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Abstract

In this thesis we have present effective approaches for two classic Nature Language Pro-

cessing tasks: Multi-label Text Classification(MLTC) and Sentiment Analysis(SA) based

on two datasets.

For MLTC, a robust deep learning approach based on convolution neural network(CNN)

has been introduced. We have done this on almost one million records with a related label

list consists of 20 labels. We have divided our data set into three parts, training set, valida-

tion set and test set. Our CNN based model achieved great result measured in F1 score.

For SA, data set was more informative and well-structured compared with MLTC. A tra-

ditional word embedding method, Word2Vec was used for generating word vector of each

text records. Following that, we employed several classic deep learning models such as

Bi-LSTM, RCNN, Attention mechanism and CNN to extract sentiment features. In the

next step, a classification frame was designed to graded. At last, the start-of-art language

model, BERT which use transfer learning method was employed.

In conclusion, we compared performance of RNN-based model, CNN-based model and

pre-trained language model on classification task and discuss their applicability.
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Abbreviations and Notation

Bi-LSTM Bidirectional Long Short-Term Memory

BERT Bidirectional Encoder Representations from Transformers

CBOW Continnuous Bag of Words

CNN Convolutional Neural Network

GPU Graphics Processing Unit

GRU Gated Recurrent Units

KNN K-Nearest Neighbor

LSTM Long Short-Term Memory

MCC Multi-class Classification

MLC Multi-label Classification

MLTC Multi-label Text Classification

MSE Mean Square Error

NLP Natural Language Processing
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RCNN Recurrent Convolutional Neural Network

ReLU Rectified Linear Unit

RNN Recurrent Neural Network

SA Sentiment Analysis

SVM Support Vector Machine

vii



Contents

Abstract iv

Acknowledgements v

Abbreviations and Notation vi

1 Introduction and Motivation 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Problem Background 5

2.1 Multi-label Text Classification . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Sentiment Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Deep learning Related Work 12

3.1 Word Embedding Method in NLP . . . . . . . . . . . . . . . . . . . . . . 12

3.1.1 Word2Vec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.2 Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 TextCNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

viii



3.3 Bi-LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 RCNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5 Attention Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.6 Language Model in Classification . . . . . . . . . . . . . . . . . . . . . . 29

4 Method Implementation and Experimental Result 32

4.1 Multi Label Text Classification Method . . . . . . . . . . . . . . . . . . . 33

4.1.1 Dataset for Training and Testing . . . . . . . . . . . . . . . . . . . 33

4.1.2 Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.3 Validation Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Sentiment Analysis Classification Method . . . . . . . . . . . . . . . . . . 39

4.2.1 Dataset for Training and Testing . . . . . . . . . . . . . . . . . . . 39

4.2.2 Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.3 Validation Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Conclusion and Future Works 50

ix



List of Figures

2.1 MCC and MLC(source:gombru.github.io) . . . . . . . . . . . . . . . . . 6

2.2 Sentiment Class Wheel(source:Plutchikswheelofemotions) . . . . . . . 8

3.1 Word Vectors in Vector Space(source:/samyzaf.com/ML/nlp) . . . . . . 13

3.2 Architecture of Continuous Bag of Words . . . . . . . . . . . . . . . . . . 14

3.3 Architecture of Skip-Gram Model . . . . . . . . . . . . . . . . . . . . . . 15

3.4 Architecture of Transformer(source:Vaswani et al. (2017)) . . . . . . . . . 17

3.6 (a).Scaled Dot-Product Attention . . . . . . . . . . . . . . . . . . . . . . . 18

3.7 (b).Multi-Head Attention(source:Vaswani et al. (2017)) . . . . . . . . . . . 18

3.7 A Convolution Instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.8 Diagram of TextCNN(source:Zhang and Wallace (2015)) . . . . . . . . . . 21

3.9 Bidirectional LSTM Model(source:Zhang and Ma (2017)) . . . . . . . . . 23

3.10 The Structure of RCNN(source:Lai et al. (2015)) . . . . . . . . . . . . . . 25

3.11 Bi-LSTM with Attention Mechanism (source:Zhou et al. (2016a)) . . . . . 27

3.12 The Input Representation of BERT(source:(Devlin et al. (2018))) . . . . . . 30

4.1 MLTC Model Architecture for an Example Sentence. . . . . . . . . . . . . 34

4.2 Bi-LSTM Structure for Sentiment Classification. . . . . . . . . . . . . . . 41

4.3 Bi-LSTM with Attention Structure for Sentiment Classification. . . . . . . 42

4.4 TextCNN with Word2Vec for Sentiment Classification . . . . . . . . . . . 43

x



4.5 RCNN for Sentiment Classification . . . . . . . . . . . . . . . . . . . . . . 44

4.6 Text Classification Task with BERT . . . . . . . . . . . . . . . . . . . . . 45

4.7 BERT Input Format for Sentiment Classification . . . . . . . . . . . . . . . 46

xi



Chapter 1

Introduction and Motivation

1.1 Introduction

Given one or several sentences, Multi-Label Text Classification(MLTC) is a complex nat-

ural language processing task which requires to predict multiple labels related to one in-

stance. First of all, To describe the MLTC task we would like to define some notations,

assuming that we have a label list with a labels in total, Y = {Y1, Y2, Y3, · · · , Ya}, MLTC

is asked to assign a subset y containing n labels in the label space Y to instance x. Unlike

traditional Single-Label Classification that each sample has only one label, each instance

in MLTC task may have several related labels. The MLTC task can be modelled as finding

a label list subset y∗ that maximizes the conditional probability p(y|x):

p(y|x) =
n∏
i=1

p(yi|y1, y2, y3, · · · , yi-1, x) (1.1)

where yi is the next predict label to a sequence x, and y1, y2, · · · , yi−1 are predicted labels.

1



M.A.Sc. Thesis - Xintong Guo McMaster - Electrical Engineering

There is a baseline model called fastText(Joulin et al. (2016)). This model’s advantages

are fast and simple, it can train large amount of data in a few minutes. Because this method

uses n-gram features as its input, it is able to capture enough features of text sentence. As

for the performance, this model is good in some cases, however, according to many experi-

ments, it turns out that this model is not robust enough for modelling complex problem. To

build a stronger model, we explore convolutional neural network based model(TextCNN),

this model takes advantage of the feature extraction ability of CNN and focus on empha-

sizing key features of an instance. Results shows that it exceeded the baseline model in a

large margin, and achieved great result on our MLTC task .

Based on previous MLTC work, we further construct a new semantic complex data

set for Sentiment Analysis. SA is aiming at identifying and categorizing the sentiment

expressed by an author in text, normally it can be transfer to a Single-label Classification

task. SA has a wide range of applications in industry, such as forecasting market trend

based on sentiment comment in social media.

Now most of the SA works are focusing on speech processing, our target is to develop

a sentiment degree classification model analyzing textual data. Our model are consists of

three main parts, word embedding, feature extraction and classification. We firstly use a

traditional word embedding method, Word2Vec to generate word vector. Second, to get

features from an instance, our baseline method is the Bi-LSTM, it is a recurrent neural net-

works model that connects two hidden layers of opposite directions to the same output, so

that the last output layer can get information from past (backwards) and future (forward)

states in the same time. However, this method is extremely slow to train and not suitable

for our data set.

2
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To optimize baseline model, we implement several methods. First, we deploy Recurrent

Convolutional Neural Network(RCNN) to take advantage of both CNN and RNN; Then

we use Attention mechanism to optimize Bi-LSTM, Attention enables the recurrent neural

network to focus on relevant parts of the input more than those irrelevant parts. We also

implement convolutional neural network based model(TextCNN), compared with recur-

rent neural networks, it based on max-pooling to get the most important information from

a text. Finally we implement a language model: Bidirectional Encoder Representations

from Transformers(BERT). BERTs key innovation is applying the bidirectional training

of Transformer, which is a popular Attention-based model, to language modelling. This

method is in contrast to previous works which looked at a text sequence either from left to

right or reverse.

1.2 Motivation

The motivation of this paper is to effectively solve limited-information text classification

problem. Our data set is an auto repair records data set which was originally generated

by ourselves. The data set contains almost 1 million records, where many of them are

just repair orders, short descriptions and a few key words. This data set has two main

characteristics: 1.Most instance are short text data which including less than 30 words.

2.Each label in the label list is highly correlative to some other labels for both MLTC and

SA tasks.

Both Multi-Label Text Classification and Sentiment Analysis for short texts records are

challenging because of the limited contextual information and semantic diversity which

can lead to interference building language model. To build a robust and effective model,

an intuition concept is to combine limited text content with prior technical knowledge by

3
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using more informative word embedding methods and implementing more powerful feature

extraction method to represent information-limited data.

In this paper, we compared result from each model and it shows that convolutional neu-

ral network is the most suitable feature extraction model for key words contributing data

set, further we discussed the contribution between key words and contextual information

in a practical text classification problem.

1.3 Thesis Structure

The rest of this paper is arranged as follows:

In Chapter 2, the background of Multi-label text classification problem and Sentiment

Analysis problem are presented.

Next, in Chapter 3, word embedding method and several deep learning models of neural

network that related to proposed method are introduced.

Then, in Chapter 4, the proposed multi label classification and sentiment analysis clas-

sification structures have been explained in detail, experiments results in numeric compar-

isons have presented in table.

Finally, in Chapter 5, main contribution of our work have been summarized, after that

we make a conclusion and take a forecast in future works.

4



Chapter 2

Problem Background

2.1 Multi-label Text Classification

Multi-label Text Classification (MLTC) is an important task in the field of natural language

processing (NLP), which can be applied in many real-world scenarios, such as information

retrieval(Gopal and Yang (2010)), tag recommendation (Katakis et al. (2008)), and so on.

The target of the MLTC task is to assign multiple labels to each sample in the data set. The

difference between Multi-class Classification and Multi-label Classification is the number

of labels that can be assigned to one instance.

Consider an example of three classes C = [Sun,Moon,Cloud]. In Multi-class case,

each sample belongs to only one of C classes, while in Multi-label case, more than one

class in C can associate with a sentence, Fig2.1 shows a scenario to compare MCC and

MLC. Normally, for a Multi-label Classification problem, the data set is more complicated

to solve. Currently, there are two groups of methods to solve this type of problem: Problem

Transformation and Algorithm Adaptation.(Zhang and Zhou (2014))

5
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Figure 2.1: MCC and MLC(source:gombru.github.io)

The first attempt of Problem Transformation techniques is transforming the Multi-label

Classification problem into one or more Single-label Classification problems. One way

to accomplish this task is called Binary relevance (BR)(Boutell et al. (2004)) which will

create an independent binary classifier for each label of the problem, this is one of the

earliest attempts to solve the MLTC task by transforming concept. The main problem

of the BR method is that it neglects the correlations between labels, thus ignoring some

characteristics of the problem.

One way to solve this is through the Classifier chains (CC) method(Read et al. (2011)),

The CC method uses the output of a binary classifier as an input attribute to the next clas-

sifier, hence adding relationships among classes in a problem. However, the main flaw of

this method is the difficulty of getting the best order of the classifier, and experiments show

that it is computationally expensive processing large data sets.

6



M.A.Sc. Thesis - Xintong Guo McMaster - Electrical Engineering

Another solution to MLTC task is algorithm adaptation method. The concept is try-

ing to work directly with a Multi-label problem by using data mining algorithms. One

optimization is a Multi-label lazy learning approach named ML-KNN (Zhang and Zhou

(2007)), in this work, the authors perform an adaptation of the KNN algorithm to allow the

use of Multi-label data. In the first step, all the k nearest neighbours of each instance are

identified, after identification, statistical information obtained from the neighbours label

sets is used to determine labels.

However, just as other similar methods such as ML-DT (Clare and King (2001)), Rank-

SVM(Elisseeff and Weston (2002)), they are only able to capture label correlations within

the first or second order, and computationally expensive as well.

In recent years, neural networks have achieved great success in many fields including

NLP. Some neural network models have also been applied in the MLTC task and achieved

important progress. For instance, (Zhang and Zhou (2006)) used fully connected neural

network with pairwise ranking loss function to tackle the problem. (Kim (2014)) is the

first to implement convolutional neural network into Sentence-Level Classification tasks,

(Kurata et al. (2016)) introduced CNN to Multi-label Classification. (Chen et al. (2017))

use CNN and RNN to capture the semantic information of texts. (Yang et al. (2016)) pur-

posed Hierarchical Attention Networks(HAN) to solve Document-level Classification task,

theis hierarchical structure has two levels of Attention mechanisms used at the word and

sentence-level, it purposed an idea of capturing important information in different levels,

which is useful especially in scenario that each instance has many sentences.

7
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2.2 Sentiment Analysis

The growth of using social networks, such as Twitter, Amazon, and Instagram, has proved

that nowadays the way people expressing their opinions and feelings about services and

products are influencing our life. Sentiment Analysis is an important growing task(Liu

(2015)), whose goal is to classify sentiments degree expressed in text which will help in-

dustry and companies optimize their products.

Figure 2.2: Sentiment Class Wheel(source:Plutchikswheelofemotions)

8
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The dominant approaches in sentiment analysis are based on machine learning tech-

niques(Wang and Manning (2012)). The overall structure of machine learning solutions

are consists of three steps: extracting features from text, estimating relevant features and

selecting an appropriate classification algorithm.

Traditional methods use the Bag of Words (BOW) model which is a simple and ef-

ficient way to map a whole text instance to a feature vector, then classify it by machine

learning algorithms. However, some language information will lost such as word order

and grammar structures. Therefore, higher order features have been exploited to enrich

the information extraction of a sentence, such as n-grams(Pak and Paroubek (2010)). Prior

information about sentiment can be added as addition information in the analysis. For in-

stance, Sentiment lexicons(Cambria (2016)) is added to the features as a supplement of

subjective sentiment knowledge. Nevertheless, manual feature engineering is the dominant

part of traditional approaches, which is very time consuming.

Recently, Deep learning techniques for Sentiment Analysis have become very popu-

lar. These methods utilize automatic feature extraction with better representation and can

provide better performance than traditional methods(Pang et al. (2008), Collobert et al.

(2011)). The main idea of deep learning techniques is to learn complex features extracted

from data using deep neural networks(Bengio et al. (2009)), without pass manually crafted

features, deep neural networks automatically learn new complex features through training.

While, deep learning approaches have an important character that large amounts of data is

required to perform well.

9
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It has been proved that representations of words as vectors is an effective technique

in many NLP tasks, including Sentiment Analysis(Tang et al. (2014b)). Word2Vec is one

of the most popular approaches that allows modelling words as vectors(Mikolov et al.

(2013b)). The backbone model are Skip-gram and Continnuous Bag of Words(CBOW) to

perform the computation of the distributed representations. CBOW aims to predict a word

given its context while Skip-gram predicts the context given a word. A very large data set

is needed to build Word2Vec model, which computes continuous vector representations of

words form rich corpus. These word-level embeddings are encoded by column vectors in

an word embedding matrix W :

W ∈ Rd×V (2.1)

where V is the size of vocabulary, d is the embedding size.

Each column in Wi ∈ Rd corresponds to a word embedding vector for the i-th word in

the vocabulary. The transformation of a word w into its word embedding vector rw is made

by using the matrix-vector product:

rw = Wvw (2.2)

where vw is the one-hot vector of size |V | which just has value index at word w. The matrix

parameters of W will be learned in training, and we need to manually select the dimension

of the word vectors. In sentiment classification, experiments(Zhang et al. (2015)) shows

that Word2Vec is a better way to generate vector representations than traditional classifier

such as logistic regression(Hosmer Jr et al. (2013)). An additional method in word embed-

ding learning is the auto-encoder(Chen et al. (2014)), which has been used for many kind

10
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of machine learning tasks, especially distorted data.

Another import approach in Sentiment Analysis is to enrich the embedding vectors with

other sources of information, especially the sentiment specific embedding information can

be useful(Tang et al. (2014a)). (Severyn and Moschitti (2015)) use supervised data to refine

the parameters of the unsupervised neural network model. (Kim et al. (2013))use a collab-

orative filtering algorithm to add sentiment information from a small subset of the data. (Li

et al. (2015)) introduce recursive neural network (RNN) in parallel to another neural net-

work architecture into sentiment analysis. In general, adding additional information to the

word embedding generated by deep learning networks has been more and more popular.

As shown by(Socher et al. (2013)), compositionality in the sentiment classification

task has proven to be relevant, and become another trend in SA. This work proposes the

Recursive Neural Tensor Network (RNTN) model which represents a phrase using word

vectors and a parse tree, it use tensor-based composition function to generate vectors for

higher level nodes in the parse tree.

Another successful attempt in ensemble schemes, is presented by (Mesnil et al. (2014))

they used a mean computation rule to combine three sentiment models: a weighted BOW,

a language model and continuous representations of sentences model. That ensemble ex-

hibits shows better result in sentiment classification of movie reviews. More works by

(Araque et al. (2017)) try to combine existing sentiment classifiers, including traditional

model, sentiment-based word embedding and manually selected features, and improve the

result in social application Sentiment Analysis.

11



Chapter 3

Deep learning Related Work

3.1 Word Embedding Method in NLP

3.1.1 Word2Vec

Word embedding is the most popular representation of words, it can capture the semantic

and syntactic meaning from word vocabulary. Before that, if we want to embed a sentence

x which have 6 words. First we need to construct a vocabulary V that have each words in

the sentence, V = {w1, w2, w3, w4, w5, w6}. Then we need to create a one-hot encoded

vector for each of these words in V . Length of these vector would be equal to |V | which

is the size of vocabulary, then each word have their encoding: w1 = [1, 0, 0, 0, 0, 0], w2 =

[0, 1, 0, 0, 0, 0],...etc. In this one-hot vocabulary embedding method, We can think of a six

dimensional space, where each word occupies one of the dimensions and does not have any

relation to other words, which is not true. We want to let those words which have similar

context place at closer positions in the vector space. Mathematically, according to cosine

similarity, the cosine value of the angle between similar context word vectors should be

12
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close to 1, and then comes the idea of generating distributed representations.

Word2Vec(Mikolov et al. (2013a)) is a two-layer neural networks that are trained to

reconstruct representations of words called ”word embedding”. Word2Vec takes a large

corpus of text as its input and produces a vector space, which can be set as hundred of

dimensions. Each word in the corpus have a unique vector in the space.

Figure 3.1: Word Vectors in Vector Space(source:/samyzaf.com/ML/nlp)

As shown in Fig3.1, due to the training process, words which have similar context

meaning are positioned closely in the vector space, and because of the vector represen-

tation, a word can be formed by addition of other words. Here is a common example to

represent word by linear translations, the result of a vector calculation: : Assuming that Ws

is the word space, Rn is an n-dimensional vector space. Now Let ψ be the word embedding

mapping from Ws → Rn, we will have: ψ(′king′)− ψ(′man′) + ψ(′woman′) is closer to

ψ(′queen′) than to any other word vector.(Mikolov et al. (2013b))

13
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To construct Word2Vec model there are two methods: Skip-Gram and Common Bag of

Words(Mikolov et al. (2013c)). The goal of CBOW is predicting word from a window of

its surrounding context, CBOW assumes that the order of would in a sentence not influence

prediction. In the contrast, the Skip-Gram uses a given word to predict the surrounding

window of other words. Both of these two methods have their own advantages and disad-

vantages. According to the author, Skip-Gram works better with small amount of data and

represent rare words well, but CBOW is faster in most of time especially in large data set

which would be more industrial friendly.

Figure 3.2: Architecture of Continuous Bag of Words

As shown in Fig3.2, In the CBOW, the neural network has multiple context words w as

input, and we have multiple input layers sharing the same weightsW , which are connecting

to the hidden layers. The output wi from the hidden layers is the average of the weighted

inputs for all the surrounding context words.

As shown in Fig3.3, the Skip-gram model predict the surrounding words from the target

word wi, which is inverse of CBOW. In a training instance, there is only one embedding

representation of input word been computed by the input weight matrix, but there are mul-

tiple output context words for each input. In this case we assume that we have multiple

14
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Figure 3.3: Architecture of Skip-Gram Model

output layers and all of them sharing the same set of weights W , the result is a score for

each word in the vocabulary, which is the probability of the word being a surrounding word.

Take Skip-gram model as an example, The training goal is to find word representations

that are useful for predicting the surrounding words in a sentence. Mathematically, given

a sequence of training words w1, w2, w3, w4, ...wL, the objective of the Skip-gram model is

to maximize the average log probability:

1

L

L∑
l=1

∑
−k≤j≤k,j 6=0

log p(wl+j|wl) (3.1)

where k is the window size of training corpus, here can be seen as a function of centre word

wi. Skip-gram formulation defines p(wl+j|wl) by using the softmax function.

To make the algorithm computationally efficient, Negative Sampling(Goldberg and

Levy (2014)) is used to optimize training process, we will not get into details in this paper.

15
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3.1.2 Transformer

As we have discussed above, Word2Vec helps us to build a model that can translate words

into numeric form and then perform some algorithms on it. However, it is not enough

to just capture the static word level information of natural language, we also want extract

contextualized meaning from text in certain scenario and avoid confusion, consider a simple

example of polysemous:

I like play basketball.

What an amazing play!

Note that the word play has a different semantic meaning in each sentence. However,

before with Word2Vec as embedding method, the word play has a fixed vector representa-

tion no matter in what sentence. Now with a contextualized language model, the embed-

ding of the word play would have a different vector representation which makes it more

powerful for NLP tasks.

More advanced model has been presented by Google, called Transformer(Vaswani et al.

(2017)), which has more advantages than the conventional sequential models (LSTM and

GRU). Transformer has a Sequence-to-Sequence architecture, which consist of an Encoder

and a Decoder, it can transform a sequence of words into another. The output sequence can

be in another language, or just a symbol. The author proved that an architecture with only

attention-mechanism, no any RNN units, is even better. Below is the overall architecture

of Transformer.

16
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Figure 3.4: Architecture of Transformer(source:Vaswani et al. (2017))

The Encoder is on the left and the Decoder is on the right. Both of them are composed

of modules that can be stacked on top of each other multiple times, which is described by

Nx in the figure. Multi-Head Attention and Feed Forward layers are the two main part

of this module. Get into detail of the special attention based model, there are two novel

attention bricks, In the Scaled Dot-Product Attention model, output can be described by

the following equation:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
(3.2)
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Figure 3.6: (a).Scaled Dot-Product
Attention

Figure 3.7: (b).Multi-Head Atten-
tion(source:Vaswani et al. (2017))

where Q is a matrix that contains the vector representation of one word in the sequence, K

are the keys for representations of all the words in the sequence, V are the values related to

K. Additionally, the softmax function is applied in order to make the output a distribution

between 0 and 1.

The Multi-Head Attention model describes how this attention-mechanism can be par-

allelized into multiple mechanisms that can be used side by side. The attention mechanism

is repeated multiple times with linear projections of Q,K, V , This allows the system to

learn different representations of Q,K, V . After that Q,K, V and weight matrices W are

multiplied to get the output vector. Weight matrices W are learned during training process.

The Multi-Head Attention module that connects the encoder and decoder will make sure

that the input information from both encoder and decoder are taken into account. After that,

the feed-forward network has identical parameters for each position according to a given

sequence.
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3.2 TextCNN

Convolutional neural network(Krizhevsky et al. (2012)) is the main building box to solve

computer vision problems. We would like to explore convolutional neural network based

model to solve the MLTC problem. For a traditional CNN model, assuming that we have

N training data, denoted as {(xi, yi)}N , where each xi are related to a yi, it’s goal is to

minimize:

arg min
θ
L(θ) + Φ(θ) (3.3)

where

L(θ) =
N∑
k=1

L(yi, f(xi, θ)). (3.4)

Here f(·) is the activation function, L(·) is a loss function, which is used to measure the

difference between predicted value f(xi, θ) and ground truth yi. In our MLTC task we use

cross entropy loss, the Φ(θ) is the regularization term. The training procedure can be seen

as to find a best value θ that can map the input data to output label.

Now we will show how CNN can be used for text classification. The author (Kim

(2014)) simply trained a CNN with only one layer of convolution based on word vectors

obtained from Word2Vec, the language data sets are around 100 billion words of Google

News. In our work, we did not just keep the initial word vectors static, we have fine-tuning

the word embedding model in our specific task. It is proved(Sharif Razavian et al. (2014))

that CNN can perform well when obtain feature extractors from a pre-trained deep learning

model and then apply on a variety of tasks that are very different from the original task.

Following are the TextCNN processing steps.
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The convolutional neural network based classification model are consists of four parts:

The first step is word embedding; each sentence length is different at beginning, in order

to operate them together, we use padding mechanism to get fixed length l for each sentence.

As for each word/token in the sentence, then we use word embedding method to get vectors

with fixed embedding size d. Now, our input is a matrix with two dimension(l, d), the input

format for our text classification problem is similar with image classification.

Secondly, we will do convolution to our embedded input. It is an element-wise multiply

between a filter and input. For filters, the first dimension is their size f , the second dimen-

sion is the word embedding size d. We use k number of filters, each filter is a 2-dimension

matrix (f, d). Now the output will be k lists, each list has a length of l−f+1, each element

of the list is a scalar. To acquire rich features from input, several different size of filters are

used.

Figure 3.7: A Convolution Instance
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After that, we will do max pooling for the output of convolutional operation. For k

lists, we will get k number of scalars, they are in different colours in the whole diagram as

shown in 3.8, implicating that they are computed from different filters. Concatenating all

scalars, we can form the final features of the input instance, it is a fixed-size vector, which

is not depend on the size of filters we use.

Finally, we use fully connected layer to project these features to per-defined labels.

The whole processes can be shown in diagram below:

Figure 3.8: Diagram of TextCNN(source:Zhang and Wallace (2015))
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As for the instance shown in this diagram, we have an input:

I like this movie very much !

whose length is 7, embedding dimension is 5. We use 3 different sizes:(2,3,4), two filters

for each region size, so in total, we have 6 filters. After convolution between input and

filters, it result in 6 lists, length range from 4 to 6. Then the result of max-pooling are

6 scalars. We concatenate them to get a fixed size vector which consists of all important

features of the input. Finally we use linear layer to project this vector to the label set, and

get the possibility distribution of labels.

3.3 Bi-LSTM

RNN has the ability of preserve sequence information over time, that’s why it can be ap-

plied in many NLP tasks. First proposed by(Hochreiter and Schmidhuber (1997)), LSTM

has the ability to overcome gradient vanishing problem of recurrent neural network, it

has an adaptive gating mechanism, which can take a balance between the previous state

and features extracted from the current input. Given an instance x whose length is l,

x = {w1, w2, w3, ..., wl}, At time step t, hidden state ht and current state ct will be up-

dated by following rules:



ft

ot

it

ĉt


=



α

α

α

tanh


W� [ht−1, xt] (3.5)
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and

ct = ft � ct−1 + it � ct (3.6)

ht = ot � tanh(ct) (3.7)

where f, o, i are the forget gate activation, output gate activation and input gate activation

respectively, ĉ denotes the current state, α denotes sigmoid activation function, � denotes

computing Hadamard product, W term denote weight matrices and xt is the input at the

current time-step.

Figure 3.9: Bidirectional LSTM Model(source:Zhang and Ma (2017))

For sequence modelling tasks, to obtain future as well as past context(Zhou et al.

(2016b)) is really helpful. Apparently, as we illustrated above, LSTM networks process se-

quences in temporal order, which will ignore future context. Bi-LSTM successfully solved
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this problem, as shown in Fig3.9, the networks extend normal LSTM networks by adding

a second hidden layer, where the hidden − hidden connections can flow in opposite tem-

poral order. Therefore, this model is able to exploit information from both the past and the

future.

For our sentiment analysis task, in order to capture the long-range context information

of a sentence to analysis sentiment degree, we use Bi-LSTM to computes the forward

hidden sequence
−→
hi and the backward hidden sequence

←−
hi . The network have two sub-

layers for the forward and backward sequence context respectively. Finally, The output of

the ith word is shown in the following equation:

hi =
[−→
hi ⊕

←−
hi

]
(3.8)

where ⊕ denotes the element-wise sum.

3.4 RCNN

Purposed by (Lai et al. (2015)), Recurrent Convolutional Neural Network(RCNN) com-

bines both the advantage of recurrent structure that can capture contextual information as

far as possible and the outstanding features of max-pooling layer that can automatically

take those parts of input that play key roles in a classification task. The reason why we do

not use other types of pooling layer such as average pooling layers(Collobert et al. (2011))

is that for our data set, we estimate that only some key words have important contribution

to classify different instance into different label, which is agree with the concept of max

pooling.
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The problem with RNN are the influence by bias and greater influence by recent inputs

which will result in error. As for CNN, it can extract important features from max pooling

layer while neglecting long range contextual information. The core of RCNN is creating

a special word representation y(1) that consists of the left side context, word embedding,

and right side context in the word embedding part, then use max pooling layer before

softmax layer. The Left context is constructed from a forward RNN, and the right context

is structure from a reverse RNN. The structure of RCNN can be shown in a graph:

Figure 3.10: The Structure of RCNN(source:Lai et al. (2015))

cl(wi) is the left context of word wi, cr(wi) is the right context of word wi, they are

both computed from weight matrix and word embedding. Take cl(wi) as an instance, it is

computed from following equation:

cl(wi) = f(W(l) · cl(wi−1) +W(sl) · e(wi−1)) (3.9)

where f is a non-linear activation function, W(l) is a matrix that transforms the former

hidden layer into the latter. W(sl) is a matrix used to combine the semantic of the current
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word with the next words left context. cl(wi−1) is the left-side context of the previous word

wi−1, e(wi−1) is the word embedding of word. The right-side context cr(wi) is computed

in the same way. After getting the left-side and right-side context vector cl(wi) and cr(wi),

we concatenate them with the word embedding e(wi) as the word representation y(1)i :

y
(1)
i = [cl(wi); e(wi); cr(wi)]. (3.10)

Then we apply a linear transformation together with the tanh activation function on the

representation of word wi:

y
(2)
i = tanh(W · y(1)i + b). (3.11)

The convolutional neural network in this model is designed to represent the text, the recur-

rent structure we previously mentioned is the convolutional layer.

When all the representation of words are calculated, the max pooling layer will apply

element-wise max function on y(2)i , so that the k-th element of y(3) is the maximum value

in the k-th elements of y(2)i :

y(3) =
n

max
i=1

y
(2)
i . (3.12)

The final layer output y(4) is calculated through a linear layer with W · y(3) + b. Finally, a

softmax activation function is applied to convert the output numbers into probabilities:

pi =
exp(y

(4)
i )∑n

k=1 exp(y
(4)
k )

. (3.13)
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3.5 Attention Mechanism

Attention mechanism has been proved useful in not only computer vision tasks but also

in natural language processing tasks. In this section, we introduce this method to solve

sentiment degree classification.

We did not use Multi-level Hierarchical Attention networks as (Yang et al. (2016))

because each sentence in our data set is not very long so that we do not need to capture

intrinsic structure from a document level. Based on the baseline model, Bi-LSTM, we

put Attention layer after the Bi-LSTM embedding layer to get a weighted feature vector,

which can capture the most important semantic information in a sentence. The Attention

mechanism with Bi-LSTM network structure can be shown in following diagram.

Figure 3.11: Bi-LSTM with Attention Mechanism (source:Zhou et al. (2016a))

As we can see from the diagram, the Input Layer, Embedding Layer and LSTM layer

are the same as Bi-LSTM network, after LSTM layer get the high-level features from the

embedding layer, we use Attention Layer which have produced a weight vector in the
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training step. It has ability to construct a higher level feature vector representing a whole

sentence through combining those word-level feature vectors in each time step. Assuming

that H is the LSTM output vectors [h1, h2, h3, ..., hl], l is the sentence length, let s be the

representation of the input sentence x, it can be computed by:

P = tanh(H) (3.14)

α = softmax(ωTP ) (3.15)

s = HαT (3.16)

where H ∈ Rdω×l, dω is the dimension of the word vectors, ωT is the transpose of a

trained parameter vector, the dimension of α, s are T and dω respectively. So the final

representation used for classification is:

y = tanh(s). (3.17)

This model does not rely on any pre-defined NLP tools or vocabular resources to build,

it just uses our raw text with position markers as input. This model can be seen as an opti-

mization of Bi-LSTM baseline model.According to our experiment result, using Attention

layer on top of Bi-LSTM can accelerate traditional Bi-LSTM by a large margin.
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3.6 Language Model in Classification

More recently, Generative Pre-Training(Radford et al. (2018)) is a method of pre-training

language models on a large network with a large amount of un-labeled data and fine-tuning

in lower level tasks has made a breakthrough in several natural language understanding

tasks such as commonsense reasoning, question answering and textual entailment.

ULMFiT(Howard and Ruder (2018)) is an effective transfer learning method that also

achieve very good results in the text classification task, it brings up focusing on better

way to fine-tuning a language model. The problem with ULMFiT is that it use special

fine-tuning that only adapt to classification task, for other more complicated task it need

other ways to pre-train and fine-tune. Embedding is a key tool in transfer learning in NLP,

(Peters et al. (2018)) introduced ELMo, it can embedding words into vector space using

bidirectional LSTMs which was trained on a language model objective. But these language

model have a common problem, only significant information from individual words can be

captured but not relationships between them based on their relative positions in a sentence.

Googles Bidirectional Encoder Representations from Transformer(BERT, (Devlin et al.

(2018))) is different from previous model intuitively because it use a modified method to

produce representation called masked language modeling. Due to the network structure,

previous language model could not take advantage of both left and right contexts simul-

taneously. BERT randomly erased some words in a sentence and replaced with a unique

token ”masked”, then it use multi-layer bidirectional Transformer to train on plain text for

masked word prediction and next sentence prediction tasks. BERT can learn how to predict

a word from surrounding words from these specific task therefore it automatically learns

better word representation. Similarly, only last layer for downside task need to be change

because most parameters of this language model is pre-trained.
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The backbone model is Transformer(Vaswani et al. (2017)) which we already look in

details before. A big difference is that previous method looked at a text sequence either

from left to right or combined left-to-right and right-to-left training, but BERT use the

Attention-based encoder which reads the entire sequence of words at once, this character-

istic allows the model to have a deeper understanding of language context.

Figure 3.12: The Input Representation of BERT(source:(Devlin et al. (2018)))

Fig3.12 is the input format that BERT expects, there are three special tokens that BERT

authors used for fine-tuning and specific task training:

[CLS]: The first token of every sequence. A classification token which is normally

used in conjunction with a softmax layer for classification tasks.

[SEP]: A sequence delimiter token which was used at pre-training for sequence-pair

tasks (for instance, Next sentence prediction). Must be used when sequence pair tasks are

required. When a single sequence is used it is just appended at the end.

[MASK]: A token used for masked words, only used in pre-training.

The input layer is the vector representations of the sequence together with the special

tokens. The ’Token Embeddings’ layer are the vocabulary IDs for each of the tokens in-

cluding special tokens. The ’Sentence Embeddings’ layer is a numeric class to distinguish
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between sentence A and B. The last layer ’Positional Embeddings’ layer indicate the posi-

tion of each word in the sequence.

As we have discussed above, BERT learns text representations by pre-training on two

tasks: Masked Language Modelling and Next Sentence Prediction.

1. [MASK Language Modelling]: In a sentence with two words removed, BERT is

trained to predict what those two words are, such as below:

Input: The car had a heavy [MASK]1. We need to do a complete [MASK]2

Labels: [MASK]1 = accident; [MASK]2 = inspection

2. [Next Sentence Prediction]: Given two sentences, BERT is trained to determine

whether one of these sentences comes after the other in a piece of text, or whether they are

just two unrelated sentences.

Exp1: Labels: In Next

Sentence A: The car had a heavy accident.

Sentence B: We need to do a complete inspection.

Exp2: Labels: Not In Next

Sentence A: The car had a heavy accident.

Sentence B: Your dog is so cute.

By doing these two tasks in pre-training, the training sets can be obtained without too

much supervised efforts. As a result, BERT can be pre-trained on a massive corpus of text

data(such as Wikipedia) and can learn rich representations of language that are impossible

to learn with small data sets. The final layer can be fine-tuned on a task of our choice later.
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Chapter 4

Method Implementation and

Experimental Result

For MLTC task, we implement TextCNN with multiple filters, performance is reported by

positioned F1 score. For Sentiment Analysis task, we firstly fine-tuned our own Word2Vec

embedding model, then we implement several neural networks. Our baseline model is Bi-

LSTM, which is an RNN model without any optimization. Then we implement Attention

with Bi-LSTM to optimize feature vector. RCNN is introduced to try to mix up CNN

and RNN. Furthermore, we implement TextCNN which emphasizes keywords contribution

compares to RNN based model that focused on contextual meaning. Finally we replace

traditional neural network model with state-of-art language model, BERT, to solve this task

with transfer learning method. As for it is a Multi-class Text Classification problem, we use

classification accuracy as performance score. Experiments results in numeric comparison

have been presented in table.

The training is carried out on a PC with one NVIDIA GeForce GTX 1080Ti.
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4.1 Multi Label Text Classification Method

4.1.1 Dataset for Training and Testing

Our MLTC dataset is extracted from a SQL database, which consists of 901945 instances

after pre-processing, each instance have at least 1 label, up to 14 labels. Our label set

has 20 labels in total, we encoded each word in each instance by words vocabulary, the

vocabulary size is 18009, and we encoded each instances labels by multi-hot encoding

method as well. We divided our dateset to three parts, training set has 871944 instances,

validation set has 10000 instances, test set has 20000 instances. To train the network, we

padded each instance to 200 long with 0. Here is an example of training instance:

TrainX[2] = [788, 66, 8, 13, 1018, 4, 251, 9982, 1687, ..., 0]

TrainY [2] = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0]

for TrainX[2], [788, 66, 8] are the index of words in the vocabulary. Each pair of instance is

similar to this example, validation set and test set has the same structure. For this instance, it

has 5 related labels which are label1, label13, label14, label18, and label19. The statistics

of our dataset compared with two classic dataset, Reuters Corpus Volume I (RCV1-V2)

and Arxiv Academic Paper Dataset (AAPD) is shown in Table4.1, it is apparently that our

dataset is a short text classification dataset:

Table 4.1: Statistics information of our dataset.

Dataset total samples label sets words/sample labels/sample
RCV1-V2 804144 103 123.94 3.24

AAPD 55840 54 163.42 2.41
Ours 901945 20 9.83 1.81
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4.1.2 Network Architecture

Figure 4.1: MLTC Model Architecture for an Example Sentence.

The model architecture, shown in Figure 4.1, is a CNN based Multi-label classification

architecture. Assuming an instance xi is a n-dimensional word vector corresponding to the

i-th word in an instance. The instance length is l which has been padded to a fixed length

200. The instance x1 can be represented as:

x1 = [v1, v2, v3, ...vl] (4.1)

where [ ] here means concatenation operator, v1, v2, v3, ...vl are the vector representation of

words in instance x1. The convolution layer will involves a filter with size f1, applied to a
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window of m words to produce an intermediate feature:

e1 = f(f1 · xi+m−1 + b) (4.2)

where b is the bias item, f is a non-linear function. Filter f1 will traversal the whole instance

to produce a feature map.

E1 = [e1, e2, e3, ...el−m+1]. (4.3)

Then we apply ReLU activation function to add non-linearity, after that, we use max pool-

ing operation to take the maximum value as the key feature related to this size of filter.

For regularization we employ dropout with a constraint on l2-norms of the weight vec-

tors, this operation can reducing overfitting in neural networks by preventing complex co-

adaptations on training data(Hinton et al. (2012)). Finally, we use fully connected layer to

project the final features to per-defined labels.

During the training procedure, we use logits, which is the linear layer output of the

network and ground truth trainY to compute loss, because each instance have at least 1

label, here we use cross entropy loss(De Boer et al. (2005)). Cross entropy takes our two

distributions, estimated distribution ŷ = logits and true distribution y = trainY , is given

by

L = −y · log(ŷ) (4.4)

where · is the vector dot product.
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4.1.3 Validation Metric

Below is the confusion matrix for classification:

Table 4.2: Confusion matrix

Test Result Truth: ”A” Truth: ”Not A”
”A” TP FP

”Not A” FN TN

Where TP means True Positive, FP means False Positive, FN means False Negative,

TN means True Negative. Precision is the fraction of TP among all the positives recalled:

Precision =
TP

TP + FP
. (4.5)

Recall is fraction of TP among all the correct events:

Recall =
TP

TP + FN
. (4.6)

F1 score is the harmonic mean of the Precision and Recall:

F1 = 2
Precision ∗Recall
Precision+Recall

. (4.7)

Our dataset is Multi-label classification dataset, so we use F1 −macro and F1 −micro

score. Assuming we have n labels, for F1−macro, we compute the Precision and Recall

for each label, and then we have:

Precisionmacro =
Precision1 + Precision2 + ...+ Precisionn

n
(4.8)
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Recallmacro =
Recall1 +Recall2 + ...+Recalln

n
(4.9)

F1−macro = 2
Precisionmacro ∗Recallmacro
Precisionmacro +Recallmacro

. (4.10)

For F1−micro:

Precisionmicro =
TP1 + TP2 + ...+ TPn

TP1 + TP2 + ...+ TPn + FP1 + FP2 + ...+ FPn
(4.11)

Precisionmicro =
TP1 + TP2 + ...+ TPn

TP1 + TP2 + ...+ TPn + FN1 + FN2 + ...+ FNn

(4.12)

F1−micro = 2
Precisionmicro ∗Recallmicro
Precisionmicro +Recallmicro

. (4.13)

4.1.4 Experimental Results

While training the neural network, we normalize each input of size 200× 128, the first di-

mension is the fix length of each instance, which was padded to 200, the second dimension

is embedding size, which was used to get an initial embedding matrix. We use tensorflow

API tf.random normal initializer to generates tensors with a normal distribution. We train

the network for 10 epochs in total, learning rate is set as 0.0002, batch size is 64 and we

have reduce the learning rate by half every 1000 steps.

Every 3000 steps we use validation set to do a evaluation, in an evaluation, if logitsi ≥

0, labeli would be considered as one of the predict label list, we use predict label list

{labeli} and target label list {evalY } to compute confuse matrix, then using confuse matrix
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to compute F1−macro and F1−micro score. At every end of epoch we use same strategy

to evaluate on test set data, and report F1 score.

After 10 epoch training, our training loss goes down to 0.047, test loss is 0.042, F1 −

macro score is 0.998, F1 −micro score is 0.998. The result shows that our CNN based

model can perfectly predict the label list related to test data. Here are some randomly

selected prediction examples from test set after last epoch training:

Table 4.3: Several examples of our textCNN model prediction result.

Example targetY predictY target-label-logit
exp1 [3, 5, 12] [3, 5, 12] [8.0786, 10.5817, 10.3979]
exp2 [18] [18] [10.7559]
exp3 [10, 12] [10, 12] [11.0153, 10.0365]
exp4 [9] [9] [10.6712]
exp5 [1, 7, 8, 13] [1, 7, 8, 13] [8,2970, 5.7032, 10.0377, 11.2335]

As we can see from the test result, our model has a great performance on test set data.

For an instance, the predicted label list are those index of network output logits which equal

or bigger than 0, we can see not only the predictY is same with targetY, but also the logit

value of all predict label are relatively high, much bigger than 0. Which means our model

can classify multi label related to an instance very well.
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4.2 Sentiment Analysis Classification Method

4.2.1 Dataset for Training and Testing

Our SA dataset is based on MLTC dataset, we despite those instances which have less than

5 words, because we assume sentiment classification need more information. After pre-

processing, there are 259451 instances in total, each instance have only one label indicating

the sentiment degree for the instance. For our auto repair dataset, the sentiment degree level

vary from 0 to 4, which can be seen as normal to severe of a car damage condition. So the

size of label list is 5. We divided our dateset into three parts, training set has 241290

instances, validation set has 12972 instances, test set has 5189 instances. To train the

network, we padded each instance to 200 long with 0. Here are 2 examples of training

instance:

TrainX[1] = [97, 80, 118, 114, 58, 115, 116, ..., 0]|TrainY [1] = 1

TrainX[2] = [10, 111, 1, 120, 76, 121, 0, 1, ..., 0]|TrainY [2] = 0.

For the word embedding part, in Bi-LSTM, Bi-LSTM with Attention, RCNN and

TextCNN model, we use Word2Vec embedding method to generate network input and then

load it in the training step. We append 2 tokens ’PAD’ and ’UNK’ to the vocabulary, which

means padding 0 and unknown words respectively. We set 0 and random distribution as

the related vector value. The embedding matrix has size 7860× 200, the first dimension is

vocabulary size, the second dimension is embedding size that we use to build embedding

matrix at the beginning. In language model, BERT, we use pre-trained language model

from (BERT-BaseUncased) released by google(github.com/google− research/bert)
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4.2.2 Network Architecture

Here we would like to show the difference among these model, compare the results and get

further discussion.

Bi-LSTM

Bi-LSTM model is an RNN-based model. Firstly, we use word embedding method to get

the embedding vector of input. Secondly, with Bi-LSTM block, we can get the contextual

information from two direction of an instance, then concatenate two direction of hidden

layer outputs −→e and←−e together to get the final feature vector

h = [−→e ⊕←−e ] (4.14)

Finally, we use fully connected layer to map this feature vector to our label set, which

contains 5 class. During the training step, we train the network model with cross entropy

loss, and we combine dropout with L2 regularization loss to alleviate overfitting.
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Figure 4.2: Bi-LSTM Structure for Sentiment Classification.

Bi-LSTM+Attention

In Bi-LSTM with Attention model, Attention layer can helps to capture the most important

semantic information in a sentence.

The former part of structure is similar to Bi-LSTM model, after getting the high level

features from Bi-LSTM layer, we add Attention layer which can multiply this high level

features vector by a weight vector to merge word-level features from each time step into a

sentence-level feature vector. Finally we use this sentence-level feature vector h to apply

softmax classifier, and get the predict label y from classes set:

l = softmax(Wh+ b) (4.15)
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Figure 4.3: Bi-LSTM with Attention Structure for Sentiment Classification.

y = argmax(l) (4.16)

where W and b is weight matrix and bias in the network, the loss function is same to

Bi-LSTM model.

TextCNN

TextCNN model is a CNN-based model, the neural network structure is similar to TextCNN

in MLTC, except in sentiment classification we use Word2Vec to do word embedding, so

that we can take advantage of pre-trained embedding method, and because it is a single class

classification, we use sparse softmax cross entropy loss to compute loss in the training step.
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Figure 4.4: TextCNN with Word2Vec for Sentiment Classification

RCNN

In RCNN model, we also use Bi-LSTM model to get contextual information, but here we

concatenate two direction of hidden layer outputs−→e and←−e together with word embedding

vector v as the representation of word.

h = [−→e ⊕ v ⊕←−e ] (4.17)

Then we apply a linear transformation together with the tanh activation function to

get a latent semantic vector y, after that, we apply a max-pooling layer which will do an

element-wise max function, then each element of ŷ is the maximum value among yi:
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Figure 4.5: RCNN for Sentiment Classification

yi = tanh(Whi + b) (4.18)

ŷ = max(yi). (4.19)

With max-pooling layer, we can capture the information throughout the entire text. All

in all, this model can use recurrent network to capture contextual information and then

constructs the word representation by using convolutional neural network.
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BERT

BERT model is totally different with previous model, because it is a language model which

most of parameters has been pre-trained, only last layer for classifying need to be modified.

In our classification task, due to the size of our data set, we have trained a middle size

model, so our base model is BERT-base. In order to make the training process fast, we

slightly modified the model parameters. The vocabulary size of input is the same with

previous model, the size of encoder layers and the pool layer are both 128. For the Trans-

former encoder, we use 4 hidden layers and 8 attention heads for each Attention layer, the

intermediate(feed-forward) layer size is 1024. The overall structure is shown below.

Figure 4.6: Text Classification Task with BERT
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Fig4.7 is the input form of BERT in SA, the original Input is under a preprocessing

called Word2Index, where we produce the vocabulary of the dataset and use index to ex-

press each word in an instance. In this vocabulary, we insert key 2 for token [CLS], in

order for later use. We change the format of each instance to get the Input id, it has one

or two segments that the first token of the sequence is always set to [CLS] which contains

the special classification embedding and another token [SEP] is used for separating several

parts if we have more than one sentence for an instance.

Following the concept of BERT, we will produce Input mask and Segment ids of an

instance before feed it into model, the shape of both Input mask and Segment ids are

[64, 200] which are same with input size, the first dimension is batch size and the second

dimension is fixed max sequence length. For those padding tokens, Input mask will be 0,

value of other place is 1, Segment ids are set to be 1 at all place of the matrix. The input

format processing for training BERT model can be shown as:

Figure 4.7: BERT Input Format for Sentiment Classification
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We take the hidden state of the first token, which is [CLS], as the representation of

the input instance, feed to the final dense layer, A simple softmax classifier is added after

Transformer operation to predict the probability of label y using the final hidden state h:

P (y|h) = softmax(Wh) (4.20)

where W is the task-specific parameter matrix, we minimize the sparse cross entropy

loss of the model to fine-tune all the parameters.

4.2.3 Validation Metric

Sentiment Analysis on our dataset can be seen as a Single-label Classification problem, so

here we use accuracy to evaluate model, as we have already introduced confusion matrix

and TP, TN, FP, FN in MLTC, accuracy can be simply calculated in this way:

accuracy =
TP + TN

TP + TN + FP + FN
. (4.21)

4.2.4 Experimental Results

We normalize each input of size 200× 200 except BERT model, here the first dimension is

embedding size, the second dimension is fixed max sequence length. The original input of

BERT model is just use index of each word in vocabulary to express an instance, the length

of each instance is set to 200 as well.

The Bi-LSTM network is trained for 5 epochs and the learning rate(0.0001) is reduced
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by 0.65 every 1000 steps, batch size is 64, same as Bi-LSTM+Attention network and

RCNN network, but their learning rate are 0.001 and 0.005 respectively. The TextCNN

network is trained for 10 epochs, batch size is 64 and learning rate is 0.0001. The language

model BERT is trained for 5 epochs, batch size is 64 and learning rate is 0.00007.

In the evaluation part, we simply use argmax function on model output logits to get the

index as prediction, and then return the truth value of predictionY == groundtruthY , af-

ter that we transfer this result data format to float32, and then compute the mean of elements

across all dimensions. Finally, all dimensions are reduced and we get a single element as

accuracy. We add up accuracy for every instance in a batch and get the final accuracy in an

evaluation batch. For each model, we did 5 repetitive experiments and use the mean value

as the final result. The numerical results of all model for our sentiment classification data

set are shown as below:

Table 4.4: All model prediction results reported in ACC(accuracy).

Model Train ACC Test ACC training time(s)
Bi-LSTM 0.755 0.751 7278.7

Bi-LSTM+Attention 0.830 0.806 7303.1
RCNN 0.810 0.790 7296.9

TextCNN 0.839 0.811 711.8
BERT 0.832 0.794 1841.2
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As we can see from the table, TextCNN achieves best result in training(0.839) and

classifying test data(0.811), and also use the shortest time(711.8 seconds), which is around

1/10 of three RNN models. Our baseline model, Bi-LSTM, gets the lowest accuracy in

training and testing. Although we use two optimization method for basic Bi-LSTM, which

are adding attention layer and RCNN model, both of them achieve better result in training

and testing but still worse than TextCNN model.

On the other hand, the predict accuracy with Attention layer is just slightly lower than

TextCNN, however the training time is ten times slower. Because in order to memorize

states of different time and get the contextual information of an instance, recurrent neural

network spend much more time to memorize than convolutional neural network just do

convolution and select the max value.

Another interesting result is that our three RNN based model are consuming similar

time to train 241290 instances, the difference among them are less than 30 seconds, which

shows that training additional Attention weighted layer and adding max pooling layer cost

little time, but can improve the result to a remarkable extent.

For BERT, its performance is better than RCNN for both training and testing, even

though its prediction accuracy gets 0.832 in training set which is better than Bi-LSTM

+ Attention model, on test data it perform worse than Attention model a lot. And the

difference between its score on training set and test set are significant, which shows obvious

overfitting. Although we tried different parameters sets of the model, our present result is

the best. Last but not least, BERT training speed is much faster than RNN based model,

but still spend over twice training time compared to TextCNN.
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Chapter 5

Conclusion and Future Works

We have proposed solutions to both Multi-label Text Classification task and Sentiment

Analysis task. For MLTC task, based on convolutional neural network, we embed our input

and use filter convolution operation to replace traditional n-gram information extraction,

after that we apply max pooling operation to get the most valuable information from lots of

features. This CNN based model accomplish great result in both training set and test set.

For Sentiment Analysis task, the dataset is much smaller than MLTC task, but more

semantically complex. We implement three RNN based models, CNN based model and

pre-training language model, BERT to compare results. From experiment results we can

see that in our data set, key features of an instance are more valuable than contextual infor-

mation of the whole instance as for CNN get better result than RNN and BERT. Pre-trained

language model, BERT is much faster than Bi-LSTM based model, and its classification

result is better than Bi-LSTM based model and RCNN model, but BERT is not the best

classification model at all time especially in key-words dominant data set.

The main contribution of our work is to effectively implement several mainstream neu-

ral network models and fine-tuned language model, BERT for our specific task. We are
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the first to successfully implement CNN on short text Multi-label classification task to get

great result. We also firstly compare CNN based model, RNN based model and language

model on short text classification task. According to our experiment result, using convo-

lution layer with max-pooling layer is the best way to do feature extraction for short text

classification task, therefore in that case, CNN model would be more powerful and much

faster than RNN model and language model.

In summary, for those long text classification task, each instance has several sentences

and a lot of words, which make it semantically rich, therefore it is important to extract

contextual feature and give it priority, then consider key word feature contribution. In

that case, BERT should be considered as the most suitable model, and those RNN based

models should be competitive as well. However, no technique is universal, for short text

classification task such as our data set, there are only a few words in an instance which make

it very semantic restricted, and this time those useless features will influence contribution

of key features, hence it is redundant to consider contextual information in an instance,

on the contrary, the proportion of key features should be magnified, as a result, the model

would not be distracted by irrelevances.

On the next step, a further extension of the Sentiment Analysis framework would be

focusing on take advantage of correlation among labels. Since sentiment degree are with

laddering nature, we can extract this characteristic as an additional feature to the context

feature we extracted from neural networks which can definitely enrich the feature vector.

Exploring the ability of neural network to learn relation among different sentiment degree

in training is challenging. Another possible optimization is to investigate different fine-

tuning methods of BERT, according to our experiment result, the over-fitting happened in

training can be improved. Main directions include taking domain data into pre-training,
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selecting useful layer in its backbone model to simplify model, and designing better forget-

ting algorithm. The power of pre-trained language model can be exploit in further study.
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