Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/24666
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorChen, Jun-
dc.contributor.authorJing, Yaohui-
dc.date.accessioned2019-08-02T18:11:16Z-
dc.date.available2019-08-02T18:11:16Z-
dc.date.issued2019-
dc.identifier.urihttp://hdl.handle.net/11375/24666-
dc.description.abstractWireless network for connecting the devices and sensors to communicate and sense is quite attractive nowadays for a wide range of applications. The scaling of the wireless network to millions of nodes currently is impractical if the process is supplied by battery energy. The batteries need to be periodically replaced or recharged due to the limited battery size. One solution is harvesting ambient energy to power the network. In this thesis, we consider a battery-limited energy harvesting communication system with online power control. Assuming independent and identically distributed (i.i.d.) energy arrivals and the harvest-store-use architecture, it is shown that the greedy policy achieves the maximum throughput if and only if the battery capacity is below a certain positive threshold that admits a precise characterization. Simple lower and upper bounds on this threshold are established. The asymptotic relationship between the threshold and the mean of the energy arrival process is analyzed for several examples. Furthermore, value iteration method is applied for solving the Bellman equation to obtain the optimal power allocation policy. The optimal policy is analyzed for several examples.en_US
dc.language.isoenen_US
dc.subjectBellman equationen_US
dc.subjectEnergy harvestingen_US
dc.subjectGreedy policyen_US
dc.subjectPower controlen_US
dc.subjectThroughputen_US
dc.titleOn the Optimality of the Greedy Policy for Battery Limited Energy Harvesting Communicationsen_US
dc.typeThesisen_US
dc.contributor.departmentElectrical and Computer Engineeringen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Applied Science (MASc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Jing_Yaohui_201907_MASc.pdf
Open Access
1.82 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue