Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Digitized Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/24548
Title: Robust Formant tracking for Continuous Speech with Speaker Variability
Other Titles: Robust Formant tracking for Continuous Speech
Authors: Mustafa, Kamran
Advisor: Bruce, Ian
Department: Electrical Engineering
Keywords: formant tracking;continuous speech;speaker variability
Publication Date: Dec-2003
Abstract: Exposure to loud sounds can cause damage to the inner ear, leading to degradation of the neural response to speech and to formant frequencies in particular. This may result in decreased intelligibility of speech. An amplification scheme for hearing aids, called Contrast Enhanced Frequency Shaping (CEFS), may improve speech perception for ears with sound-induced hearing damage. CEFS takes into account across-frequency distortions introduced by the impaired ear and requires accurate and robust formant frequency estimates to allow dynamic, speech-spectrum-dependent amplification of speech in hearing aids. Several algorithms have been developed for extracting the formant information from speech signals, however most of these algorithms are either not robust in real-life noise environments or are not suitable for real-time implementation. The algorithm proposed in this thesis achieves formant extraction from continuous speech by using a time-varying adaptive filterbank to track and estimate individual formant frequencies. The formant tracker incorporates an adaptive voicing detector and a gender detector for robust formant extraction from continuous speech, for both male and female speakers in the presence of background noise. Thorough testing of the algorithm using various speech sentences has shown promising results over a wide range of SNRs for various types of background noises, such as AWGN, single and multiple competing background speakers and various other environmental sounds.
URI: http://hdl.handle.net/11375/24548
Appears in Collections:Digitized Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
mustafa_kamran_2003Dec_masters.pdf
Open Access
31.49 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue