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Abstract

Wireless network for connecting the devices and sensors to communicate and sense is

quite attractive nowadays for a wide range of applications. The scaling of the wireless

network to millions of nodes currently is impractical if the process is supplied by

battery energy. The batteries need to be periodically replaced or recharged due to the

limited battery size. One solution is harvesting ambient energy to power the network.

In this thesis, we consider a battery-limited energy harvesting communication system

with online power control. Assuming independent and identically distributed (i.i.d.)

energy arrivals and the harvest-store-use architecture, it is shown that the greedy

policy achieves the maximum throughput if and only if the battery capacity is below

a certain positive threshold that admits a precise characterization. Simple lower

and upper bounds on this threshold are established. The asymptotic relationship

between the threshold and the mean of the energy arrival process is analyzed for

several examples. Furthermore, value iteration method is applied for solving the

Bellman equation to obtain the optimal power allocation policy. The optimal policy

is analyzed for several examples.

Keywords: Bellman equation, energy harvesting, greedy policy, power control,

throughput.
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Chapter 1

Introduction

1.1 Background

The main purpose of the fifth generation (5G) cellular network is to provide energy-

efficient, low-cost and secure communication system [1]. By the end of 2020, more

than 50 billion network devices are expected to use wireless network services [2].

The wide deployment of Information and Communication Technology (ICT) devices,

Internet of Things (IoT) applications, and wireless services in the 5G cellular network

helps move towards this aim. However, there are still some obstacles in the way to

achieve this goal. At first, the lifetime of the wireless network is limited by the lifetime

of batteries in the network. When a sufficient number of batteries are exhausted in

the network, it will not achieve its designated task and need to replace the batteries

every few months [3] which causing the increase of maintenance cost. The network

could possibly use the larger size batteries, but in turn, it increases the size, weight,

and cost of batteries. Secondly, the emerging applications with high data rate in

5G require careful allocation of the transmission energy to increase the total system

1
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capacity and minimize the error rate. The energy consumed in the wireless network

is growing rapidly followed by the increase in carbon dioxide emissions. The energy

consumption of computers, networking equipment, and other ICT devices (excluding

smartphones) amounted to 8% of total world energy consumption in 2007 and is

projected to reach 14% by 2020 [4]. The increase in energy consumption of ICT

devices associates with the increase in greenhouse gas emissions (GHGE). The total

world GHGE from ICT devices grows from roughly 1-1.6% in 2007 to around 3.3%

by 2020 [5].

To effectively solve the aforementioned problems, utilizing energy from the natu-

ral environment (e.g., solar, wind, and thermal energy) or other energy sources (e.g.,

body heat and vibration power), namely, energy harvesting (EH), has been pro-

posed. Energy harvested from ambient environment supplies wireless networks with

green and infinite energy. In this way, the lifetime of the wireless network system will

not be constrained by its batteries’ lifetime and become self-powered and green. The

hardware of energy harvesting technology has developed feasibly for modern wireless

networks. For example, the solar-powered (e.g., photo-voltaic), wind-powered base

stations have been designed in recent years [6]. There are also some papers consider-

ing the system cooperation problems to improve the EH system efficiency because the

distribution of ambient energy is random in different places and different times. For

example, authors in [7] analyze the power grid energy saving problem and authors

in [8] consider how to the plan cellular network. What’s more, due to the random-

ness of the arrival energy process, allocating arrival energy optimally to maximize the

throughput is also an important and challenging issue in the energy harvesting com-

munication system. The problem of power control has received significant attention

2
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in recent years [9–21].

1.2 Energy harvesting system

Fig. 1.1 illustrates the common EH system classification.

Figure 1.1: Energy harvesting system classification

There are two main storage management ways for energy harvesting system [22].

One is the Harvest-Use-Store (HUS) architecture. In HUS, the wireless network

directly utilizes the energy from the EH system but when there is no sufficient energy,

the network will be disabled. The other is theHarvest-Store-Use (HSU) architecture.

In HSU, the energy harvesting system is equipped with a battery storing the harvested

energy and the system controls stored energy to power the wireless network. In this

thesis, we adopt the popular HSU architecture and it will be contrasted with the

HUS architecture in our future work. For the energy arrival process, it is commonly

studied in two scenarios [10–12]. In the off-line scenario, the amount of harvested

energy and the arrival time are known before the communication starts. Authors

in [10–12] provide an optimal policy for the off-line case which is consuming the

3
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energy as constant as possible over time. This kind of policy ensures nearly zero

energy overflow waste for the limited capacity battery. However, the off-line case

is hard to apply in the practical communication systems because this realization is

under the condition that the future arrival energy can be accurately predicted in

the harvesting process. In the online scenario, the harvested energy is unknown and

only revealed to the transmitter over time. The allocation policy must adaptively

change with the unknown arrival energy at each time slot. In this case, finding

the optimal online power control policy is more complicated and practical. Authors

in [10] propose the constant policy which requires energy consumption as constant as

possible in the communication process. It is easy to show that only when the battery

capacity is infinite can guarantee to allocate the same amount of energy in all time

slots. In particular, when the given battery capacity is finite, the throughput under

the constant policy would be arbitrarily away from the optimal results. We address

these above problems and consider online power control for a battery-limited energy

harvesting communication system with the goal of maximizing the long-term average

throughput.

In this thesis, we consider a single user point-to-point channel with the addi-

tive white Gaussian noise (AWGN). The system is slotted, i.e., time is discrete

(t=1,2,3,· · · ). At time t, the received signal is yt = xt + Nt, where xt is transmitted

signal and Nt is white Gaussian noise with unit variance and zero mean.

1.3 Thesis Objectives

Though the exact problem formulation varies depending on the system model and

the performance metric, the essential challenge remains the same, which is, roughly

4
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speaking, to deal with random energy availability. The aforementioned challenge is

arguably most pronounced in this setting. Indeed, it is known that the impact of

random energy arrivals can be smoothed out if the system is equipped with a battery

of unlimited capacity [14], and offline power control can achieve the same effect to a

certain extent. The standard approach to the problem under consideration is based

on the theory of Markov decision process (MDP). Although in principle the maximum

throughput and the associated optimal online power control policy can be found by

solving the relevant Bellman equation, it is often very difficult to accomplish this

task analytically. To the best of our knowledge, there is no exact characterization

of the maximum throughput except for Bernoulli energy arrivals [21]. To circumvent

this difficulty, we tackle the problem from a different angle. Specifically, we use the

Bellman equation to check whether a given power control policy is optimal. This

strategy effectively turns a hard optimization problem into a simple decision problem

for which more conclusive results can be obtained (see [23] for the application of a

similar strategy in a different context). In particular, it enables us to establish a

sufficient and necessary condition for the optimality of the greedy policy, yielding

an exact characterization of the maximum throughput in the low-battery-capacity

regime. Based on the characterization, we then analyze some properties of the optimal

power control policy for some specific i.i.d. energy arrival processes. At last, when the

capacity exceeds the regime, we consider the numerical simulations of optimal power

control policy and discuss the trade-off relationship between the optimal policy and

the available energy in the battery by solving Bellman equation.

The rest of the thesis is organized as follows. Chapter 1 presents the introduction

of this thesis. The problem conversion of Markov decision process is presented in

5
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Chapter 2. Chapter 3 provides the problem statement. We state the main results

in Chapter 4 and the proofs are provided in Chapter 5. Chapter 6 contains several

illustrative examples. The conclusion and our future work are provided in Chapter

7. Throughout this thesis, the base of the logarithm function is e.

6



Chapter 2

Preliminaries

2.1 Markov Decision Process

Markov Decision Process (MDP) is a stochastic decision-making process in which the

decision maker (i.e., the agent) interacts with the environment (i.e., the system) [24].

The process is shown in Fig. 2.1.

A MDP is a tuple 〈S,A,P ,R〉 [25], where

• S is a finite set of states

• A is a finite set of actions

• P is a state transition probability matrix, P a
S,S′ = P [St+1 = s′|St = s, At = a]

• R is a reward function, Ra
s = E [Rt+1|St = s, At = a]

7
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Figure 2.1: MDP model

At MDP, the system stays in a state s and the agent chooses an available action

a. After that, the agent gets a reward r and a new state s
′
according to the transition

probability P a
s,s′ . Policy π is a mapping from a state s to an action a. MDP aims

to find an optimal policy π which can maximize a certain objective function. In the

infinite time horizon MDP, the goal is to maximize the total reward:

maxVπ(s) = lim inf
T→∞

1

T
Eπ,s

[
T∑
t=1

R(s
′

t|st, π(at))

]
,

here E[·] is the expectation of function.

We can find v∗(s) at each state recursively by solving the following Bellman opti-

mal equation [24]:

v∗t (s) = max
a∈A

Rt(s, a) +
∑
s′∈S

Pt(s
′ |s, a)v∗t+1(s

′
)

 .
8
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There are several methods for solving infinite time horizon MDP [25]: value

iteration, policy iteration, linear programming, and online learning. Value itera-

tion (VI) method is based on dynamic programming and it is most efficient and

widely used. In this thesis, we adopt VI method and use a stopping criterion (i.e.,

||v∗t (s) − v∗t−1(s)|| < θ) to guarantee the convergence instead of running the infinite

time horizon [24]. The value iteration algorithm is shown as follows:

Algorithm 1 Value Iteration

Initialize array h arbitrarily (e.g., h(s) = 0 for all s ∈ S)
repeat

∆← 0
for each s ∈ S do
temp← v(s)
v(s)← maxa

{
r(a) +

∑
s′ p
(
s
′|s, a

)
v(s′)

}
∆← max(∆, |temp− v(s)|)

end for
until ∆ < θ (a small positive number)
Output: optimal policy π:
π(s) = arg maxa

{
r(a) +

∑
s′ p
(
s
′|s, a

)
v(s′)

}

For EH process, it is a Markov decision process and the arriving energy of it is

random.

9



Chapter 3

Problem Statement

3.1 System Model

Consider a discrete-time energy harvesting communication system equipped with a

battery of capacity c. Let X(t) denote the amount of energy harvested at time t,

t = 1, 2, · · · , where {Xt}∞t=1 are assumed to be i.i.d. copies of a non-negative random

variable X. An online power control policy is a sequence of mapping {ft}∞t=1 specifying

the level of energy consumption Gt in time slot t based on X t , (X1, · · · , Xt) for all

t:

Gt = ft(X
t), t = 1, 2, · · · .

Let Bt denote the amount of energy stored in the battery at the beginning of time

slot t. We have

Bt = min{Bt−1 −Gt−1 +Xt, c}, t = 1, 2, · · · ,

where B0 , 0 and G0 , 0. The system model is shown in Fig. 3.1.

10
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Figure 3.1: The harvest-store-use architecture

An online power control policy is said to be admissible if

Gt ≤ Bt, t = 1, 2, · · · ,

almost surely. The throughput induced by policy {ft}∞t=1 is defined as

γ(c) = lim
n→∞

inf
1

n
E

[
n∑
t=1

r(ft(X
t))

]
,

where r : R+ → R+ is a reward function that specifies the instantaneous rate achiev-

able with the given level of energy consumption. In this paper we assume

r(x) =
1

2
log(1 + x), x ≥ 0.

The maximum throughput is defined as

γ∗(c) , sup γ(c),

11
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where the supremum is taken over all admissible online power control policies.

3.2 Greedy Policy

An online power control policy {ft}∞t=1 is said to be stationary if ft is time-invariant

and the resulting Gt depends on X t only through Bt. The greedy policy is simple

stationary policy of the form

Gt = Bt, t = 1, 2, · · · .

Fig. 3.2 illustrates this power control policy.

Figure 3.2: Greedy policy model

12
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3.3 Throughput

3.3.1 Throughput of greedy policy

The throughput induced by the greedy policy can serve as a lower bound on γ∗(c) :

γ∗ ≥ γ(c) , E
[

1

2
log(1 + min {X, c})

]
.

On the other hand, the concavity of the reward function implies the following upper

bound on γ∗(c) [21]:

γ∗ ≤ γ(c) ,
1

2
log(1 + E [min {X, c}]). (3.3.1)

Proof. See Appendix A

Let ρ(x) , P(X < x), x , max {x ≥ 0 : ρ(x) = 0}, x , inf {x ≥ 0 : ρ(x) = 1)},

and µ , E [X]. We shall assume ρ(µ) > 0 (i.e., P(X = µ) < 1, or equivalently, x < x)

since otherwise γ(c) = γ(c) for all c. It is clear that

lim
c↓0

γ(c)

γ(c)
= 1.

In other words, the greedy policy is asymptotically optimal when c ↓ 0. We shall

show in this work that the greedy policy is in fact exactly optimal when c is below a

certain positive threshold.

13
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3.3.2 Optimal Throughput

The following Bellman equation provides an implicit characterization of the maximum

throughput and the associated optimal power control policy.

Proposition 1 ( [21]): If there exist a scalar γ ∈ R+ and a bounded function

h : [0, c]→ R+ that satisfy

γ + h(b) = sup
g∈[0,b]

{r(g) + E [h(min {b− g +X, c})]} (3.3.2)

for all b ∈ [0, c] , then γ∗(c) = γ; moreover, every stationary policy f such that f(b)

attains the supremum in (3.3.2) for all b ∈ [0, c] is throughput-optimal. We apply the

value iteration method to solve the Bellman equation and demonstrate the properties

of optimal policy. The algorithm is shown as follows, where state s is energy stored

in battery b and action a is power allocation policy g.

Algorithm 2 Value Iteration

Initialize array h arbitrarily (e.g., h(b) = 0 for all b ∈ [0, c]), then γ =∑
b′ p
(
b
′ |b, g

)
h(b′))

Input: Battery state b ∈ [0, c], power allocation policy g ∈ [0, b]
repeat

∆← 0
for each b ∈ [0, c] do
temp← h(b)
γ + h(b)← maxg

{
r(g) +

∑
b′ p
(
b
′ |b, g

)
h(b′)

}
∆← max(∆, |temp− h(b)|)

end for
until ∆ < θ (a small positive number)
Output: optimal policy π, throughput γ:
π(b) = arg maxg

{
r(g) +

∑
b′ p
(
b
′|b, g

)
h(b′)

}
γ = maxg

{
r(g) +

∑
b′ p
(
b
′|b, g

)
h(b′)− h(b)

}
.

Furthermore, we plot the optimal throughput and the throughput of the greedy

14
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policy agaist the battery size c by valuation method. We can see that these two

kind of throughput the same when c is smaller than one threshold. We define this

threshold as c∗. Our goal in this thesis is to find c∗.

Figure 3.3: Throughput of Geometric distribution

Figure 3.4: Throughput of Poisson distribution

15
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Figure 3.5: Throughput of Uniform distribution

Figure 3.6: Throughput of Exponential distribution

16
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Figure 3.7: Throughput of Rayleigh distribution
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Chapter 4

Main Results

4.1 Theorem 1

The greedy policy is optimal, i.e., γ∗(c) = γ(c), if and only if c ≤ c∗, where

c∗ , max

{
c ≥ 0 :

1

1 + c
≥ ρ(c)E

[
1

1 +X

∣∣∣∣X < c

]}
.

Remark 1. For c ∈ [0,∞), let φ1(c) , 1
1+c

and φ2(c) , ρ(c)E
[

1
1+X

∣∣X < c
]
. It is easy

to see that φ1(c) is a monotonically decreasing continuous function of c, and φ2(c) is

a monotonically increasing left-continuous function of c; moreover,

φ1(0) = 1 > 0 = φ2(0),

lim
c→∞

φ1(c) = 0 < E
[

1

1 +X

]
= lim

c→∞
φ2(c),

lim
c↓x

φ1(c) =
1

1 + x
>

P(X = x)

1 + x
= lim

c↓x
φ2(c),

18
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lim
c↓x

φ1(c) =
1

1 + x
< E

[
1

1 +X

]
= lim

c↓x
φ2(c).

These facts imply that c∗ is well-defined and more generally

{
c ≥ 0 :

1

1 + c
≥ ρ(c)E

[
1

1 +X

∣∣∣∣x < c

]}
= [0, c∗]

with x < c∗ ≤ x (the second inequality is strict if x =∞).

Proof. See Chapter 5.1.

Next we establish bounds on c∗ that are in general easier to evaluate than c∗ itself.

4.2 Proposition 2: Lower Bound on c∗

c∗ ≥ c , max

{
c ≥ 0 :

1

1 + c
≥ ρ(c)

1 + x

}
Remark 2. A slightly modified version of the argument in Remark 1 can be used to

show that {
c ≥ 0 :

1

1 + c
≥ ρ(c)

1 + x

}
= [0, c]

with x < c < x (the second inequality is strict if x =∞).

Proof. See Chapter 5.2.

4.3 Proposition 3: Upper Bound on c∗

c∗ ≤ c ,
1

3
+

4

3
µ.

Proof. See Chapter 5.3.

19
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Consider the case where X is a Bernoulli random variable with P(X = α) = 1− p

and P(X = β) = p, where 0 ≤ α < β and p ∈ (0, 1). For this special case, a simple

calculation shows that

c∗ = c =


α+p
1−p ,

α+p
1−p < β,

β α+p
1−p ≥ β,

c =
1

3
+

4

3
((1− p)α + pβ).

We plot upper bound, lower bound and optimal capacity for Bernoulli distributions

with different µ in Fig. 4.1 and compare these characterizations for some discrete and

continuous distributions in Appendix B.

Figure 4.1: Upper and lower bound on c∗ for Bernoulli distribution

Moreover, it can be verified that c∗ = c when β = 2α + 1 and p = 1
2
. Therefore,

the bounds in Proposition 2 and Proposition 3 are tight for non-trivial cases.

20



Chapter 5

Proofs

5.1 Proof of Theorem 1

Proof.

The main difficulty in solving Bellman equation in Proposition 1 is that the func-

tion h associated with the optimal power control policy is in general unknown. How-

ever, since we only aim to check the optimality of the greedy policy, it is easy to

construct a candidate function h. Specifically, in view of Proposition 1, the greedy

policy is optimal if

sup
g∈[0,b]

{r(g) + E [h(min {b− g +X, c})]}

= r(b) + E [h(min {X, c})]

= γ(c) + h(b)

for all b ∈ [0, c] , and the second equality naturally suggests that h(x) = r(x) for
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x ∈ [0, c] . Therefore, it suffices to check whether

sup
g∈[0,b]

{r(g) + E [r(min {b− g +X, c})]}

= r(b) + E [r(min {X, c})] ,

i.e., the supremum is attained at g = b, for all b ∈ [0, c]. For all b ∈ [0, c] and g ∈ [0, b],

we have

d

dg
{r(g) + E [r(min {b− g +X, c})]}

=
1

2(1 + g)
− ρ(c− b+ g)E

[
1

2(1 + b− g +X)

∣∣∣∣X < c− b+ g

]
,

which attains its minimum

1

2(1 + c)
− ρ(c)E

[
1

2(1 +X)

∣∣∣∣X < c

]
(5.1.1)

at g = b = c. Note that the expression in (5.1.1) is non-negative when c ≤ c∗. This

proves the “if” part of Theorem 1.

To prove the “only if” part of Theorem 1, we shall construct an online power

control policy that outperforms the greedy policy when c > c∗. To this end, we

modify the greedy policy as follows: whenever Xt ≥ c − ε, the modified policy sets

Gt = min {Xt, c}−ε and Gt+1 = min {Xt+1 + ε, c} , where ε is a small positive number.

As compared to the greedy policy, the modified policy incurs a rate loss approximately

r′(c)ε in time slot t, but gains approximately ρ(c)E [r′(X)|X < c] ε in time slot t + 1

when Xt ≥ c−ε occurs (without loss of generality, we assume c ≤ x and consequently

P(X ≥ c − ε) > 0). Since c > c∗ is equivalent to ρ(c)E [r′(X)|X < c] > r′(c), the

overall throughput is improved. This proves the “only if” part of Theorem 1.
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5.2 Proof of Proposition 2

Proof.

It is clear that

ρ(c)E
[

1

1 +X

∣∣∣∣X < c

]
=

ρ(c)

1 + x
= 0, c ≤ x,

ρ(c)E
[

1

1 +X

∣∣∣∣X < c

]
≤ ρ(c)

1 + x
, c > x.

Therefore,

{
c ≥ 0 :

1

1 + c
≥ ρ(c)E

[
1

1 +X

∣∣∣∣X < c

]}
⊇
{
c ≥ 0 :

1

1 + c
≥ ρ(c)

1 + x

}
,

from which the desired result follows immediately.

5.3 Proof of Proposition 3

Proof.

Since 1
1+x

is convex over [0,∞], it follows by Jensen’s inequality that

ρ(c)E
[

1

1 +X

∣∣∣∣X < c

]
≥ ρ(c)

1 + E [X|X < c]
. (5.3.1)

Note that

µ = ρ(c)E [X|X < c] + (1− ρ(c))E [X|X ≥ c]

≥ ρ(c)E [X|X < c] + (1− ρ(c))c,
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which implies

E [X|X < c] ≤ µ− (1− ρ(µ))c

ρ(c)
. (5.3.2)

Combining (5.3.1) and (5.3.2) gives

ρ(c)E
[

1

1 +X

∣∣∣∣X < c

]
≥ ρ(c)

1 + µ−(1−ρ(c))c
ρ(c)

. (5.3.3)

In view of Remark 1 and (5.3.3), we have c∗ < c for any c satisfying

1

1 + c
<

ρ(c)

1 + µ−(1−ρ(c))c
ρ(c)

,

which can be written equivalently as

c >
1 + µ

1− ρ(c) + ρ2(c)
− 1.

Therefore,

c∗ ≤ max
ρ(c)∈[0,1]

1 + µ

1− ρ(c) + ρ2(c)
− 1.

One can readily complete the proof by noticing that the minimum value of 1−ρ(c) +

ρ2(c) is 3
4

(attained at ρ(c) = 1
2
).
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Chapter 6

Examples

We shall provide a detailed analysis of c∗ for a few examples, with a particular interest

in understanding how c∗ scales with µ as µ→∞. In the sequel we adopt the notation

c∗ ∼ ψ(µ) to denote limµ→∞
c∗

ψ(µ)
= 1.

6.1 Discrete Distribution

Consider the case where X is a discrete random variable with probability mass func-

tion pX . For simplicity, we assume the support of pX is a countable set {ξ1, ξ2, · · · }

with 0 ≤ ξ1 < ξ2 · · · . It is easy to show that c∗ is the unique positive number satisfying

one of the following two conditions.

1) c∗ ∈ (ξj, ξj+1) for some j and

1

1 + c∗
=

j∑
i=1

1

1 + ξi
pX(ξi).
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2) c∗ = ξj+1 for some j and

j∑
i=1

1

1 + ξi
pX(ξi) ≤

1

1 + c∗
≤

j+1∑
i=1

1

1 + ξi
pX(ξi).

6.1.1 Geometric Distribution

pX(k) = (1− p)kp, k = 0, 1, · · · , p ∈ (0, 1).

Note that µ = 1−p
p

. For any a > 0,

lim
µ→∞

(
1 +

aµ

log µ

) b aµ
log µc∑
k=0

(1− p)kp
1 + k

= lim
µ→∞

(
1 +

aµ

log µ

) b aµ
log µc∑
k=0

( µ
1+µ

)k

(1 + µ)(1 + k)

= lim
µ→∞

(
1 +

aµ

log µ

) b aµ
log µc∑
k=0

1

(1 + µ)(1 + k)

= lim
µ→∞

(
1 +

aµ

log µ

)
1

1 + µ
log

(
1 +

⌊
aµ

log µ

⌋)
= a.

Therefore, we must have c∗ ∼ µ
log(µ)

.

6.1.2 Poisson Distribution

pX(k) =
e−λλk

k!
, k = 0, 1, · · · , λ > 0.
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Note that µ = E [(X − µ)2] = λ. We have

1− µ−
1
3 ≤

bµ+µ
2
3 c∑

k=dµ−µ
2
3 e

e−µµk

k!
≤ 1, (6.1.1)

where the first ” ≤ ” is due to Chebyshev’s inequality (See Appendix A) . For any

a > 0,

lim
µ→∞

(1 + aµ)

bµ+µ
2
3 c∑

k=dµ−µ
2
3 e

e−λλk

(1 + k)(k!)

= lim
µ→∞

a

bµ+µ
2
3 c∑

k=dµ−µ
2
3 e

e−µµk

k!

= a,

(6.1.2)

lim
µ→∞

(1 + aµ)
∞∑

k=bµ+µ
2
3 c

e−λλk

(1 + k)(k!)

≤ lim
µ→∞

a
∞∑

k=bµ+µ
2
3 c

e−µµk

k!

= 0,

(6.1.3)
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where (6.1.2) and (6.1.2) are due to (6.1.1); moreover,

lim
µ→∞

(1 + aµ)

bµ−µ
2
3 c∑

k=0

e−λλk

(1 + k)(k!)

≤ lim
µ→∞

(1 + aµ)

bµ−µ
2
3 c∑

k=0

e−µµk

k!

≤ lim
µ→∞

(1 + aµ)µ(1− δ) e
−µµµ(1−δ)

(µ(1− δ))!

= lim
µ→∞

(1 + aµ)µ(1− δ)e
−µδ(1− δ)−µ(1−δ)− 1

2

√
2πµ

= lim
µ→∞

(1 + aµ)µ(1− δ)e
−µδ

2

2
+o(µ

1
3 )

√
2πµ

= 0,

(6.1.4)

where δ , µ−bµ−µ
2
3 c

µ
, and (6.1.4) follows by Stirling’s approximation. Therefore, we

have

lim
µ→∞

(1 + aµ)

baµc∑
k=0

e−λλk

(1 + k)(k!)
=

 0, a < 1,

a, a > 1,

which implies c∗ ∼ µ.

We plot c∗ against µ in Figure 6.1 for the geometric distribution and the Poisson

distribution, which confirms our asymptotic analysis.
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Figure 6.1: The relationship between c∗ and µ for some discrete distributions

6.2 Continuous Distribution

Consider the case where X is a continuous random variable with probability density

function fX . It is easy to show that c∗ is the unique positive number satisfying

1

1 + c∗
=

∫ c∗

0

1

1 + x
fX(x)dx. (6.2.1)

6.2.1 Uniform Distribution

fX(x) =


1
ω
, x ∈ [0, ω] ,

0, x /∈ [0, ω] ,
ω > 0.
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We can write (6.2.1) equivalently as

1 + c∗

ω
log(1 + c∗) = 1.

Note that µ = ω
2
. For any a > 0,

lim
µ→∞

1 + aµ
logµ

ω
log

(
1 +

aµ

log µ

)
= lim

µ→∞

1 + aµ
logµ

2µ
log

(
1 +

aµ

log µ

)
=
a

2
.

Therefore, we must have c∗ ∼ 2µ
log µ

.

6.2.2 Exponential Distribution

fX(x) =

 ηe−ηx, x ≥ 0,

0, x < 0,
η > 0.

We can write (6.2.1) equivalently as

(1 + c∗)

∫ c∗

0

ηe−ηx

1 + x
dx = 1.
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Note that µ = 1
η
. For any a > 0,

lim
µ→∞

(
1 +

aµ

log µ

)∫ aµ
log µ

0

ηe−ηx

1 + x
dx

= lim
µ→∞

(
1 +

aµ

log µ

)∫ aµ
log µ

0

e−
x
µ

µ(1 + x)
dx

= lim
µ→∞

(
1 +

aµ

log µ

)∫ aµ
log µ

0

1

µ(1 + x)
dx

= lim
µ→∞

(
1 +

aµ

log µ

)
1

µ
log

(
1 +

aµ

log µ

)
= a.

Therefore, we must have c∗ ∼ µ
log µ

.

6.2.3 Rayleigh Distribution

fX(x) =


x
θ
e−

x2

2θ , x ≥ 0,

0, x < 0,
θ > 0.

We can write (6.2.1) equivalently as

(1 + c∗)

∫ c∗

0

xe−
x2

2θ

θ(1 + x)
dx = 1.
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Note that µ =
√

πθ
2

. For any a > 0,

lim
µ→∞

(1 + aµ)

∫ aµ

0

xe−
x2

2θ

θ(1 + x)
dx

= lim
µ→∞

(1 + aµ)

∫ aµ

0

πxe
−πx

2

4µ2

2µ2(1 + x)
dx

= lim
µ→∞

(1 + aµ)

∫ aµ

0

πe
−πx

2

4µ2

2µ2
dx

= lim
µ→∞

(1 + aµ)

∫ a

0

πe−
πy2

4

2µ
dy

=
πa

2

∫ a

0

e−
πy2

4 dy.

Therefore, we must have c∗ ∼ a∗µ, where a∗ ≈ 0.875 is the unique positive number

satisfying

πa∗

2

∫ a∗

0

e−
πy2

4 dy = 1.

We plot c∗ against µ in Figure 6.2 for the uniform distribution, the exponential

distribution, and the Rayleigh distribution, which confirms our asymptotic analysis.
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Figure 6.2: The relationship between c∗ and µ for some continuous distributions
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

We have established a sufficient and necessary condition for the optimality of the

greedy policy. Although only a special reward function is considered in this work, this

restriction is by no means essential. In particular, it is straightforward to establish an

extended version of Theorem 1 that holds for an arbitrary monotonically increasing

concave reward function with continuous first-order derivative. Furthermore, our

future work is to have a numerical analysis for optimal policy exceeding the greedy

range.

7.2 Future Work

Figure. 7.1 below provides the optimal power allocation for Exponential distribution.

Figure. C.1, C.2, C.3 and C.4 provide the optimal power allocation for Uniform

distribution, Rayleigh distribution, Geometric distribution, and Poisson distribution
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Figure 7.1: Optimal power allocation for Exponential distribution

with different battery capacity.

We illustrate some details for Exponential distribution, Rayleigh distribution, and

Poisson distribution at Table. C.1, C.2, and C.3 respectively. It can be seen that when

the battery capacity c is smaller than the c∗ we calculate at Theorem 1 (i.e. when c

is in the low-battery-regime), the greedy policy is always optimal which is consistent

with our results. When the battery capacity is larger than c∗, the bigger the capacity

is, the smaller the scope of which the greedy policy is optimal is. It is easy to explain.

When the battery is nearly full, the following harvested energy may be wasted, so

in order to reduce the wastage of energy, more energy needs to be allocated to the

transmitter when the energy in the battery is close to its limit. Our future work is to

find the threshold c∗ when the battery size c exceeds the low-battery-size regime.
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Appendix A

Proof of 3.3.1 and 6.1.1

Proof. 3.3.1

γ(c) =
1

n
E

[
n∑
t=1

r(ft(X
t))

]

=
1

n

n∑
t=1

E
[

1

2
log(1 + ft(X

t))

]

≤ 1

2
log

(
1 +

1

n
E

[
n∑
i=1

ft(X
t)

])

≤ 1

2
log

(
1 +

1

n
E

[
B0 +

n∑
t=2

Xt

])

=
1

2
log

(
1 +

1

n
B0 +

n− 1

n
µ

)
The first“≤” follows by the concavity of log; the second “≤” follows by the fact that

the total of the initial energy in the battery (we define B0 , 0) and the arrival energy

is the maximum allocated energy:

n∑
t=1

ft ≤ B0 +
n∑
t=2

Xt.
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when n→∞, the last equation tends to 1
2

log (1 + µ). Therefore, we get:

γ ≤ 1

2
log(1 + µ),

where µ = E [min {X, c}].

Proof. 6.1.1

According to Chebyshev’s inequality, we get:

P (a < X < b) = P

(∣∣∣∣X − b− a
2

∣∣∣∣ < b− a
2

)
≥ 1−

λ+
(
µ− a+b

2

)2
( b−a

2
)2

= 1− µ

µ
4
3

= 1− µ−
1
3

where a = µ− µ 2
3 , b = µ+ µ

2
3 , µ = E [(X − µ)2] = λ. We therefore have

1− µ−
1
3 ≤

bµ+µ
2
3 c∑

k=dµ−µ
2
3 e

e−µµk

k!
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Appendix B

Figures of Bounds on c∗

(a) Uniform (b) Exponential

(c) Rayleigh

Figure B.1: Upper and lower bound on c∗ for some continuous distributions
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(a) Geometric

(b) Poisson

Figure B.2: Upper and lower bound on c∗ for some discrete distributions
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Appendix C

Optimal Power Control Policy

Figure C.1: Optimal power control policy for Uniform distribution
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Figure C.2: Optimal power control policy for Rayleigh distribution

Figure C.3: Optimal power control policy for Geometric distribution
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Figure C.4: Optimal power control for policy Poisson distribution

Battery State c = 3 c = 4 c = 15 c=30
0 0 0 0 0
1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
4 × 4 4 3.82
5 × × 4.66 4.39
6 × × 5.29 4.93
7 × × 5.91 5.44
8 × × 6.52 5.92
9 × × 7.12 6.37
10 × × 7.71 6.78

Table C.1: Optimal power allocation for Exponential distribution
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Battery State c = 5 c = 10 c = 25 c=50
0 0 0 0 0
1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
4 4 4 4 4
5 5 5 5 5
10 × 10 10 8.6
15 × × 11.81 10.21
16 × × 12.29 10.45
17 × × 12.79 10.67
18 × × 13.29 10.87

Table C.2: Optimal power allocation for Rayleigh distribution

Battery State c = 50 c = 90 c = 120 c=150
0 0 0 0 0
20 20 20 20 20
40 40 40 40 40
60 × 60 60 60
80 × 80 80 80
100 × × 100 96.3
105 × × 103.0 97.7
110 × × 106.0 99.0
120 × × 113.1 101.3
130 × × × 104.1
140 × × × 108.7

Table C.3: Optimal power allocation for Poisson distribution
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