and H. Smith, Spatial
period doubling in Bose-Einstein condensates in an optical
lattice, Phys. Rev. A 69, 043604 (2004).

[139] J. Satsuma and N. Yajima, Initial value problems of one-
dimensional self-modulation of nonlinear waves in dispersive
media, Prog. Theor. Phys. Supp. 55, 284 (1974).

[140] V. E. Zakharov and A. B. Shabat, Exact theory of
two-dimensional self-focusing and one-dimensional self-
modulation of waves in nonlinear media, Sov. Phys. JETP 34,
62 (1972).

[141] R. Sips, Representation asymptotique des fonctions de Math-
ieu et des fonctions d’onde spheroidales, Trans. Am. Math.
Soc. 66, 93 (1949).

[142] R. Sips, Représentation asymptotique des fonctions de Math-
ieu et des fonctions sphéroidales. II, Trans. Am. Math. Soc.
90, 340 (1959).

[143] R. B. Dingle and H. J. W. Müller, Asymptotic expansions of
Mathieu functions and their characteristic numbers, J. Reine
Angew. Math. 211, 11 (1962).

[144] D. Frenkel and R. Portugal, Algebraic methods to compute
Mathieu functions, J. Phys. A 34, 3541 (2001).

[145] Y. Castin, Bose-Einstein condensates in atomic gases: Simple
theoretical results, in Coherent Atomic Matter Waves, edited
by R. Kaiser, C. Westbrook, and F. David (Springer, Berlin,
2001), pp. 1–136.

[146] R. Plestid and J. Lambert (unpublished).

022216-16

McMaster University – Department of Physics & Astronomy – Ryan Plestid – Ph.D. Thesis

84



Ph.D. Thesis – Ryan Plestid – Department of Physics & Astronomy – McMaster University

“...if fluctuations dominate the mean value, then mean field
theory will become unreliable and potentially quite wrong.
Now use mean field theory to predict its own demise.”

— Leo Kadanoff
CHAPTER 4

Centre of Mass Fluctuations and the
Many-Body Ground State

Ryan Plestid, and James Lambert
Quantum fluctuations vs. long-range interactions: the failure of mean-field theory in
the quantum HMF model
To be submitted to Phys. Rev. E.

Long-range interacting systems are well described by mean-field theory both classically
and quan tum mechanically. It is often claimed that mean-field theory is exact in the
N →∞ limit for long range interacting systems. This has important implications for
the HMF model because mean-field theory predicts that, for attractive interactions
(i.e. ε < 0), the model exhibits a quantum phase transition. This can be seen most
easily by taking the Hartree energy for ε < 0

E =
∫

dθχ
2

2 |∂Ψ|2 − 1
2

∫
dθdθ′|Ψ|2(θ)|Ψ|2(θ′) cos(θ − θ′) (4.1)

and inserting the ansatz ψ = (2π)−1/2(a0 +
√

2a1 cos θ) where a0 =
√

(1− 2|a1|2) such
that

∫
dθ|ψ|2 = 1 with a0 real. Then, the energy can be written as

E = χ2

2 a
2
1 − 2(a0a1)2 = (χ2 − 2)a2

1 + 4a4
1 (4.2)

which is the canonical form of the Landau free-energy for a second order phase transition.
Therefore, as was first pointed out by Chavanis, mean-field theory predicts a second
order phase transition at χ =

√
2 for the HMF model with attractive interactions.
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This agrees with the analysis of the previous paper in terms of Mathieu functions
where the above analysis can be generalized to obtain an asymptotic expansion for
ψ0 in the vicinity of χ =

√
2. Since the Hartree ansatz is expected to be accurate at

T = 0 and so this would suggest that the model exhibits a quantum phase transition.

The GGPE does not include quantum fluctuations, rather, it results from a Hartree
ansatz for the ground state wavefunction Ψ(θ1, θ2, ..., θN ) = ∏

i ψ(θi); we will call these
states Hartree states. This restriction, which forces the candidate wavefunction to be a
product state, is artifically imposed and it remains a logical possibility that non-product
states may have lower energies. For instance, for χ <

√
2, ψn spontaneously breaks

the HMF model’s O(2) symmetry by selecting a position of maximum density. This
necessarily implies that there exists of a continuous family of states all of which have
degenerate energy, and so it is reasonable to expect that some linear combination of
these product states may have a lower energy than any of the product states indivdually.

Our major focus in this paper is to determine if such a coherent super position of
product states can realize a lower energy state with a restored O(2) symmetry. If this
is the case then at zero temperature the HMF model will not exhibit a quantum phase
transition. The main focuses of this paper are:

• Is O(2) symmetry broken in the HMF model?

• How do finite-N corrections influence the HMF model’s symmetry breaking
pattern?

• What are the consequences of our results for finite temperatures?
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Quantum fluctuations inhibit symmetry breaking in the HMF model
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2Perimeter Institute for Theoretical Physics, 31 Caroline St. N., Waterloo, Ontario, Canada

(Dated: June 4, 2019)

It is widely believed that mean-field theory is exact for a wide-range of classical long-range inter-
acting systems. Is this also true once quantum fluctuations have been accounted for? As a test case
we study the Hamiltonian Mean Field (HMF) model for a system of indistinguishable bosons which
is predicted (according to mean-field theory) to undergo a second-order quantum phase transition
at zero temperature. The ordered phase is characterized by a spontaneously broken O(2) symme-
try, which, despite occurring in a one-dimensional model, is not ruled out by the Mermin-Wagner
theorem due to the presence of long-range interactions. Nevertheless, a spontaneously broken sym-
metry implies gapless Goldstone modes whose large fluctuations can restore broken symmetries. In
this work, we study the influence of quantum fluctuations by projecting the Hamiltonian onto the
continuous subspace of symmetry breaking mean-field states. We find that the energetic cost of
gradients in the center of mass wavefunction inhibit the breaking of the O(2) symmetry, but that
the energetic cost is very small — scaling as O

(
1/N2

)
. Nevertheless, for any finite N , no matter

how large, this implies that the ground state has a restored O(2) symmetry. Implications for the
finite temperature phases, and classical limit, of the HMF model are discussed.

Systems with long-range interactions lie beyond the
scope of traditional statistical mechanics [1–3]. They
can exhibit ensemble inequivalence [1, 2, 4–6], divergent
relaxation time scales (scaling as t & logN for N par-
ticles) [7], and non-ergodic dynamics that lead to late-
time states that disagree with the microcanonical ensem-
ble [8–15] (preferring instead Lynden-Bell [16], or core-
halo statistics [3, 17, 18]). While these features were
first appreciated in the context of self-gravitating sys-
tems [16, 19], it has become increasingly clear that pecu-
liarities of gravitational systems (such as negative specific
heat [20] and the gravothermal heat catastrophe [21]) are
special cases of a broader statistical theory of long-range
interacting systems [1–3].

One important feature of long-range interactions is
that fluctuations can be suppressed to such a degree that
continuous symmetries can be spontaneously broken even
in one-dimensional systems [1, 2, 22–26]. This can be un-
derstood in the context of lattice models by considering
the coordination number of each lattice site. Long-range
interactions lead to large coordination numbers, which is
equivalent to considering the lattice in some effective di-
mension deff > d. Given that fluctuations are well known
to be suppressed in high dimensional systems it is not sur-
prising that long-range interactions can achieve the same
effect. Mathematically the presence of long-range inter-
actions invalidates the Mermin-Wagner theorem [27], and
its inapplicability is what allows for spontaneous symme-
try breaking in a low-dimensional long-range interacting
system [2, 24, 26].

There is an extensive literature concerning the validity
of mean-field theory for long-range interacting systems.
For instance, in the classical literature, it has been rigor-
ously proven [28] (i.e. with bounded error) that a long-

∗ plestird@mcmaster.ca
† lambej3@mcmaster.ca

range interacting system’s exact dynamics are well ap-
proximated by a mean-field collisionless-Boltzmann (i.e.
Vlasov) equation (see e.g. [3] or [7]). This approximation
is valid on time scales of order t . O(logN) . There-
fore, in the N → ∞ limit, it is often said that the
collisionless-Boltzmann equation (i.e. mean-field theory)
is exact [3, 7, 28]. Similar claims exist for equilibrium
physics. For instance, Lieb was able to rigorously bound
the difference between a self-gravitating bosonic star’s
ground state energy and its Hartree energy, and showed
that this difference vanishes in the thermodynamic limit
[29]. Similarly, it is well known that long-range interact-
ing spin models have mean-field critical exponents [23],
and it was conjectured that their free-energy is also iden-
tical to that derived via a mean-field (meaning all-to-all
interacting) model [30]. Subsequent studies supported
this idea for long-range interacting spin systems [31–34],
while more recent work has revealed disagreements be-
tween the all-to-all and power-law decaying models in a
limited region of parameter space [35–37].

The success of all-to-all models in describing the ther-
modynamics of long-range interacting systems has led
to them being an essential building block upon which
modern statistical theories of long-range interacting sys-
tems are built. Examples include (for a review see [2])
the Emery-Blume-Griffiths model [4], the mean-field φ4

model [38–40], and the Hamiltonian Mean Field (HMF)
model [41].

Since its proposal in 1995 [41] the HMF model has been
perhaps the most influential toy model in the long-range
interacting community. Originally proposed as a sim-
plified model of self-gravitating systems, it has emerged
as a paradigmatic starting point, and tool, for under-
standing generic features of long-range interacting sys-
tems. While all-to-all (i.e. mean field) models were mo-
tivated above by appealing to equilibrium physics, they
turn out to also capture dynamical behavior . The HMF
model can be used as a tool for understanding chaos [42–
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45], violent relaxation [10, 17, 46–49], core-halo statistics
[3, 17, 18], and other quasi-stationary states [10–12, 46]
in long-range interacting systems. The HMF model ex-
hibits a second order phase transition associated with
the spontaneous breaking of a continuous [O(2)] symme-
try [1, 41]. The HMF model’s canonical partition func-
tion can be calculated exactly in the classical limit, and
exhibits ensemble equivalence with the microcanonical
ensemble.

The HMF model describes particles of unit mass, on a
circle of unit radius, interacting via a pairwise cosine po-
tential. When quantized for N indistinguishable bosons,
the HMF model is defined by the Hamiltonian [50]

ĤHMF =
∑

i

χ2

2

∂2

∂θ2
i

− 1

N

∑

i<j

cos(θi − θj) . (1)

Here χ is a dimensionless Planck’s constant1 and we have
chosen the case of the attractive HMF model as indicated
by the negative sign of the potential. The 1

N scaling in
front of the cosine interaction, known as the Kac pre-
scription [51], preserves extensivity of the Hamiltonian,
and is a consequence of the peculiar thermodynamic limit
for long-range interacting systems (N →∞ with system
size, and χ held fixed [2, 50, 52]). Equation (1) can also
be interpreted as a describing a lattice of O(2) quantum
rotors interacting with one another via all-to-all inter-
actions with θi labeling the angle of each rotor on the
lattice.

As mentioned above, classically (in the limit χ → 0)
the model undergoes a thermal clustering transition [1]
characterized by the order parameter

M = 〈cos θ〉x̂ + 〈sin θ〉ŷ , (2)

which, for M 6= 0, implies a spontaneously broken O(2)
symmetry. This transition is second-order, and is driven
by thermal fluctuations. At high temperatures, T > Tc,
the system is homogeneous, and M = 0. For low tem-
peratures, T < Tc, the system spontaneously breaks its
underlying O(2) symmetry.

In addition to mimicking certain dynamical features
of self-gravitating bosons [50] Eq. (1) is also closely re-
lated to a handful of quantum systems that can be re-
alized in the lab. For instance, cold atoms loaded into
optical cavities can realize the generalized HMF model,
which is identical to Eq. (1) up to terms of the form∑
i<j cos[θi − θj ] [53, 54]. If, in the rotor interpretation

of the model, the sum in Eq. (1) is restricted to be nearest
neighbor rotors then it can be shown that this nearest-
neighbor quantum rotor model offers a low energy de-
scription of bosons in an optical lattice [55] (i.e. a cou-
pled set of Bose-Josephson junctions). Likewise a spin-S
Heisenberg ladder with anti-ferromagnetic coupling can
realize the O(3) nearest neighbor quantum rotor model

1 For a ring of radius R, with particles of mass, m, and a prefactor
of ε multiplying the cosine interaction χ = ~/

√
mR2ε.

[55]. We would expect an infinite-range rotor model such
as Eq. (1) to reproduce the physics of rotors with long-
range (i.e. polynomially decaying 1/|ri−rj |α with α < 1)
couplings as can be engineered in trapped ion systems
[56–58].

Chavanis undertook the first study of the model’s
bosonic [50] (and fermionic [59]) equilibrium phase di-
agram. Using a Hartree ansatz, one finds that for χ <√

2 the lowest Hartree-energy state also spontaneously
breaks the O(2) symmetry, becoming a delta-function in

the limit that χ → 0. For χ >
√

2 it is found that
the gradient energy for a single-particle wavefunction is
no longer compensated for by the gain in interaction en-
ergy; this leads to a homogeneous ground state. Both of
these two behaviors connect smoothly with the model’s
limiting cases: For χ → 0 this agrees with the T → 0
prediction of the classical HMF model. For χ → ∞ we
recover an ideal Bose gas in a finite volume, the ground
state of which is indeed a homogeneous product state.

Recently, the HMF model has been considered as a
quantum dynamical system. The quantum analogue of
certain classical behaviors, such as violent relaxation, and
the formation of quasi stationary states has been studied
[48]. Interestingly, classical instabilities related to the
formation of bi-clusters [10, 11] have been found to be
stabilized by quantum (kinetic) pressure [48]. The HMF
model’s Gross-Pitaevskii equation has also been found
to admit exactly solvable solitary wave solutions [60]. In
fact, the Hartree states considered by Chavanis [50] may
be considered as a special case of these solutions.

In this paper we make use of the exact solutions of [60]
to systematically study whether quantum effects beyond
mean-field theory can modify the HMF model’s symme-
try breaking pattern at zero temperature. In particu-
lar, the mean-field (i.e. Hartree) prediction of a sponta-
neously broken [O(2)] symmetry suggests a highly degen-
erate ground state; if there is one ground state |Θ〉 with
its center of mass at Θ, then there must be continuous
manifold of such states {|Θ′〉} with Θ′ ∈ [−π, π). This is
reminiscent, for instance, of spinor Bose-Einstein conden-
sates, whose exact ground state is a continuous quantum
superposition of mean-field solutions [61, 62]; we term
these states continuous cat states (CCS). In our exam-
ple, such states would correspond to fluctuations of the
center of mass, or, equivalently of a low-lying Goldstone
excitation related to the broken O(2) symmetry.

We focus on computing matrix elements of the Hamil-
tonian between different Hartree states, 〈Θ| ĤHMF |Θ′〉.
Translational invariance, and parity, ensures that these
matrix elements can depend only on the difference |Θ−
Θ′|. Then, since the Hartree states tend towards delta
functions, we can expect a delta-expansion (in terms of
derivatives of the Dirac-delta function) to provide a good
approximation of their behavior. Projecting the Hamil-
tonian onto this subset of states and using this expansion
we may then infer whether or not quantum fluctuations
of the center of mass raise, or lower, the energy.

Viewing the HMF model as archetypal of long-range
interacting systems, it is natural to study how the
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model’s phase diagram is modified by quantum effects.
Mapping out the phase diagram for the HMF model in
the χ − T plane is a natural, and important, addition
to the cannon of literature surrounding the HMF model.
In this paper we take the first step towards this goal by
studying the role of quantum fluctuations at zero tem-
perature.

The rest of the paper is dedicated to calculating the
energetic cost (or profit) of center of mass fluctuations
as sketched above. In Section I we review the Hartree
analysis for the HMF model [50, 60] which will serve as
a starting point for our analysis. In Section II we calcu-
late matrix elements of the Hamiltonian between different
CCS. In Section III we develop a large-N asymptotic se-
ries for the energy of a given CCS. Then, in Section IV we
obtain explicit expressions for the energy at leading order
in χ; this allows us to determine the symmetry breaking
properties of the ground state. Finally, in Section V we
summarize our results and suggest future directions for
the quantum HMF model.

I. MEAN FIELD THEORY

Mean-field theory for the bosonic HMF model at zero
temperature is equivalent to a product-state ansatz for
the ground state. Taking |Ψ〉 =

⊗ |ψ〉, with |ψ〉 a sin-
gle particle state leads to an energy functional E [ψ] =

〈Ψ| ĤHMF |Ψ〉. Minimizing this energy with respect to
the single particle wavefunctions, δE/δψ = 0 then leads
to a self-consistent eigenvalue problem [60]

−1

2
∂2
θψH +M cos θψH = µψH (3)

where µ is the chemical potential, and M is the aforemen-
tioned order parameter of Eq. (2); in the Hartree theory,
M must be determined self-consistently. Equation (3)
is exactly soluble, and its solutions can be expressed in
terms of Mathieu functions [60, 63]

ψH(θ) =
1√
π

ce0

(
θ−π

2 ; q[χ]
)
, (4)

where q(χ) is the depth-parameter of the Mathieu equa-
tion [63], whose dependence on χ can be determined by
solving the self-consistency condition

q =
4M

χ2
(5)

In this context, the magnetization may be thought of as
a function of q, and is defined via the integral

M(q) =
1

π

∫ π

−π

[
ce0

(
θ−π

2 ; q
)]2

cos θ . (6)

Solving Eq. (3), one finds that for χ >
√

2 the mag-
netization vanishes, M = 0, and that the lowest en-
ergy wavefunction is homogeneous i.e. ψH = 1/

√
2π

[50]. Furthermore, a Bogoliubov theory of fluctuations

about this ground state can be constructed, and it can
be easily checked that the quantum depletion of the

ground state
∑
k 6=0〈a

†
kak〉T=0 (with ak the atomic lad-

der operator) is finite, being given by
∑
k 6=0 sinh2 θk with

sinh2 θk = 1
2

(√
1− 2δk,±1/χ2 − 1

)
.

For χ <
√

2 one finds instead that M 6= 0 and the
ground state wavefunction begins to acquire non-zero
curvature, with the explicit wave-function being give by
Eq. (4). The transition between the spatially homoge-
neous ground state and the spatially localized ground
state can be viewed as a quantum phase transition as-
sociated with the spontaneous breaking of translational
invariance; the transition is predicted to be second order.

This simplified analysis then predicts that there is a
degenerate manifold of ground states, given by |Θ;N〉 =⊗ |ψH ; Θ〉 where Θ labels the wavefunction’s center of
mass (COM), such that ψH(θ−Θ) = 〈θ|ψH ; Θ〉 is peaked
at θ = Θ. For this kind of mean-field analysis to be
self-consistent, however, we require that quantum fluc-
tuations of the COM are small a posteori. Because the
clustered phase is characterized by a spontaneously bro-
ken continuous symmetry, we must then consider fluctu-
ations of gapless excitations corresponding to the shift
symmetry Θ→ Θ + ∆Θ.

II. CENTER OF MASS FLUCTUATIONS

We can study the importance of COM fluctuations by
considering a CCS

|f;N〉 =

∫
dΘ f(Θ) |Θ;N〉 (7)

where f is the COM wavefunction, such that |f;N〉 is a
coherent superposition of product states centered about
Θ. The product states

|Θ;N〉 =
N⊗

i=1

|ψH ; Θ〉 (8)

are composed of single particle wavefunctions, centered
at Θ, ψH(θ−Θ) = 〈θ|ψH ; Θ〉, that minimize the Hartree
(i.e. mean-field) energy.

The case of f ∝ δ(Θ) corresponds to a Hartree state
(localized about a single COM) whereas if f(Θ) is inde-
pendent of Θ then this state has a restored translational
invariance. To test whether or not quantum fluctuations
restore translational symmetry we can compute the av-
erage energy of a CCS. We are therefore interested in
minimizing the energy-per-particle

E[f] =
1

N
〈f;N | ĤHMF |f;N〉 . (9)

Because of the system’s translational invariance, we can
guarantee that the resulting functional can be diagonal-
ized in momentum space

E[f] =
∑

k

Ê(k)|̂f(k)|2, (10)
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where f(Θ) =
∑
k eikΘ f̂(k)/

√
2π. Studying the varia-

tional problem δE/δf = 0 is equivalent to minimizing

Ê(k)|f(k)|2 subject to the constraint that 〈f;N |f;N〉 = 1;
we can therefore conclude without any loss of generality
that the minimum energy COM wavefunction will be of
the form fk(Θ) = eikΘ with k ∈ Z.

It will be useful to introduce the functions

TH(y) =
χ2

2

∫
dθ∂ψ∗H(θ − 1

2y)∂ψH(θ + 1
2y) (11)

and

VH(y) =
1

2

∫
dθdθ′ψ∗H(θ − 1

2y)ψ∗H(θ′ − 1
2y)

× cos(θ − θ′)ψH(θ + 1
2y)ψH(θ′ + 1

2y) ,

(12)

with y = Θ − Θ′. Throughout our analysis we will
find that the Hamiltonian’s matrix elements between
two Hartree states 〈Θ2;N | Ĥ |Θ1;N〉 can be expressed
in terms of derivatives of the above functions evaluated
at zero separation. With this in mind we introduce the
following notation

V(n)
H = ∂ny VH(y)

∣∣∣∣
y=0

and T (n)
H = ∂ny TH(y)

∣∣∣∣
y=0

. (13)

Explicitly, the functions VH(y) and TH(y) are related

to the the matrix elements of the kinetic, T̂ =
∑
i

1
2m p̂

2
i ,

and potential, V̂ = − 1
N

∑
ij cos

(
θ̂i − θ̂j

)
, operators via

1

N
〈Θ1;N | T̂ |Θ2;N〉 = TH(y)O(y;N − 1) (14)

1

N
〈Θ1;N | V̂ |Θ2;N〉 = −VH(y)

[
N(N − 1)

N2

]
O(y;N − 2)

(15)
where we define the overlap

O(y;ℵ) = 〈Θ1;ℵ|Θ2;ℵ〉 = [〈ψH ; Θ1|ψH ; Θ2〉]ℵ , (16)

(with ℵ = N, N−1, or, N−2), in terms of the coordinate
difference y = Θ1−Θ2. Introducing the COM coordinate
x = 1

2 (Θ1 + Θ2) we can write

E[f] =

∫ π

−π

∫ π

−π
dxdy f∗

(
x− 1

2y
)
f
(
x+ 1

2y
) [
TH(y)O(y;N − 1)− VH(y)

[
1− 1

N

]
O(y;N − 2)

]
, (17)

from which we can immediately see that

Ê(k) =

∫ π

−π
dy e−iky

[
TH(y)O(y;N − 1)− VH(y)

[
1− 1

N

]
O(y;N − 2)

]
. (18)

Note that in both Eqs. (17) and (18) all of the derivatives
from the full many body Hamiltonian Eq. (1) appear in
the functions TH(y) and VH(y) and they do not act di-
rectly on the COM wavefunction.

III. LARGE-N EXPANSION

We are ultimately interested in the thermodynamic
limit (N → ∞ with χ held fixed [50, 52]), and in par-
ticular whether sub-leading corrections in 1/N can mod-
ify the symmetry breaking pattern at zero temperature.
To study this limit we develop an expansion that relies
on the ℵ-body overlap, O(y;ℵ), being tightly peaked for

ℵ � 1. Because O(y;ℵ) = [〈ψH ; Θ1|ψH ; Θ2〉]ℵ can be
written as an exponentiated single particle overlap, this
will be true even for moderately peaked single-particle
overlaps. In the clustered phase, provided χ . 1, the
overlap between two Hartree states, |Θ1;ℵ〉 and |Θ2;ℵ〉,

admits a δ-expansion of the form

O(y;ℵ) =
1

|C(ℵ, χ)|2

[
δ(y) +

∑

p>0

Kp(χ)

ℵp δ(2p)(y)

]
. (19)

We use this to develop a systematic expansion in 1/N by
considering a perturbative expansion of the COM wave-
function

f = C(N,χ)

(
f0 +

1

N
f1 +

1

N2
f2 + ...

)
. (20)

The multiplicative constant C(N,χ) is chosen such that
〈f0, f0〉 =

∫
f∗0(x)f0(x)dx = 1, which ensures that

〈f;N |f;N〉 = 1 at leading order2. To maintain this nor-
malization order by order in 1/N we impose the following

2 The physical state overlap〈f|f〉 differs from the L2 inner product,
〈f, f〉 at O(1/N) i.e. 〈f|f〉 = 〈f, f〉 + O(1/N).
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constraints on the COM wavefunction

〈f0, f0〉 = 1 (21)

2Re〈f1, f0〉 = K1〈f(1)
0 , f

(1)
0 〉 (22)

〈f1, f1〉+ 2Re〈f0, f2〉 = K1 2Re〈f(1)
1 , f

(1)
0 〉 (23)

−K2〈f(2)
0 , f

(2)
0 〉

which can be derived using Eq. (19) and identity
Eq. (A5). Note that, as above, the inner product
〈fi, fj〉 =

∫
dxf∗i (x)fj(x) is the L2 inner product, and

should not be confused with the state overlap 〈f|f〉.
These normalization constraints play an important role

in the calculation of the energy as discussed in Ap-
pendix B. Due to non-trivial correlations between f1 and
f0, expanding Ê(k) directly will not tell us how the en-
ergy E[f] depends on the wavefunction f. Rather, one

must expand f and Ê(k) concurrently.

Ê(k) =
1

|C(N,χ)|2
[
Ê0 +

1

N
Ê1 +

1

N2
Ê2 + ...

]
, (24)

where Ê0 = EH , with EH = T (0)
H − V(0)

H the Hartree

energy. We find that Ê is given by

Ê(k)|f(k)|2 = Ê0|f0|2 +
1

N

[
Ê1|f0|2 + 2Ê0Re f∗0f1

]

+
1

N2

[
Ê2|f0|2 + Ê1|f1|2 + 2Ê0Re f∗0f2

]
.

(25)

By using Eqs. (21) to (23), the above expression can be

simplified such that E[f] =
∑
k Ê(k)|f(k)|2 can be written

as

E[f] = E0 +
E2

N2
〈f(1)

0 , f
(1)
0 〉+O

(
1

N3

)
(26)

or at the same level of accuracy

E[f] = E0 +
E2

N2
〈f(1), f(1)〉+O

(
1

N3

)
(27)

Equation (27) controls the symmetry breaking in the
HMF model. Naively, the term E2 is irrelevant in the
thermodynamic limit [being O(1)], however, because the
leading order term predicts a degenerate ground state,
the small O

(
1/N2

)
perturbation Ê2 dictates the symme-

try breaking pattern of the ground state. The sign of
E2 dictates whether in-homogeneity (i.e. non-zero val-
ues of k) raises or lowers the energy of a CCS, and is
consequently indicative of whether or not quantum fluc-
tuations can destroy the localized (magnetized) phase.
The full details of our calculation can be found in Ap-
pendix B, however for brevity’s sake we simply quote the
leading order contribution for each quantity

E0 = EH +
1

N
[T (2)
H − V(2)

H − 1
2T

(0)
H ] +O

(
1

N2

)
, (28)

and

E2 = [K2
1 − 6K2][T (2)

H − V(2)
H ]−K1[T (0)

H − 2V(0)
H ] . (29)

The fact that gradient corrections vanish at O(1/N) is

a consequence of a cancellation between the Ê1|f0|2 and

2Ê0Re f∗0f1 in Eq. (25). This cancellation is not acciden-
tal, and is discussed in greater detail in Appendix B 4

IV. STRONG COUPLING REGIME

To determine whether these fluctuations can restore
translational invariance we can study a point in parame-
ter space deep within the clustered phase χ . 1 and see
if quantum fluctuations can lead to a translationally in-
variant COM wavefunction (i.e. f = 1/

√
2π). For this to

occur Ê2 must be positive such that k = 0 is energetically
preferred.

Although left implicit until now, the parametersK1(χ),
and K2(χ) are themselves functions of χ as are the deriva-

tives of the CCS energies V(n)
H (χ) and T (n)

H (χ). These
functions are determined exactly in terms of integrals
Eqs. (11) and (12) involving the Hartree ground state
ψH(θ;χ) (whose χ dependence is determined by Eq. (3)).
To test whether quantum fluctuations of the COM can
restore the spontaneously broken symmetry it is suffi-
cient to restrict our attention to small but finite values
of χ satisfying χ�

√
2 .

Both K1 and K2 are determined by O(y;N,χ). As
argued in the appendix, for small values of χ this can be
well approximated by (see Appendix C)

O(y;ℵ) ≈
[
I0
(√
q cos y2

)

I0
(√
q
)

]ℵ
(30)

where I0(z) is the modified Bessel function of the first
kind and q is an auxiliary depth parameter related to the
mean-field magnetization, M , and χ via q =

√
4M/χ

. We are interested in finding a delta-expansion for
O(y) and are thus interested in integrals of the form∫ π
π
O(y)f(y) dy. For 1 . y . π the overlap is expo-

nentially small [i.e. O
(
e−
√
q
)

] so we can neglect this
contribution to the integral. For moderate values of y we
can then use the large argument expansion of the modi-
fied Bessel functions I0(z) ∼ e−z/

√
2πz leading to

O(y;ℵ) ∼ exp
{
ℵ
[

4
χ (1− 1

8χ) sin2 y
4 − 1

2 log cos y2

]}
.

(31)
Using this exponential form, the integrals we are inter-
ested in studying can then be approximated using Wat-
son’s Lemma

∫
e−ℵG(y)f(y)dy ∼

√
2π

ℵG(2)

∑

p

f (2p)

(2p)!!
[
ℵG(2)

]p , (32)

where the bracketed superscripts denote the 2pth deriva-
tive of the function evaluated at y = 0. For O(y;ℵ) we
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have

G(2) =
1

2χ
− 3

16
. (33)

We can then read off overall prefactor of Eq. (20)

|C(N,χ)|2 =

√
2π

NG(2)
= 2

√
πχ

N

[
1 +

3χ

32

]
(34)

and the coefficients K1 and K2 which are given at next-
to-leading order

K1 ∼ χ+
3χ2

8
K2 ∼

χ2

2
+

3χ3

8
(35)

Next, using Eq. (C6) for the Mathieu functions, we can
derive the small-χ behavior of the CCS-functionals and
their derivatives.

T (0)
H ∼ χ

4
T (2)
H ∼ −3

8
(36)

V(0)
H ∼ 1

2
− χ

4
V(2)
H ∼ − 1

2χ
+

3

8
. (37)

Note that we need the sub-leading corrections to T (0)
H

and T (2)
H because they are the same order as T (0)

H and

T (2)
H .
Including these terms we find that O(χ) contribution

vanishes, but the O
(
χ2
)

contribution does not. We fi-
nally arrive at

Ê2 ∼
3χ2

8
+O

(
χ3
)
. (38)

This tell us that that curvature of the COM wavefunction
is energetically unfavorable such that the system prefers a
homogeneous CCS over a clumped one. Thus, quantum
fluctuations corresponding to Goldstone modes restore
the spontaneously broken translational invariance. The
lowest energy state, at all finite values of N (no matter
how large), is given by

|GS〉CCS =
1√
2π

∫ π

−π
dΘ |Θ〉+O

(
1

N

)
. (39)

As was alluded to earlier, this is reminiscent of spinor
Bose-Einstein condensates, whose exact ground state is
known to be a CCS that is formally identical to Eq. (39)
[61, 62].

V. DISCUSSION AND CONCLUSIONS

Quantum fluctuations of Goldstone modes can play an
important role in determining the zero temperature be-
havior of a long-range interacting system. In the example
studied here, properties of the ground state such as its
symmetry breaking pattern are left undetermined at the
level of mean-field theory due to a high level of degen-
eracy in the energy spectrum. Previous work on Bose

stars suggests that this degeneracy is a generic conse-
quence of long-range interactions [29]. In the case of the
HMF model, we find that this degeneracy is only lifted at
O
(
1/N2

)
for any finite N (no matter how large). At zero-

temperature this has the striking consequence of leading
to a restored O(2) symmetry in the ground state.

At finite N , the system is gapped, ∆ = 3χ2/8N2,
with excitations corresponding to departures from a ho-
mogeneous COM wavefunction. In the N → ∞ limit
the system becomes gapless, such that |GS〉CCS becomes
embedded in a highly degenerate manifold of states, al-
most all of which break the model’s underlying O(2)
symmetry. This is reminiscent of the behavior of spin-
1/2 chains, where a rotationally invariant singlet ground
state is separated at finite N from a triplet excitation
that breaks rotation invariance. In the N →∞ limit the
gap closes and the singlet becomes embedded in a degen-
erate ground state manifold whose low lying excitations
are triplets [64] in analogy with the clumping excitations
in the HMF.

This discussion is interesting, because the HMF
model’s classical partition function can be calculated ex-
actly in the N → ∞ limit, and exhibits a thermally
driven second order phase transition [2, 41]; at low tem-
peratures the system breaks the O(2) symmetry. Thus,
our observation that quantum fluctuations can restore
the O(2) symmetry leaves open two logical possibilities
that are compatible with the exact classical results [41]:

1. The limit χ → 0 is singular, and the classically
ordered phase exists only for χ strictly equal to
zero such that for χ > 0 quantum fluctuations com-
pletely inhibit ordering at all temperatures.

2. The HMF model exhibits a re-entrant phase
wherein at finite temperature, for small values of
χ the O(2) symmetry is broken. Interpreting the
O(2) symmetry as a translational invariance for
particles on a ring, this is reminiscent of inverse
melting which is known to exist in certain spin
models [65, 66].

Schematic phase diagrams for each of these two scenarios
are sketched in Fig. 1. The determination of which of
these two possibilities is born out by the HMF model
is beyond the scope of this paper, however a definitive
answer to this question should be attainable via path
integral Monte Carlo studies.

The fact that the symmetry of the ground state is pro-
tected by feeble gradient corrections to the energy of the
COM wavefunction suggests that the T → 0 limit is non-
trivial. Since deformations of the COM wavefunction
should be the lowest energy excitations3, our analysis
suggests that the low-temperature behavior of the HMF
model will be controlled by the parameter α = βχ2/N2;

3 Single particle excitations will have an energy per particle of
O(1/N), while deformations of the single particle wavefunction
ψH → ψH + δψ lead to an energy per-particle that is O(1).
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a cursory examination of this quantity clearly indicates
that the limit of β → 0 (i.e. zero temperature) does not
commute with χ → 0, and, more importantly, N → ∞.
Viewing deformations of the COM wavefunction as low-
lying excitations (all of which break the O(2) symmetry)
it is conceivable that at finite temperatures it could be
entropically favorable to macroscopically excite these de-
grees of freedom and break the O(2) symmetry. In con-
trast, one may expect that if feeble quantum fluctuations
can inhibit symmetry breaking at zero temperature, they
will continue to be able to do so at finite temperature.

(a) (b)

FIG. 1: Two possible resolutions of our result and the
exact classical calculation. The limit χ→ 0 could be

singular such that symmetry breaking (hashed lines) is
only possible for χ = 0 (a). Alternatively, a re-entrant

phase could appear at finite temperature (b). We
identify this possibility as analogous to inverse melting,

as indicated by the line of decreasing temperature at
fixed χ. The parameters corresponding to classical and
quantum (mean-field) symmetry breaking are marked

with thick black lines.

In summary we find that quantum fluctuations due
to Goldstone modes can substantially alter the symme-
try breaking pattern of the HMF model. The energetic
cost to excite a non-homogeneous center of mass wave-
function vanishes in the thermodynamic limit, suggest-
ing that finite temperature effects could substantially al-
ter our predictions. While we have provided an analytic
study of the HMF model’s ground state, our approach is
necessarily approximate and we have only included COM
fluctuations. A numerical investigation into both the fi-
nite temperature and zero temperature (i.e. ground state)
properties of the system is a natural extension of this
work, and is the most important next step in the study
of the HMF model.
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Appendix A: Delta function identities

In Appendix B we frequently encounter integrals of the
form

∫
dxdyδ(2n)(y)g(x− y/2)f(x+ y/2)h(y) , (A1)

and in this appendix we provide a short derivation of a
useful identity Eq. (A9). We may first, however, study
the simpler case of

∫
dxdyδ(2)(y)g(x− y/2)f(x+ y/2). (A2)

In this case we must integrate by parts twice to pull the
derivative off of the delta function. This gives

=

∫
dxdyδ(y)

1

4
[g′′f + f ′′g − 2g′f ′]

=

∫
dx

1

4
[g′′(x)f(x) + f ′′(x)g(x)− 2g′(x)f ′(x)]

= −
∫

dxg′(x)f ′(x).

(A3)

This generalizes naturally. If we denote
∂m[g

(
x− 1

2y
)
f
(
x+ 1

2y
)
] = Gm(α, β) then the general-

ized identity is
∫

dx G2m(x, x) = (−1)m
∫

dx g(m)(x)f (m)(x)

= 〈ḡ(m), f (m)〉.
(A4)

Applying this result to a delta-function leads to

=

∫
dxdy δ(2n)(y)g

(
x− 1

2y
)
f
(
x+ 1

2y
)

=

∫
dxdy δ(y)∂2n

y

[
g
(
x+ 1

2y
)
f
(
x− 1

2y
)]

= (−1)n
∫

dx g(n)(x)f (n)(x).

(A5)

Finally, when including an additional function in the in-
tegrand, we simply distribute the derivatives and find

=

∫
dxdy δ(2n)(y)g

(
x− 1

2y
)
f
(
x+ 1

2y
)
h(y)

=

∫
dxdy δ(y)∂2n

y

[
g
(
x+ 1

2y
)
f
(
x− 1

2y
)
h(y)

]

=

∫
dxdy δ(y)

∑

m

(
2n
m

)
Gm(α, β)∂2n−m

y h(y) .

(A6)

Because h(y) is an even function, all of the odd-
derivatives vanish leading to
∫

dxdy δ(y)
∑

m

(
2n
2m

)
Gm(α, β)∂2(n−m)

y h(y) (A7)
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Now we can perform the integration over y

∑

m

(
2n
2m

)∫
dxdy δ(y)G2m(α, β)h(2m−2n)(y)

=
∑

m

(
2n
2m

)[
∂2(n−m)
y h(y)

]
y=0

∫
dx G2m(x, x).

(A8)

Now using Eq. (A4) we arrive at

∫
dxdy δ(2n)(y)g

(
x− 1

2y
)
f
(
x+ 1

2y
)
h(y)

=
∑

m

(
2n
2m

)
(−1)m〈ḡ(m), f (m)〉h(2n−2m)

0 ,
(A9)

where h
(2n−2m)
0 = ∂

2(n−m)
y h(y)|y=0. In calculations

throughout this paper f
(
x+ 1

2y
)

= fa
(
x+ 1

2y
)

and

g
(
x− 1

2y
)

= f∗b
(
x− 1

2y
)

such that 〈ḡ(m), f (m)〉 =

〈f(m)
b , f

(m)
a 〉.

Appendix B: Large-N Asymptotics for the Energy

In Eqs. (28) and (29) we quote results for ground state
energy shift E0, and the COM wavefunction’s gradient
energy E2. In this appendix we derive these results.

We begin by considering the kinetic energy

T [f] =
1

N
〈f;N | T̂ |f;N〉

=

∫
dxdy f∗

(
x− 1

2y
)
f
(
x+ 1

2y
)
TH(y)O(y;N − 1)

Notice that the overlap has had a particle removed since
we are computing the expectation value of a single-
particle operator. Because of our COM wavefunction
normalization this means we will find an overall pref-
actor of |C(N)|2/|C(N − 1)|2 =

√
N/(N − 1) . Leading

to

T [f] =

√
N

N − 1

∫
dxdy TH(y)

×
∑

a,b

1

Na+b
f∗a
(
x− 1

2y
)
fb
(
x+ 1

2y
)

×
∑

p

Kp
Np

1(
1− 1

N

)p δ(2p)(y).

where we have used |C(N)/C(N − 1)|2 =
√
N/(N − 1 It

is convenient to ignore the prefactor and work with the

integral defined above directly. To simplify our analysis
we introduce a re-scaled kinetic energy.

T̃ [f] =

√
N

N − 1
T [f] , (B1)

such that

T̃ [f] =

∫
dxdy

∑

a,b

1

Na+b
f∗a
(
x− 1

2y
)
fb
(
x+ 1

2y
)

(B2)

× TH(y)
∑

p

Kp
Np

1(
1− 1

N

)p δ(2p)(y).

If we next consider the potential energy a similar expres-
sion may be defined. Starting with

V [f] =

∫
dxdy f∗

(
x− 1

2y
)
f
(
x+ 1

2y
)

× VH
(

1− 1

N

)
〈Θ1;N − 2|Θ2;N − 2〉 ,

(B3)

we have

V [f] =

∫
dxdy

∑

a,b

1

Na+b
f∗a(x− 1

2y)fb(x+ 1
2y)

× VH(y)×
(

1− 1

N

)∣∣∣∣
C(N)

C(N − 2)

∣∣∣∣
2

×
∑

p

Kp
Np

1(
1− 2

N

)p δ(2p)(y)

(B4)

As before we may use |C(N)/C(N − 2)|2 =
√

N
N−2 and

introduce the function

Ṽ [f] =

√
N(N − 1)2

N2(N − 2)
Ṽ [f] , (B5)

such that

Ṽ [f] =

∫
dxdy

∑

a,b

1

Na+b
f∗a(x− 1

2y)fb(x+ 1
2y)

× VH(y)
∑

p

Kp
Np

1(
1− 2

N

)p δ(2p)(y)

(B6)

Notice that the expressions for T̃ and Ṽ are nearly iden-
tical beyond cosmetic changes such as TH ↔ VH , save
for one exception. The sum over p has a factor of

1/(1 − m/N)p where m = 1 for T̃ and m = 2 for Ṽ ;
this effect enters first at O

(
1/N2

)
via the term

1

N2
mK1δ

(2)(y) m = 1 or 2 (B7)

At this level of accuracy we therefore have (omitting the
explicit arguments of x± 1

2y for brevity’s sake)
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T̃ [f] =

∫
dxdy

[
f∗0f0 +

1

N
(f∗1f0 + f∗0f1) +

1

N2
(f∗2f0 + f∗0f2 + f∗1f1)

]

× TH(y)

[
δ(y) +

1

N
K1δ

(2)(y) +
1

N2

(
K2δ

(4)(y) +K1δ
(2)(y)δ(2)(y)

)] (B8)

Ṽ [f] =

∫
dxdy

[
f∗0f0 +

1

N
(f∗1f0 + f∗0f1) +

1

N2
(f∗2f0 + f∗0f2 + f∗1f1)

]

× VH(y)

[
δ(y) +

1

N
K1δ

(2)(y) +
1

N2

(
K2δ

(4)(y) + 2K1δ
(2)(y)δ(2)(y)

)] (B9)

1. Kinetic energy

At leading order the only contribution to the kinetic
energy is given by,

T̃0 =

∫
dxdy f∗0f0δ(y)TH(y)

= T (0)
H (B10)

At next leading order we have,

T̃1 =

∫
dxdy (f∗1f0 + f∗0f1) δ(y)

+

∫
dxdy f∗0f0K1δ

(2)(y)

= 2 Re〈f0, f1〉+K1

1∑

n=0

(
2

2n

)
(−1)n〈f(n)

0 , f
(n)
0 〉T

(2−2n)
H

= 2 Re〈f0, f1〉T (0)
H −K1〈f(1)

0 , f
(1)
0 〉T

(0)
H +K1T (2)

H

= K1T (2)
H

where we have used Eq. (A9), and in going to the final
equality, we have imposed the normalization condition
Eq. (22).

At next-to-next-to leading order we have

T̃2 =

∫
dxdy (f∗0f2 + f∗2f0 + f∗1f1) δ(y)TH(y)

+

∫
dxdy (f∗0f1 + f∗1f0)K1δ

(2)(y)TH(y)

+

∫
dxdyf∗0f0K2δ

(4)(y)TH(y)

+

∫
dxdyf∗0f0K1δ

(2)(y)TH(y) (B11)

using Eq. (A9) and

T̃2 = 2 Re〈f0, f2〉T (0)
H + 〈f1, f1〉T (0)

H

+ 2K1 Re〈f0, f1〉T (2)
H − 2K1 Re〈f(1)

0 , f
(1)
1 〉T

(0)
H

+K2T (4)
H − 6K2〈f(1)

0 , f
(1)
0 〉T

(2)
H +K2〈f(2)

0 , f
(2)
0 〉T

(0)
H

+K1T (2)
H −K1〈f(1)

0 , f
(1)
0 〉T

(0)
H

(B12)

Summing all of the terms, and imposing the normal-
ization conditions from Eqs. (21) to (23), we find

T̃2 = K2T (4)
H +K1T (2)

H

+
([
K2

1 − 6K2

]
T (2)
H −K1T (0)

H

)
〈f(1)

0 , f
(1)
0 〉

(B13)

In conclusion we find

T̃0 = T (0)
H (B14)

T̃1 = K1T (2)
H (B15)

T̃2 = K2T (4)
H +K1T (2)

H (B16)

+
([
K2

1 − 6K2

]
T (2)
H −K1T (0)

H

)
〈f(1)

0 , f
(1)
0 〉

Using T = (1− 1
2N + 3

8N2 )T̃ we then find

T0 = T̃0 (B17)

T1 = T̃1 −
1

2
T̃0 (B18)

T2 = T̃2 −
1

2
T̃1 +

3

8
T̃0 (B19)

2. Potential Energy

The calculation for Ṽn largely parallels that of T̃n.

Ṽ0 =

∫
dxdy f∗0f0VH(y)δ(y)

= V(0)
H 〈f0, f0〉 = V(0)

H

(B20)

Ṽ1 =

∫
dxdy f∗0f0VH(y)K1δ

(2)(y)

+ [f∗0f1 + f∗1f
∗
0]VH(y)δ(y)

= V(2)
H + 2Re〈f0, f1〉V(0)

H −K1〈f(1)
0 , f

(1)
0 〉V

(0)
H

= V(2)
H

(B21)

where we have used the COM wavefunction’s normaliza-
tion constraint Eq. (22).
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We then find

Ṽ2 =

∫
dxdy f∗0f0VH(y)

[
K2δ

(4)(y) + 2K1δ
(2)(y)

]

+

∫
dxdy [f∗0f1 + f∗1f

∗
0]VH(y)K1δ

(2)(y)

+

∫
dxdy [f∗1f1 + f∗0f2 + f∗2f0]VH(y)δ(y) .

(B22)

Notice the factor of 2K1δ
(2)(y) in contrast to the factor

of K1δ
(2)(y) found in Eq. (B11).

As before, we will address each term in the calculation
separately,

= 2Re〈f0, f2〉V(0)
H + 〈f1, f1〉V(0)

H

+ 2K1

[
V(2)
H − 〈f

(1)
0 , f

(1)
0 〉V

(0)
H

]

+K2

[
V(4)
H − 6〈f(1)

0 , f
(1)
0 〉V

(2)
H + 〈f(2)

0 , f
(2)
0 〉V

(0)
H

]

+K1

[
(2Re〈f0, f1〉)V(2)

H − (2Re〈f(1)
0 , f

(1)
1 〉)V

(0)
H

]

(B23)

Adding all of these terms together, and making use of
the normalization conditions Eqs. (21) to (23) we find

Ṽ2 = K2V(4)
H + 2K1V(2)

H

+
([
K2

1 − 6K2

]
T (2)
H −K1T (0)

H

)
〈f(1)

0 , f
(1)
0 〉

(B24)

This leads finally to

Ṽ0 = V(0)
H (B25)

Ṽ1 = K1V(2)
H (B26)

Ṽ2 = K2V(4)
H + 2K1V(2)

H (B27)

+
([
K2

1 − 6K2

]
V(2)
H − 2K1V(0)

H

)
〈f(1)

0 , f
(1)
0 〉.

Lastly we can use the formula V = (1+ 1
N2 )Ṽ +O

(
1/N3

)

to find

V0 = Ṽ0 V1 = Ṽ1 V2 = Ṽ2 + Ṽ0 . (B28)

3. Total Energy

Recall that E[f] = T [f] − V [f]. Let us focus first on
the shift of the ground state energy. We find, at leading

order,

δE0 ≈
1

N

[
T (2)
H − V(2)

H −
1

2
T (0)
H

]
. (B29)

For the gradient energy of the COM wavefunction, we
find (again at leading order)

Ê2 ≈
[
K2

1 − 6K2

][
T (2)
H − V(2)

H

]

−K1

[
T (0)
H − 2V(0)

H

]
.

(B30)

As emphasized in the main text this is the mean result
of our work and demonstrates that quantum fluctuations
of the COM can lower the energy of a CCS state.
4. Cancellations Due to Normalization Conditions

In the previous section we found that terms such as

〈f(1)
0 , f

(1)
0 〉 were absent at O(1/N) , and likewise terms

such as 〈f(2)
0 , f

(2)
0 〉 were absent atO

(
1/N2

)
. In this section

we outline that this is not an accidental cancellation, but
is a direct consequence of the normalization conditions
Eqs. (21) to (23).

To derive Eqs. (21) to (23) we demand that
〈f;N |f;N〉 = 1, and that this normalization is maintained
order-by-order in 1/N . The exact expression for the over-
lap is given by

〈f|f〉 =

∫
dxdyf

(
x− 1

2y
)
f∗
(
x+ 1

2y
)
O(y;N) . (B31)

At leading order, using the delta-expansion of O(y;N)
this is equivalent to demanding that

〈f0, f0〉 :=

∫ π

−π
f∗0(x)f0(x)dx = 1 , (B32)

which is Eq. (21). At O(1/N) we find instead

〈f|f〉 = 〈f0, f0〉+
1

N

[
2Re〈f0, f1〉 − K1〈f(1)

0 , f
(1)
0 〉
]
. (B33)

By requiring that this correction at O(1/N) vanish we
arrive at Eq. (22). Similarly, at O

(
1/N2

)
we have

〈f|f〉 = 〈f0, f0〉+
1

N
[(2Re〈f0, f1〉)−K1〈f(1)

0 , f
(1)
0 〉] +

1

N2
[K2〈f(2)

0 , f
(2)
0 〉−K1(2Re〈f(1)

0 , f
(1)
1 〉) + 2Re〈f0, f2〉+ 〈f1, f1〉] . (B34)

Our third normalization condition, Eq. (23), then fol-
lows from the requirement that the bracketed term of

O
(
1/N2

)
must vanish.

Importantly, this exact same combination of terms is
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guaranteed to appear in our calculations of E[f]. This is
most clearly illustrated at O(1/N). Let us consider just
the term

∫
dxdy K1δ

(2)(y)f0f
∗
0VH(y)

= K1V(2)
H −K1V(0)

H 〈f
(1)
0 , f

(1)
0 〉 .

(B35)

Notice that when the derivatives act on the function f0
it gives the same result as the normalization condition,

but with an overall prefactor of V(0)
H . The same prefactor

will also appear in the term

∫
dxdy δ(y)[f0(α)f∗1(β) + f1(α)f∗0(β)]VH(y)

= V(0)
H (2Re〈f0, f1〉) ,

(B36)

where we have used α = x− 1
2y, and β = x+ 1

2y for short-
hand. Upon addition of these two terms, we will have the
combination that corresponds to Eq. (22). This happens
when all of the derivatives from the delta-expansion act
on f0; this leaves no derivatives left-over to act on VH(y)
and this ensures that the prefactor appearing in front

of Kn〈f(n)
0 , f

(n)
0 〉 is V(0)

H . This is why the gradient cor-
rections to the COM wavefunction’s energy appear at
O
(
1/N2

)
as opposed to O(1/N) as may be naively ex-

pected. The same cancellation occurs at O
(
1/N2

)
but

precludes terms of the form 〈f(2)
0 , f

(2)
0 〉.

Appendix C: Many-body overlap functions

In the body of the main text we claimed that the func-
tions O(y;ℵ) could be expanded in the large ℵ limit in a
“delta-expansion”

O(y;ℵ) =
1

|C(ℵ, χ)|2

[
δ(y) +

∑

p>0

Kp(χ)

ℵp δ(2p)(y)

]
. (C1)

In this section we will justify this claim by making use of
the properties of the Hartree wavefunctions ψH(θ). The
results obtained in this section will allow us to obtain
explicit expressions for K1, and K2 in Appendix D. As
noted before, the ℵ-body overlap can be re-written as an
exponentiated overlap of the Hartree states

O(y;ℵ) =
[ 〈

ψH ; x− 1
2y
∣∣ψH ; x+ 1

2y
〉 ]ℵ

, (C2)

where
〈
ψH ; x− 1

2y
∣∣ψH ; x+ 1

2y
〉

=

∫
dθψ∗H(θ − [x− 1

2y])ψH(θ − [x+ 1
2y])

=

∫
dθψH(θ + 1

2y)ψH(θ − 1
2y) ,

(C3)

and, where we have used the fact that ψH(θ) is real.
The form of the Hartree wavefunctions are known: they

are given by appropriately scaled and shifted Mathieu
functions, with an auxiliary parameter q(χ) that can be
determined exactly

ψH(θ) =
1√
π

ce0

(
1
2 (θ − π); q(χ)

)
. (C4)

Thus, we have

〈
ψH ; x− 1

2y
∣∣ψH ; x+ 1

2y
〉

=
1

π

∫
dθ ce0( 1

2θ; q)ce0( 1
2 (θ + y); q) .

(C5)

Now for χ � 1 we have that q ∼ 1/χ2 such that q is
very large. In this regime the Mathieu functions are well
approximated by parabolic cylinder functions, Dn, via
Sips’ expansion [63]

ce0(z; q) ∼ C0(q)[U0(ξ; q) + V0(ξ; q)] (C6)

C0(q) ∼
[
π
√
q

2

]1/4[
1 +

1

8
√
q

]−1/2

(C7)

U0(ξ ; q) ∼ D0(ξ)− 1

4
√
q
D4(ξ) (C8)

V0(ξ ; q) ∼ − 1

16
√
q
D2(ξ) (C9)

(C10)

such that

ce0(z; q) ∼
[
π
√
q

2

]1/4

D0(ξ) +O
(

1√
q

)
(C11)

Introducing the variables ζ = 2q1/4 sin θ
2 we then find

ψH(θ;χ) ∼
[√

q

2π

]1/4

D0(ζ) +O
(

1√
q

)

=

[
q

(2π)2

]1/8

e−
√
q sin2 θ

2 +O
(

1√
q

)
.

(C12)

Using the leading order behaviour for ψH , the overlap
can be expressed as a Bessel function

〈
ψH ; x− 1

2y
∣∣ψH ; x+ 1

2y
〉

=

∫ 2π

0

dθψ∗H(θ − 1
2y;χ)ψH(θ + 1

2y;χ)

∼
[

q

(2π)2

]1/4 ∫ 2π

0

dθe−
√
q sin2 x−y/2

2 e−
√
q sin2 x+y/2

2

=

[
q

(2π)2

]1/4 ∫ 2π

0

dθe
√
q
(

1−cos x cos
y
2

)

=
I0(
√
q cos y2 )√

2πq1/2e
√
q

(C13)
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where I0(z) is the modified Bessel function of the first
kind [63]. At the same order of accuracy we can instead
write

〈
ψH ; x− 1

2y
∣∣ψH ; x+ 1

2y
〉
∼ I0(

√
q cos y2 )

I0(
√
q)

, (C14)

which is exact for y = 0. For most values of y we can
use a large-argument expansion for the Bessel function
I0(z) ∼ ez/

√
2πz. For values of y such that

√
q cos y2 ∼

O(1) it follows that I0(y) ∼ O(1) and so the overlap is
O
(
q1/4e−

√
q
)
.

When considering integrals on the interval y ∈ [−π, π]
it is therefore justifiable to neglect contributions from this
exponentially suppressed region. Then, on the remainder
of the interval, we can use the large-argument expansion
of the Bessel function as a global approximation. This
allows us to re-write the overlap as

〈
ψH ; x− 1

2y
∣∣ψH ; x+ 1

2y
〉

∼ exp
[
2
√
q sin2 y

4 − 1
2 log cos y2 +O

(
1√
q

)] (C15)

By extension the ℵ-body overlap assumes the form

O(y;ℵ) ∼ exp
{
ℵ
[
2
√
q sin2 y

4 − 1
2 log cos y2

]}
, (C16)

where we have neglected terms of O
(
1/
√
q
)

or smaller.

Trading q for χ via q ∼ 4χ−2(1 − χ/4), we find at the
same order of accuracy

O(y;ℵ) ∼ e
ℵ
[(

4
χ−

1
2

)
sin2 y

4−
1
2 log cos

y
2

]

. (C17)

Appendix D: Small χ expansions

As noted in the main text, TH(y)’s leading order be-
havior as a function of χ is important. We would like

to compute T (0)
H and T (2)

H and we will make use of Sips’
expansion for the ground state wavefunctions Eq. (C6)

ψH(x) ∼
[√

q

2π

]1/4[
D0(ζ)− 1

16
√
q
D(ζ)

]
, (D1)

where ζ = 2q1/4 sin θ
2 , and

D(ζ) = D0(ζ) +D2(ζ) +
1

4
D4(ζ) . (D2)

We are interested in

TH(y) =
χ2

2

∫
dx

[
d

dx
ψH(x− 1

2y)

][
d

dx
ψH(x+ 1

2y)

]
.

(D3)
It will be useful to have the following identities

dζ±
dx

= q1/4 cos

(
x± 1

2y

2

)
= q1/4

(
1− ζ2

±
4
√
q

)1/2

(D4)

d2ζ±
dx2

= −q
1/4

2

(
x± 1

2y

2

)
= −q

1/4

4
ζ± , (D5)

where ζ± = ζ(x ± 1
2y) with which we can re-express

Eq. (D3) as

TH(y) = −χ
2

2

√
q

∫
dζ

q
1
4

√
1− ζ2

4
√
q

(
1− ζ2

−
4
√
q

)1/2

×
(

1− ζ2
+

4
√
q

)1/2

ψ′H(ζ−)ψ′H(ζ+) .

(D6)

At leading order in 1/
√
q we have

TH(y) ∼ −χ
2

2

√
q

∫
dζ√
2π
D′0(ζ−)D′0(ζ+) . (D7)

This leads immediately to the result

T (0)
H ∼ −χ

2

2

√
q

∫
dζ√
2π
D′0(ζ)D′0(ζ)

= −
√
q

8
χ2 .

(D8)

Next, to calculate T (2)
H we must act with d2

dy2 on Eq. (D7).

A useful identity is

d2

dy2
[f(ζ−)g(ζ+) + f(ζ+)g(ζ−)]

=

[
d2ζ+
dy2

+
d2ζ−
dy2

]
[f ′g + g′f ]

+ 4
dζ+
dy

dζ−
dy

f ′g′

+

[(
dζ+
dy

)2(
dζ−
dy

)2
]

[f ′′g + g′′f ] .

(D9)

which, holds when y = 0. We can insert this identity
underneath the integral after acting with the derivative
operator. This will give us an integral representation

for T (2)
H := T ′′H(y = 0). Using the explicit forms of the

derivatives,

dζ±
dy

= ±q
1/4

2

(
1− ζ2

±
4
√
q

)1/2

(D10)

d2ζ±
dy2

= − ζ

16
, (D11)

we find

T (2)
H ∼ −qχ

2

2

∫
dζ√
2π

2[D′0D
′
0 − 2D′′′0 D

′
0]

= 2qχ2

∫
dζ√
2π
D′′0D

′′
0

=
3qχ2

32
.

(D12)

where we have used the leading order approximation
for dζ±/dy and neglected the contribution from terms
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proportional to d2ζ±/d2y because they are subleading.
To obtain the second equality we integrated by parts,
however at higher orders in 1/

√
q one needs to be careful

to keep track of factors of ζ2 in the integrand.

When calculating V(0)
H and V(2)

H we need to work be-
yond leading order, because the leading order piece can-
cels in Eq. (29). We are interested in

VH(y) =
1

2

∫
dx1dx2ψH(x1 + y

2 )ψH(x1 − y
2 )

× ψH(x2 + y
2 )ψH(x2 − y

2 ) cos(x1 − x2)
(D13)

which can be re-written as

VH(y) =
1

2

[
IC(y)2 + IS(y)2

]
(D14)

IC(y) =

∫
dxψH(x+ y

2 )ψH(x− y
2 ) cos(x) (D15)

IS(y) =

∫
dxψH(x+ y

2 )ψH(x− y
2 ) sin(x) (D16)

Importantly IS(0) = 0, I ′S(0) = 0, and I ′C(0) such that

V(0)
H =

1

2
I2
C(0) and V(2)

H = IC(0)I ′′C(0) , (D17)

so we can focus exclusively on the integral IC(y). Re-
writing this in terms of ζ and keeping only terms to order
1/
√
q we arrive at

IC(y) =
1√
2π

[ ∫
D0(ζ−)D0(ζ+)

(
1− 3ζ2

8
√
q

)
dζ − 1

16
√
q

∫
D0(ζ−)D(ζ+) +D0(ζ+)D(ζ−)dζ

]
(D18)

Evaluating at y = 0 sets ζ± = ζ and we find

IC(0) =
1√
2π

[ ∫
D0(ζ)D0(ζ)

(
1− 3ζ2

8
√
q

)
dζ − 1

8
√
q

∫
D0(ζ)D(ζ)dζ

]
= 1− 1

2
√
q

(D19)

To find I ′′C(0) we must act on Eq. (D18) with d2

dy2 .

Being careful to retain sub-leading terms we find

I ′′C(0) = −
√
q√

2π

[ ∫
D′0D

′
0 −D′′0D0

2

(
1− 5ζ2

8
√
q

)
dζ

+
2√
2π

∫
D′0D0

ζ

16
dζ − 1

8
√
q

∫
D′0D

′dζ

]

= −
√
q

4

(
1− 3

4
√
q

)

(D20)

Using V(0)
H = 1

2 [IC(0)]2, V(2)
H = I ′′C(0)IC(0), and the

small-χ behavior of q [60],

q ∼ 4

χ2

[
1− χ

4
+O

(
χ2
)]

(D21)

we then find

V(0)
H =

1

2

[
1− 1√

q
+O

(
1

q

)]
(D22)

=
1

2

[
1− χ

2
+O

(
χ2
)]

V(2)
H = −

√
q

4

[
1− 5

16
√
q

+O
(

1

q

)]
(D23)

= − 1

2χ

[
1− 3χ

4
+O

(
χ2
)]

T (0)
H = χ2 ×

√
q

8

[
1 +O

(
1√
q

)]
(D24)

=
χ

4
[1 +O(χ)]

T (2)
H = χ2 ×

(
−3q

32

)[
1 +O

(
1√
q

)]
(D25)

= −3

8
[1 +O(χ)] .
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A. Torcini, Phys. Rev. E 84, 066211 (2011).

[44] T. Manos and S. Ruffo, Transport Theory and Statistical
Physics 40, 360 (2011), arXiv:1006.5341 [nlin.CD].

[45] L. H. M. Filho, M. A. Amato, and T. M. Rocha Filho,
Journal of Statistical Mechanics: Theory and Experi-
ment 3, 033204 (2018), arXiv:1704.02678 [cond-mat.stat-
mech].

[46] J. Barr, F. Bouchet, T. Dauxois, S. Ruffo, and Y. Y. Ya-
maguchi, Physica A: Statistical Mechanics and its Appli-
cations 365, 177 (2006), fundamental Problems of Mod-
ern Statistical Mechanics.

[47] W. Ettoumi and M.-C. Firpo, Journal of Physics A:
Mathematical and Theoretical 44, 175002 (2011), 15
pages.

[48] R. Plestid, P. Mahon, and D. H. J. O’Dell, Phys. Rev.
E 98, 012112 (2018), arXiv:1610.01582.

[49] G. Giachetti and L. Casetti, arXiv e-prints (2019),
arXiv:1902.02436 [cond-mat.stat-mech].

[50] P. Chavanis, J. Stat. Mech. Theory Exp. 2011, P08003
(2011).

[51] M. Kac, G. E. Uhlenbeck, and P. Hemmer, Journal of
Mathematical Physics 4 (1963).

[52] J. Barr and F. Bouchet, Comptes Rendus Physique 7, 414
(2006), statistical mechanics of non-extensive systems.
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“Generalizing the HMF model to the quantum regime is
the natural next step in the systematic exploration of the
properties of this model since its introduction in 1995.”

— Pierre Henri Chavanis

CHAPTER 5
Conclusions and Outlook
In this thesis we have laid out three preliminary studies of the HMF model’s quantum
behaviour. Our workhorse has been the GGPE which assumes that the model’s
ground state is a product state with no correlations. In Chapter 2 we outlined the
dynamical consequences of the GGPE and found that many of the HMF model’s
classical dynamical features are reproduced within the quantum regime, but that
quantum pressure ultimately disfavours focussing; often the features of the dynamics
can be understood in terms of universal diffraction integrals. These effects were most
pronounced in the case of repulsive interactions where late-time focussing can be
inhibited entirely by quantum pressure, even when the short-time dynamics are largely
unaffected by the quantum pressure. We learned that the χ→ 0, t→∞, and N →∞
limits likely do not commute with one another.

In Chapter 3 we found exact solutions to the HMF model’s GGPE. We focussed on the
attractive case, however the same methods are readily applied to the case of attractive
interactions. We developed a systematic asymptotic expansion for these solutions in
the limit of χ→ 0, and studied the linear stability of the solitary waves. We found
that the long-range interactions in the HMF model were able to support not just a
single solitary wave (as in the typical GPE) but many such solutions.

Finally, in Chapter 4 using the analytic solutions developed in Chapter 3 we explored
the role of quantum fluctuations in determining the symmetry breaking pattern within
the HMF model. We focussed on gapless (i.e. Goldstone) modes corresponding to
translations of the centre of mass. We systematically computed the matrix elements of
the Hamiltonian between Hartree states with different centre of mass wavefunctions,
and ultimately found that it was energetically favourable to restore the O(2) symmetry
via quantum fluctuations. However, the energetic cost of breaking the O(2) symmetry
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was found to vanish in the N →∞ limit, and so, much as in Chapter 1, subtle questions
related to the commutativity of the N →∞, χ→ 0, and T → 0 limits naturally arose.
Nevertheless, our result firmly establishes that quantum fluctuations can invalidate
mean-field theory in a LRI-MB system, contrary to conventional wisdom.

These three papers are only the first few steps towards a better understanding of the
HMF model’s quantum behaviour, and by extension of quantum LRI-MB systems
more generally. From where we stand today there are a few different directions that
one could explore to help further our understanding of quantum LRI-MB systems.

5.1 Path Integral Monte Carlo

A natural next-step from Chapter 4 is to understand the phase diagram of the HMF
model in the full χ−T plane. In Chapter 4 we conjecture some possible behaviors that
could exist, and we strongly advocate for a full path integral worm Monte Carlo (or
other method appropriate for many-body Bose systems) to take place. Determining if
the model exhibits a re-entrant phase would be the primary objective of such a study.

5.2 Low-energy effective description

A complimentary direction moving forward would be to develop a low-energy effective
theory that is capable of describing the HMF model at low temperatures in the hopes of
learning how to develop a universal low-energy descirption of a wide class of long-ranged
models. In short-range systems local effective field theories and the renormalization
group provide a convenient scheme for understanding the low-energy behaviour of
a system without recourse to its underlying microphysical details. Rather, knowing
only the relvant low-energy excitations and the symmetries that govern them, an
effective theory can be constructed using a derivative expansion. Unlike for short-range
interactions, a LRI-MB system is likely to be described by a non-local effective theory.
Consequently there is no universal derivative expansion to be carried out. Since
the HMF model is relatively tractable, it may be possible to study its low-energy
excitations directly, and to develop an effective theory in terms of those excitations.
The Path integral Monte Carlo approach outlined above would provide an immediate
testing ground for any such predictions.
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5.3 Cavity Realization of the HMF Model

Finally, it would be of great interest to realize the HMF model in the lab. The most
likely route to doing so would be using a cavity-mediated interaction, much like the
one discussed in [58]. So far there only exist proposals for the generalized HMF model
(defined on a torus rather than the unit circle). It is likely possible to realize the HMF
model by including additional cavity modes, perhaps by using circularly polarized
light. If this were possible, then such a set-up would realize a quantum simulation of
the HMF model, naturally complimenting the approaches outlined above. This would
then make the HMF model a bonafide sandbox for LRI-MB physics in the quantum
regime.
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