Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/24627
Title: Multi-label Classification and Sentiment Analysis on Textual Records
Authors: Guo, Xintong
Advisor: Chen, Jun
Department: Electrical and Computer Engineering
Keywords: NLP;sentiment analysis;multi-label classification;machine learning;deep learning
Publication Date: 2019
Abstract: In this thesis we have present effective approaches for two classic Nature Language Processing tasks: Multi-label Text Classification(MLTC) and Sentiment Analysis(SA) based on two datasets. For MLTC, a robust deep learning approach based on convolution neural network(CNN) has been introduced. We have done this on almost one million records with a related label list consists of 20 labels. We have divided our data set into three parts, training set, validation set and test set. Our CNN based model achieved great result measured in F1 score. For SA, data set was more informative and well-structured compared with MLTC. A traditional word embedding method, Word2Vec was used for generating word vector of each text records. Following that, we employed several classic deep learning models such as Bi-LSTM, RCNN, Attention mechanism and CNN to extract sentiment features. In the next step, a classification frame was designed to graded. At last, the start-of-art language model, BERT which use transfer learning method was employed. In conclusion, we compared performance of RNN-based model, CNN-based model and pre-trained language model on classification task and discuss their applicability.
URI: http://hdl.handle.net/11375/24627
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Guo_Xintong_201907_MASc.pdf
Open Access
Xintong Guo master of science thesis2.07 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue