Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/24601
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorQiao, Sanzheng-
dc.contributor.authorOni, Olatunji-
dc.date.accessioned2019-07-19T14:37:31Z-
dc.date.available2019-07-19T14:37:31Z-
dc.date.issued2019-
dc.identifier.urihttp://hdl.handle.net/11375/24601-
dc.description.abstractThe abundance of next-generation sequencing (NGS) data has encouraged the adoption of machine learning methods to aid in the diagnosis and treatment of human disease. In particular, the last decade has shown the extensive use of predictive analytics in cancer research due to the prevalence of rich cellular descriptions of genetic and transcriptomic profiles of cancer cells. Despite the availability of wide-ranging forms of genomic data, few predictive models are designed to leverage multidimensional data sources. In this paper, we introduce a deep learning approach using neural network based information fusion to facilitate the integration of multi-platform genomic data, and the prediction of cancer cell sub-class. We propose the dGMU (deep gated multimodal unit), a series of multiplicative gates that can learn intermediate representations between multi-platform genomic data and improve cancer cell stratification. We also provide a framework for interpretable dimensionality reduction and assess several methods that visualize and explain the decisions of the underlying model. Experimental results on nine cancer types and four forms of NGS data (copy number variation, simple nucleotide variation, RNA expression, and miRNA expression) showed that the dGMU model improved the classification agreement of unimodal approaches and outperformed other fusion strategies in class accuracy. The results indicate that deep learning architectures based on multiplicative gates have the potential to expedite representation learning and knowledge integration in the study of cancer pathogenesis.en_US
dc.language.isoenen_US
dc.subjectdeep learningen_US
dc.subjectinformation fusionen_US
dc.subjectcancer detectionen_US
dc.subjectdimensionality reductionen_US
dc.titleMulti-Platform Genomic Data Fusion with Integrative Deep Learningen_US
dc.typeThesisen_US
dc.contributor.departmentComputational Engineering and Scienceen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Science (MSc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
oni_olatunji_a_finalsubmission201906_degree.pdf
Open Access
3.53 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue