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ABSTRACT 

Exposure to loud sounds can cause damage to the inner ear, leading to degradation of 

the neural response to speech and to formant frequencies in particular. This may result in 

decreased intelligibility of speech. An amplification scheme for hearing aids, called 

Contrast Enhanced Frequency Shaping (CEFS), may improve speech perception for ears 

with sound-induced hearing damage. CEFS takes into account across-frequency 

distortions introduced by the impaired ear and requires accurate and robust formant 

frequency estimates to allow dynamic, speech-spectrum-dependent amplification of 

speech in hearing aids. 

Several algorithms have been developed for extracting the formant information from 

speech signals, however most of these algorithms are either not robust in real-life noise 

environments or are not suitable for real-time implementation. The algorithm proposed in 

this thesis achieves formant extraction from continuous speech by using a time-varying 

adaptive filterbank to track and estimate individual formant frequencies. The formant 

tracker incorporates an adaptive voicing detector and a gender detector for robust formant 

extraction from continuous speech, for both male and female speakers in the presence of 

background noise. Thorough testing of the algorithm using various speech sentences has 

shown promising results over a wide range of SNRs for various types of background 

noises, such as AWGN, single and multiple competing background speakers and various 

other environmental sounds. 
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1. INTRODUCTION 

Formant frequencies vary with time in speech as the vocal tract configuration 

changes. In order to implement Contrast Enhanced Frequency Shaping (CEFS) 

amplification in hearing aids for continuous speech, the second formant frequency (F2) 

needs to be accurately estimated for voiced speech. Accurate formant estimation for 

continuous speech (in real life noise environments) is a challenge because formant 

frequencies are not simple to track in such a dynamic environment. The formant 

estimation algorithm needs to be robust and be able to operate in a wide range of real-life 

noise scenarios. It must also be able to recover quickly if it encounters any problems and 

after periods of silence. 

1.1. Traditional Formant Estimation Techniques and Limitations 

Development of accurate formant estimation algorithms began in the 1950s. Since 

then numerous techniques have been proposed for formant analysis. Most of the work can 

be classified as frequency domain techniques (such as picking peaks in the short-time 

frequency spectrum) or parametric techniques (also called "analysis by synthesis") in 

which one generates a best match to the incoming signal based on a model of speech 

production. The traditional approaches to formant frequency estimation are misled by 

spectral peaks in unvoiced speech and perform very poorly in transient background noise. 

Also, these traditional algorithms are not robust and are unable to recover quickly after 

periods of silence. These problems limit the possible use of the traditional techniques for 

estimation of the second formant frequency (F2) for CEFS amplification. 

Three algorithms that represent the best known formant analysis techniques have 

been implemented in MATLAB in order to test and compare their performance under 
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different conditions. Brief introductions to each of these three formant estimation 

techniques are presented below. Details about the algorithms, implementation, results and 

comparisons will be presented in later sections of this thesis. 

1.1.1. Analysis by Peak Picking from Cepstrally Smoothed Spectrum 

This is a frequency domain method based on analysing and picking peaks from the 

cepstrally-smoothed frequency spectrum of the speech signal. Cepstral smoothing (or 

homomorphic filtering) is a nonparametric method that attempts to remove the effects of 

glottal pulsing on the frequency spectrum to obtain the spectral envelope corresponding 

to the vocal tract frequency response [2]. The algorithm that was implemented is based 

on a paper by Schafer and Rabiner [8]. In this algorithm, formant frequencies are 

estimated from the smoothed speech spectrum by adding constraints on the formant 

frequency ranges and relative levels of the smoothed spectrum peaks in those frequencies 

ranges. The three highest peaks of the Fast Fourier Transform (FFT) of the log cepstrum 

envelope are typically classified as the first three formants in the short-time speech 

spectrum. Additional constraints allow the detection of formants where two formants are 

very close to each other in frequency. These peaks that are close in frequency are 

resolved by using the chirp Z-transform (CZT) algorithm which allows discrimination by 

enhancing spectral resolution at the cost of the temporal resolution [8]. More details of 

this algorithm are provided in Section 5.1. 

The algorithm is designed to estimate the first three formant frequencies for male 

speakers but is restricted in the types of speech sounds from which formants can be 

reliably extracted. The performance of the algorithm is acceptable only for highly voiced 

segments of speech such as vowels. Cepstral smoothing techniques are also not robust in 

Additive White Gaussian Noise (A WGN) and perform very poorly in the presence of 

background speakers. The poor performance occurs because the presence of noise 
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(A WGN or from a background speaker) in frequency ranges close to the formants of the 

actual speech can lead to the picking of erroneous peaks. The algorithm also performs 

poorly for female speakers (even without noise) whose formant frequencies are spread 

out more than those of male speakers. A large number of logic operations are needed to 

constrain and refine the formant frequency estimates. 

1.1.2. Linear Predictive Coefficient Analysis 

Purely voiced speech signals can be modeled using an all-pole (AR) vocal tract model 

as described earlier. Linear prediction fits an all-pole model to voiced speech signals. The 

parameters of the model are indicative of formant positions, hence this is a parametric 

formant estimation technique. The solution of linear prediction is a difference equation 

which expresses each sample of the original signal as a linear combination of the 

preceding samples. This difference equation is called the linear predictor and the 

coefficients of the equation are called the linear predictive coefficients (LPC). In the 

implemented algorithm proposed by McCandles [9], the first three formant frequencies 

are estimated from the peaks of the linear prediction spectra of the speech signal. A 

detailed discussion of this algorithm is presented in Section 5.2. 

The LPC based formant tracker is designed to track formants only in heavily voiced 

sounds. It performs reasonably well for purely voiced and sustained vowel-like sounds. 

However, in order for the algorithm to work for both male and female speakers, some of 

its parameters have to be modified manually. The problem ofmerging formant peaks still 

persists. When two peaks approach one another until they are sufficiently close together, 

the formant frequencies that are estimated might take on the same values. This problem is 

once again tackled using the CZT which enhances the frequency resolution for the 

merged peak areas. The performance of the algorithm is poor for non-vowellike sounds 

such as nasals and all unvoiced speech segments. It also performs poorly in the presence 
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of A WGN and background speakers even at relatively high Signal-to-Noise Ratios 

(SNRs). This occurs because the presence of noise can lead to additional peaks in the 

spectra that are close to the actual formant frequencies. During peak picking of the 

spectra, additional peaks caused by the background noise can be erroneously selected as 

the formant peaks and lead to incorrect formant estimates. A large number of logic 

operations are again needed to constrain and refine the formant frequency estimates. 

1.1.3. Formant Analysis using Physiological Models of the Ear 

The success of the human hearing system in understanding speech in the presence of 

noise and other adverse conditions has been an inspiring feature that clearly exceeds the 

ability of current speech recognition systems. A formant tracking algorithm has been 

proposed by Metz et al. based on a human auditory model which was expected to perform 

better in noisy conditions than the traditional speech processing techniques [10]. Spectral 

estimation using auditory models has shown to be efficient and robust but the success of 

the system depends on the accuracy and robustness of the auditory model used. The 

auditory model consists of stages for the outer, middle and inner ears. The output of the 

auditory model is the ensemble interval histogram (EIH) which shares similarities to the 

auditory nerve response of the mammalian ear. A detailed analysis of this algorithm is 

presented in Section 5.3. 

The algorithm that was implemented uses the peaks of the EIH for estimating formant 

frequencies from voiced sounds. The three highest peaks of the EIH for each short-time 

speech segment are designated as the three formant frequencies for that segment. The 

algorithm performs very well for sustained vowel-like sounds with and without A WGN 

and is able to estimate the formant frequencies accurately for these types of phonemes. 

However, it is not accurate for any non-sustained vowel-like sound and performs very 

poorly in continuous speech even without any AWGN. The performance ofthe algorithm 

is very poor for all types of sounds in the presence of a background speaker. 
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1.2. Adaptive Pre-Filtering and the Rao & Kumaresan Approach 

Rao and Kumaresan have proposed a new algorithm for formant estimation [11]. This 

approach involves pre-filtering speech using a bank of adaptive band-pass filters prior to 

spectral estimation and peak picking in each of the bands. By limiting the region of 

spectral estimation, the algorithm tries to reduce the effects of the other formant 

frequencies and the surrounding additive noise on formant frequency estimation. The 

peaks picked in each of the four bands correspond to the first four formant frequencies of 

the speech signal. 

Speech 

. .. ..4 ............................. . 

4~ Fonnant Fll ..r 

Figure 1 - 1 - The Rao and Kumaresan Adaptive Filterbank 

The bank of adaptive band-pass filters is made of four filters whose frequency 

responses are updated regularly so that each filter's passband approximately covers a 

spectral region corresponding to that of one formant frequency. Each of the filters is 

made up of an All-Zero Filter (AZF) and an all-pole filter called a Dynamic Tracking 

Filter (DTF) as shown in Figure 1-1. The AZFs are each made up of three zeros whose 

frequency locations correspond to the other formant frequencies estimated previously for 
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the other band regions. The DTFs are each made up of a single pole whose location 

corresponds to the formant frequency estimated previously for the corresponding 

passband region. The combined effect of the AZF and DTF is the creation of a band-pass 

filter centered on the corresponding formant frequency estimated previously in that band 

region. The zeros from the AZF (placed at the other three formant frequency locations) 

help make the fall-off of the filter sharper, thereby limiting the effects of the other 

formant frequencies . Figure 1-2 shows the frequency and phase responses of the four 

band-pass filters at a given time. The formant frequencies around which the filters are 

centered are 700 (F1), 1500 (F2), 2500 (F3) and 3600 (F4). It is important to note that the 

estimates of the formant frequencies will change with time, such that the locations of the 

centre frequencies of the band-pass filters will be updated regularly by changing the 

locations of the zeros and poles for each formant filter. The bandwidth of each filter is 

kept constant and only the locations of the pole and zeros of the filters are changed. 

Rao and Kumaresan Adaptive BandPass Filterbank 
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Figure 1 - 2 -Frequency response of the Rao and Kumaresan Adaptive Filterbank 
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The Rao and Kumaresan approach works well for estimating formant frequencies 

from highly voiced segments of speech and performs acceptably in A WGN. However, 

the algorithm is not easy to implement for real-time applications and is also not robust. It 

does not recover quickly after periods of silence and performs poorly during unvoiced 

speech segments. These factors make the Rao and Kumaresan algorithm unsuitable for 

implementing formant frequency estimation for CEFS amplification. 
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1.3. Improvements to the Rao & Kumaresan Approach 

Bruce et al. [12] have proposed some improvements to the Rao and Kumaresan 

approach in order to overcome the problems that the algorithm encounters during 

unvoiced speech and periods of silence. Figure 1-3 shows the block diagram of the Bruce 

et al. algorithm which incorporates a voicing detector and an energy detector into the 

adaptive band-pass filterbank. The voicing detector allows the algorithm to detect which 

speech segments are voiced so that it only attempts formant estimation during the voiced 

speech segments. The energy detector prevents the algorithm from trying to estimate 

formant frequencies through spectral estimation during periods of silence or when a 

particular formant frequency has insufficient energy for reliable spectral estimation. 

To other 
formant 
trackers 

Figure 1 - 3- The Bruce et al. Formant Estimation Algorithm (Reprinted from Bruce eta!. [12]) 

For regions of unvoiced speech or when there is low formant energy, the algorithm 

uses the moving average of the previously-estimated formant frequencies instead of the 

current spectral estimate (obtained using 1 st_order LPC). This allows the algorithm to 

provide acceptable formant frequency estimates for male speech in the presence of 

A WGN and in the presence of a single competing background speaker. 
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However, the Bruce et al. algorithm does not work well for continuous speech 

applications and for female speakers in general. The algorithm is not robust and does not 

recover well if there are fast formant frequency transitions e.g., when there is a switch in 

the speaker during a conversation or for some types of phonemes. Such scenarios cause 

the formant tracker to wander far away from the actual formant values. The algorithm is 

never able to recover after such an event. The algorithm does not perform well in 

fluctuating background energy levels and requires adjustments to certain parameters to 

work properly in different environments. Due to these issues, this algorithm cannot be 

used for formant frequency estimation for CEFS amplification in a real-time 

environment. 
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1.4. Contributions of this Thesis 


The formant tracking algorithm being proposed in this thesis has several 

improvements upon the Bruce et al. scheme. These changes make it more robust and 

accurate in continuous speech and mitigate the effects of speaker variability and different 

background noises. This allows the algorithm to operate independently and provide 

reliable formant frequency estimates for CEFS amplification and other applications. 

Implementation details and a thorough analysis of the proposed algorithm are presented 

in Section 3 of this thesis. Figure 1-4 shows a block diagram of the Formant Tracker 

being proposed. 

The speech signal is first pre-emphasized using a high-pass filter to equalize the 

energy and remove the spectral tilt of the speech signal. An approximate, analytic version 

of the signal is then calculated to increase spectral accuracy for the formant estimates 

through an approximate Hilbert transformer [11]. The analytic signal is then filtered into 

four different bands using a bank of adaptive band-pass filters (called Formant Filters). 

Each ofthe four formant filters (Fl, F2, F3 and F4) in the filterbank is made up of an All

Zero Filter (AZF) and a Dynamic Tracking Filter (DTF). The zeros of each of the AZFs 

are set to the latest estimate of the formant frequencies from the other three bands. The 

DTF provides the single pole located at the latest estimate of the formant frequency for 

that band. This cascade arrangement results in each of the filters having a pole around its 

own formant frequency and zeros at the other formant frequency locations. Each of the 

four band-pass filters allows only the signal around the frequency region of the desired 

formant to pass through and suppress the other frequency regions. The formant filterbank 

proposed in this thesis has a fundamental modification that was not included in the Rao 

and Kumaresan or the Bruce et al. papers. The Fl filter of the filterbank has an added 

zero at the pitch frequency (FO) for further suppression of the region below the Fl 

frequency (the pitch region). This decreases the effects of the pitch on the Fl estimate 
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and improves the accuracy of the Fl estimate. The pitch estimate is provided to the Fl 

filter by the Gender Detector. 

r--oc;1;:;;---;>------4 F1 Estimate 

F2 Estimate 

F3 Estimate 
'---'"T'----'r------.... F4 Estimate 

Figure 1 - 4 - The new Formant Tracker 

A first-order Linear Prediction Coefficient (LPC) is then calculated for the analytic 

signal in each of the four bands. From each of these coefficients a formant frequency 

estimate is obtained. As the value of the four formant frequencies vary with time, the 

formant pre-filters are modified to track them by changing their pole and zero locations. 

Due to the band-pass pre-filtering of each formant frequency region prior to LPC, the 

frequency estimates provided by LPC are more accurate and the algorithm is less 

susceptible to errors due to background noise. 

The formant estimation is further refined by adding an adaptive voicing detector to 

detect voiced and unvoiced speech segments. LPC estimates for the formant frequencies 

are only used during the voiced segments of speech. During the unvoiced speech 

segments or when the signal energy of a particular formant frequency region (determined 

by the adaptive energy detector) is below a set threshold level, the formant frequency 
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estimates are assigned their moving average value. This approach ensures that the 

formant tracker is able to recover quickly and with minimum error to the formant 

estimates, after unvoiced or low-energy speech segments [13]. The energy detector 

threshold levels are also made adaptive for each of the formant filters so that they can 

adjust to long term changes in the energy levels of each formant frequency region. 

The voicing detector calculates the log ratio between the energy in the lower and 

higher frequencies of the speech to determine if a speech segment is voiced or unvoiced. 

If there is more energy in the lower frequencies than the higher ones, the speech segment 

is classified as being voiced. The voicing detector also has a threshold with hysteresis to 

ensure that switching from voiced to unvoiced speech (or vice versa) does not 

erroneously occur too quickly. Finally, an autocorrelation-based energy test is performed 

to ensure that voicing is not detected erroneously when there is no actual voicing in the 

speech but sufficient energy is present in the lower frequencies due to 'coloured Gaussian 

noise' (or other background noises) [13]. The voicing detector provides a sample by 

sample decision on whether a segment is voiced or unvoiced. The formant tracking 

algorithm only attempts to estimate formant frequencies using spectral estimation (LPC) 

if the entire previous 20 ms window of the signal is voiced. 

In order for the voicing detector to work properly for both male and female speakers, 

various parameters of the voicing detector need to be modified. The main purpose of the 

gender detector is to determine the gender of the speaker and pass this information to the 

voicing detector so that it is able to modify its parameters. The gender detector uses a 

pitch based method to classify the gender of the speaker where the pitch is calculated 

using an autocorrelation based method [2]. The gender detector also provides the pitch 

estimate to the first formant filter so that an additional zero can be added at the location 

of the pitch in the AZF of the first formant filter. 
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Extensive testing of the algorithm has shown that these modifications have made the 

formant tracker accurate and robust to a wide variety of real-life background noise 

conditions. The algorithm is able to provide reliable formant frequency estimates from 

continuous speech for both male and female speakers. It recovers quickly and with 

minimal error when problems do occur and when there is a switch in speakers. The 

formant estimates it provides are smooth and can be obtained in real-time for use in a 

CEFS amplification scheme. 
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1.5. Thesis Layout 

Chapter 2 of this thesis describes some of the material that is considered to be 

important background information for understanding the discussion and analysis 

presented in later sections. It includes a brief discussion about the anatomy of speech 

production followed by a detailed discussion on what formant frequencies are and their 

importance in speech perception. Also included in chapter 2 is a detailed look at the 

formant frequency characteristics in different types of sounds and a detailed look at the 

motivation behind the proposed algorithm. Chapter 3 contains a detailed discussion and 

analysis of the formant frequency algorithm being proposed including implementation 

details. The proposed algorithm has also been tested vigorously under various real-life 

scenarios, and chapter 4 describes the details of the tests cases for which the algorithm 

was tested as well as their results. Finally, in chapter 5, details of the three traditional 

formant frequency estimation techniques that have been implemented are presented along 

with the results and a discussion of their limitations. The thesis concludes in chapter 6 

with some closing remarks about the performance of the proposed algorithm as well 

highlights of the limitation of the traditional formant frequency estimation techniques. 

1.6. Related Publications 

Parts of this thesis have appeared in the following publication: 

Mustafa, K. and Bruce, I. C. "Robust formant tracking for continuous speech in 
speaker variability". Proceedings of the International Symposium on Signal 
Processing and its Applications (ISSP A) - 2003, Vol. 2, pp. 623 -624. 

A journal article is currently being prepared for submission to the IEEE Transactions on 
Speech and Audio Processing. 
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2. BACKGROUND AND MOTIVATION 

This chapter contains background information that is required to fully understand 

the topics and discussions that follow in later sections of this thesis. Most of the 

information presented here is elementary and is limited to the topics deemed critical to 

understanding later discussions. It is recommended that for further details on these topics, 

the reader should refer to the references mentioned throughout the thesis. 

2.1. Anatomy of Speech Production 

Figure 2-1 shows a simplified view of the different parts of the human body that 

make up the speech production system. The lungs provide the airflow needed for speech 

production to the larynx. The larynx modulates the continuous airflow from the lungs into 

either a periodic or noise-like airflow and then passes it into the vocal tract. The vocal 

tract is made up of the oral, nasal and pharyngeal cavities and provides spectral shaping 

to the modulated airflow (periodic or noisy) from the larynx. Sound sources can also be 

produced within the vocal tract itself by constrictions and relaxations creating an 

impulsive airflow. Following the spectral provided by the vocal tract to all three sound 

sources, the lips vary the air pressure of the airflow resulting in traveling sound waves 

that are perceived as speech. 

This description provides an idealized model of the anatomy of speech production 

however, in reality the sound sources required to produce most sounds are not ideal 

(periodic, noisy or impulsive) but usually a mixture of these types and change with the 

environment. 
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Figure 2 - 1 - Cross-sectional view of the anatomy of speech production (Reprinted from Quatieri [2]) 

2.1.1. The Lungs 

The lungs normally inhale and exhale arr m a rhythmic manner for respiration. 

However, during speaking the lungs override this rhythmic pattern of inhalation and 

exhalation of air to exhale air more slowly. Usually the period of exhalation roughly 

coincides with the length of the sentence being spoken. A steady and slow contraction of 

the rib cage provides a timed exhalation from the lungs during which the air pressure in 

the lungs is maintained to be roughly constant. This allows the lungs to provide a steady 

airflow to the larynx for the entire duration of the sentence being spoken. Note that even 

though the sound source provides a steady airflow to the larynx, the properties of the 

larynx and the vocal tract allow the pressure of the airflow being produced to vary. 
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2.1.2. The Larynx 

The main purpose of the larynx in the speech production system is to control the 

vocal folds. The vocal folds are a mass of flesh, ligament and muscle that stretch between 

the back and the front of the larynx. The glottis is a slit-like opening between the two 

vocal folds and the size of this slit can be varied. The tension in the vocal folds can also 

be varied by the muscle and cartilage around them. The vocal folds (along with the 

epiglottis) close during eating to prevent food from entering the larynx. The vocal folds 

have three main states: breathing, voiced and unvoiced. During the breathing state the 

vocals folds are wide open and the muscles within them are relaxed to allow the air from 

the lungs to flow through freely. During speaking (for both voiced and unvoiced states) 

an obstruction to the airflow is provided by the vocal folds. 

In the voicing state the vocal folds tense up and are brought close together partially 

closing the glottis leading to self-sustained oscillations as air passes through the glottis. 

Figure 2-2 shows the periodic airflow that is observed in the glottis during voicing. The 

contraction of the lungs results in air flowing through the glottis. As the airflow velocity 

increases the local pressure in the glottis decreases and the tension in the vocal folds 

increases. These two factors lead to an abrupt closing of the glottis. This is followed by 

an air pressure build-up behind the vocal folds causing them to open slowly and allowing 

air to flow through. The process is then repeated again resulting in the periodic release of 

puffs of air into the vocal tract. As shown in Figure 2-2, the airflow begins slowly (with 

the vocal folds opening slowly from their closed position) and builds to a maximum and 

then abruptly drops to zero as the vocal cords close quickly. The time period during 

which the vocal folds are closed is called the 'closed phase'. The time period during 

which there is some airflow before the maxima is reached is called the 'open phase'. The 

time between the airflow maxima and the total closure of the vocal folds is called the 

'return phase'. The time duration for one such complete cycle is called the pitch period 

and its reciprocal is called the pitch frequency or just the pitch (or fundamental 
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frequency). The pitch ranges from about 60Hz to 400Hz for most phonemes depending 

on various factors including the gender of the speaker. Adult males typically have lower 

pitch than adult females because their vocal cords are longer and larger. 

0~----~~-------U------~~------~------~~------~
0 15 20 
 25 30 

Time (ms) 

Figure 2 - 2 - Periodic Glottal Airflow (Reprinted from Quatieri [2]) 

The Fourier transform of the periodic glottal waveform is characterized by 

harmonics and the spectral envelope of the harmonics has an approximately -12 

dB/octave roll off. The exact value of the roll off depends on the speaker and can change 

slightly. The lower frequencies of the speech spectrum contain more energy than the 

upper frequencies. This is because the lower frequencies contain the glottal pulsing and 

radiation from the lips. This causes the speech to have a spectral tilt, which needs to be 

compensated prior to speech processing, to allow equalisation of the energy distribution 

in the speech spectrum and obtain better spectral estimation in the higher frequency 

regiOns. 

During the unvoiced state, the shape of the vocal folds is similar to that in the 

breathing state and there is no vocal fold vibration. However, the vocal folds are closer 

together during un-voicing than in the breathing state and this leads to some amount of 

turbulence being caused at the folds, as the air passes through. This turbulence is called 

aspiration and sounds produced through aspiration are sometimes called 'whispered' 
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sounds because this turbulence is also created during whispering (without any oscillations 

of the vocal folds). Aspiration can also occur with voicing leading to a 'breathy' voice. 

The vocal folds can also move in a form that does not fall clearly in any of the three 

states defined above. These includes a 'creaky' voiced state where the vocal folds are 

tense but only a short portion of the vocal folds are actually in oscillation resulting in a 

harsh sounding voice with a very high and irregular pitch [2]. 

2.1.3. The Vocal Tract 

The vocal tract is made up of the oral cavity from the larynx to the lips and the nasal 

passage coupled with the oral passage (through the vellum). The oral tract can take on 

various different configurations depending upon the shape and movement of the tongue, 

mouth, teeth, lips, jaw, etc. The vocal tract provides frequency shaping to the output from 

the larynx and also generates new sources for sound production (impulsive source). 

Under certain circumstances, the vocal tract can be modeled as a linear filter with 

resonances. The resonance frequencies of the vocal tract are called formant frequencies 

or just formants. The formant frequencies change with different vocal tract 

configurations. The peaks of the vocal tract response correspond roughly to its formant 

frequencies. If the vocal tract is modeled as a time-invariant, all-pole linear system, then 

each of the conjugate pole pairs corresponds to a formant frequency (resonance 

frequency). Generally, as the length of the vocal tract increases the formant frequencies 

decrease, so the formant frequencies of adult males are somewhat lower than those of 

adult females, for the same sound. 

When using the time-invariant, all-pole linear system model of the vocal tract, the 

speech waveform can be obtained through the convolution of the glottal flow with the 

vocal tract impulse response. It is important to discriminate between the formant 
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frequency and the harmonic frequency. Formant frequencies correspond to the vocal tract 

frequency response poles while harmonic frequencies arise from the periodicity of the 

glottal source. When the vocal tract vellum is lowered, the nasal passage is introduced 

into the vocal tract and the oral tract closes resulting in the acoustic waves propagating 

though the nasal cavity, this produces 'nasal' sound such as 'm'. These sounds are often 

dominated by the lower frequency formants due to the large volume of the nasal cavity. 

When the vellum is lowered while keeping the oral cavity open the resulting sounds are 

referred to as 'nasalized speech'. The effect of the nasal passage on the vocal tract is to 

broaden the formant bandwidths (due to greater loss of energy in the nasal passage) and 

to introduce anti-resonances (zeros) into the vocal tract system model due to coupled 

resonances. 

It should be noted that the time-invariant vocal tract model can only be applied when 

the vocal tract configuration is steady and constant. As mentioned earlier, the vocal tract 

changes its shape with time so the time-invariant model can only be applied over short 

time periods or for sounds with a long, repetitive duration, such as sustained vowels, with 

a temporal windowing heuristic. 

2.1.4. Categorization of Speech Sounds by Source- Voiced and Unvoiced Speech 

The broadest way to categorize sounds is by the source to the vocal tract that 

produces the sound. As described earlier there are three main sound sources: periodic, 

noisy and impulsive. In a broad sense, sounds produced due to a periodic glottal source 

are called voiced sounds, and sounds produced otherwise are called unvoiced sounds. 

Generally, voiced speech has more low-frequency energy and is quasi-periodic (such as 

steady state vowels) requiring vibration of the vocal cords. On the other hand, unvoiced 

speech has more high-frequency energy, is noisy in nature and does not require the 

vibration of the vocal cords. Figure 2-3 shows an example of a typical waveform for a 
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voiced speech segment displaying the lower frequency and quasi-periodic characteristics 

of voiced speech sounds. The waveform is for the vowel sound /a/ (as in 'father'). 

There are a variety of unvoiced sounds. Those that are created due to a noise source at 

an oral constriction are called fricatives because the noise is created by friction of the air 

moving against the constriction. The sound of 'th' in the word 'thin' is a fricative with 

the friction being provided between the tongue and the upper teeth. The waveform for 

'th' is shown in Figure 2-4 and shows the typical higher frequency and noise-like 

characteristics of unvoiced speech. Another unvoiced sound class is the plosives (such as 

't' and 'p ') created with an impulsive airflow from the vocal tract as the sound source. 

When the barrier to the airflow is provided by partially closed vocal folds a new class of 

unvoiced sounds is produced called whispers (such as 'h'). Sometimes the sound source 

is from a combination ofvoiced and unvoiced sources such as in the case of the sound 'z' 

where there is friction as well as simultaneous voicing; this class of sounds are therefore 

called voiced fricatives. Similar in concept are voiced plosives which occur due to 

simultaneous impulsive and voiced sources as in the sound 'b'. 
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Time-domain waveform of voiced speech: /a/ vowel (father) 
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Figure 2-3- Waveform of a Voiced Speech segment (for /a/ as in 'father') 
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Figure 2- 4- Waveform of a fricative sound (for /th/ as in 'thin') 
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2.2. Formant Frequencies 

As mentioned earlier, the resonance frequencies of the vocal tract are called the 

formant frequencies or formants. In this section, the origins and characteristics of 

formants are explored further in terms of their behaviour in different types of sounds and 

the problems that are caused in extracting the formants from these sounds. 

2.2.1. Vocal Tract Filtering and Formant Frequencies 

Figure 2-5 shows a complete discrete-time speech production model for periodic, 

noisy and plosive speech. G(z) is the Z-transform of the glottal flow input, Rg(z) is the 

radiation impedance modeled by a single zero and V(z) is the stable all-pole vocal tract 

transfer function. Av, An, and Ai are the gains that controls the loudness of the sound for 

periodic, noisy and plosive sources respectively. R1(z), in H(z), models the radiation 

impedance of the lips. 

I I I · · · ~~------: 
--.L....L._ _._~.,~~ G(z) 1 R.(z) 1 

I I 

~------' 
Poles Zero 

H(z) 

Linear/ 
----'-rll.r'-&.y.,......,...__----~ x )----11~ Nonlinear SpeechR,(z)V(z) 

Combiner 
Poles & Zeros Zero 

Figure 4.20 Overview of the complete discrete-time speech production model. 

Figure 2 - 5 - Discrete-Time Model of Speech Production (Reprinted from Quatieri (2]) 
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The vocal tract transfer function V(z) varies with the type of sound produced and also 

depends on the speakers and their speaking style. The formant frequencies vary with 

different vocal tract configurations and therefore, formant frequencies vary in speech 

with time as the vocal tract changes its shape. The peaks of the vocal tract response in 

each configuration correspond roughly to its formant frequencies. The first resonance of 

the vocal tract is called the first formant frequency (or Fl), the second resonance of the 

vocal tract is called the second formant frequency (or F2), and so on. For perfectly voiced 

and periodic speech (as in sustained vowels) the vocal tract can be accurately modeled by 

the stable all-pole model for V(z). However, in order to model other types of sounds, 

zeros are also added to V(z) in order to model the nasal cavity of the vocal tract. The 

resonances or peaks of the vocal tract transfer function (poles of the V(z) transfer 

function) correspond roughly to the formant frequencies of a particular sound. The 

characteristics and behaviour of formant frequencies change in different types of sound 

and estimating formants in continuous speech is a challenging task. 

2.2.2. Phonemic Classification of Speech and Formant Behaviour in Phonemes 

In this section, the behaviour and characteristics of formant frequencies in different 

types of sounds are explored in greater detail to understand the problems associated with 

estimating formant frequencies in such cases. In general, formant frequency regions have 

more energy than the other frequencies in the speech spectrum and can easily be visually 

identified in spectrograms. 

Phonemes are the fundamental distinctive units of sound. Each distinct and 

identifiable sound in a language forms a phoneme. Figure 2-6 shows all the different 

phonemes in American English grouped together by their phoneme class. Formant 

frequencies for each phoneme vary and will also depend on the speakers and their 

individual speaking style. However, formant frequencies for a particular phoneme class 
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(for a particular speaker) have similar characteristics and behaviour. The formant 

frequency behaviour and characteristics of some of these phoneme classes are discussed 

below. 
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Figure 2 - 6 - Classification of Phonemes in English (Reprinted from Quatieri [2]) 

Vowels 

Vowels make up the largest class of phonemes. The three types of vowels are grouped 

according to the tongue hump position required to make the sound (front, central or 

back). Vowel sounds are produced by quasi-periodic airflow through the glottis that 

vibrates the vocal folds at a certain fundamental frequency. The nasal tract remains 

closed in vowel sound production so the vocal tract does not contain the effects of the 

nasal cavity. The lips can contribute to the vocal tract configuration through their degree 

of opening and rounding. The position of the tongue (front, centre or back) determines 
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the phoneme produced, e.g. Ia! ('father') and /i/ ('eve') are differentiated primarily 

through the position of the tongue hump. Figures 2-7 and 2-8 show the waveform and 

spectrogram of the vowel sound /i/ ('eve'). The quasi-periodic nature of the vowel can be 

seen from its waveform and from the spectrogram it can be observed that the formant 

frequency regions have concentrated energy, these features are common to all vowels. 

The strong energy of the formant regions and the periodic nature of the waveform make it 

relatively easy to extract formant frequencies of pure and sustained vowel-like sounds. 

Despite general similarities between different vowel sounds it is important to remember 

that the exact formant frequencies of different vowels differ from each other and depend 

on a wide variety ofparameters including the speakers and their speaking style. 
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Figure 2 - 7- Waveform of vowel /i/ ('eve') 
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Spectrogram of a vowel/if (eve) Colour Sca le 

8000 

07000 

6000 
- 10 

'N 5000 
OS -20
i)' 

m:i3 4000 "'C
:I 
C" 
i!! 

u.. 
3000 

2000 

1000 

Time (s) 

Figure 2 - 8- Spectrogram of vowel /i/ ('eve') 

Fricatives 

There are two main types of fricative consonants: unvoiced and voiced. Unvoiced 

fricatives are generated through turbulence in the airflow being provided at some point in 

the oral tract without any vocal fold vibration e.g. If/ ('father') . The constrictions 

provided through the hump in the tongue, lips, teeth, etc., help separate the rear and front 

oral cavity regions. The primary source of spectral shaping is the front of the oral cavity 

however, anti-resonances that are provided by the rear of the oral cavity also have an 

effect on the overall spectral shaping provided by the vocal tract. The transfer function of 

the vocal tract is made up of primarily higher frequency resonances that vary with the 

location of the vocal tract constrictions. Figures 2-9 and 2-10 show the waveform and the 

spectrogram of the unvoiced fricative /f/. From these figures it can be seen that unvoiced 

fricatives have 'noisy' waveforms as expected. 
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Waveform of a Fricat ive If/ 

0.01 5 r----,-----,-----,-----,-----,-----,-----,-----,----,-----, 

0.01 

"' ""C 

:E 
a. 
E 
<( 

0.005 

-0.005 

-0.01 

-0.015 '------'-------'-------'----~----~----~----~----~----~---
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

Time(s) 

Figure 2 - 9- Waveform of unvoiced fricative /f/ (' father ' ) 
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Figure 2 - 10- Spectrogram of unvoiced fricative /f/ ('father ' ) 
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Voiced frication also occurs due to turbulence in the airflow provided from within the 

oral tract but it is often accompanied by some vocal fold vibration as in /v/ ('vote'). The 

vibration of the vocal folds means that the airflow in the vocal tract is periodic and 

frication only takes place when the periodic airflow has reached a certain minimum level. 

This leads to frication being roughly synchronized with the glottal airflow velocity. 

Voiced fricatives can be differentiated from unvoiced fricatives through the onset of 

voicing. The formant transitions from fricatives to vowels also serve as a cue to 

distinguish between voiced and unvoiced fricatives. In voiced fricatives the voicing 

occurs sooner in the transitions than for unvoiced fricatives. Figures 2-11 and 2-12 show 

the waveform and spectrogram for the voiced fricative /v/. The figures show that in 

voiced fricatives the noise in the waveform is super-imposed on a quasi-periodic 

envelope. The spectrogram shows characteristics ofboth noisy and periodic signals. 
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Figure 2 - 11 -Waveform of voiced fricative /v/ ('vote') 
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Spectrogram of an unvoiced fricative /v/ (vote) 
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Figure 2 - 12- Spectrogram of voiced fricative /v/ ('vote' ) 

Nasals 

Nasal consonants are produced from a source similar to that used for producing 

vowels - semi-periodic airflow through the vocal tract that vibrates the vocal folds. For 

nasals, the vellum is lowered and air is mainly radiated through the nostrils because the 

oral cavity is constricted. Due to the large volume and low resonance of the nasal cavity, 

nasals are dominated by lower frequency energy with the first formant frequency usually 

being the most prominent in the spectrogram. The formant transitions that follow the 

release of the constriction into the steady state vowel position are used to perceptually 

differentiate between the different nasal consonants. Figures 2-13 and 2-14 show a 

waveform and spectrogram of the nasal consonant /rn/ ('me '). It can be seen from the 

spectrogram that the nasal sound is dominated by lower frequency energy and the first 

formant has the highest energy. 
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Figure 2- 13- Waveform of Nasal /m/ (' more') 
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Figure 2- 14- Spectrogram of Nasal /m/ (' more') 
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Plosives 

Plosives can be both voiced and unvoiced. In unvoiced plosives there is complete 

closure of the oral tract causing a build-up of air pressure behind the closure followed by 

the release of air leading to turbulence over a short duration. Then turbulence is generated 

at the vocal folds and finally a vowel sound is produced. Figures 2-15 and 2-16 show the 

waveform and the spectrogram of an unvoiced plosive /k/ ('key'). From the figures the 

main stages that make up the unvoiced plosive can be clearly seen: the silence (as 

pressure builds up), the burst of air, the aspiration and then the transition of the oral tract 

from the constricted state leading to vibration of the vocal folds. 
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Figure 2 -15- Waveform of unvoiced plosive /k/ ('key') 
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Spectrogram of an unvoiced plosive /k/ (key) Colour Scale 
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Figure 2 - 16- Spectrogram of unvoiced plosive /k/ ('key' ) 

Voiced plosives ave generated by a mechanism similar to that of unvoiced plosives. 

However, in voiced plosives there is vocal fold vibration during the pressure build-up 

stage. This is called the voice bar and it is generated due to the low-frequency vibration 

of the walls of the throat. Also, after the release of air there is no aspiration and the start 

of the transition to the vowel occurs much faster than in unvoiced plosives. Figures 2-17 

and 2-18 show the waveform and spectrogram of the voiced plosive /g/ ('go'). The low 

frequency voice bar can be seen in the spectrogram and the waveform. Most of the 

energy in both voiced and unvoiced plosives is lower frequency and so the first formant 

is very strong compared to the other formants. 
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Figure 2 - 17- Waveform of voiced plosive /g/ ('go') 

Spectrogram of a voiced plosive /g/ (go) 
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Figure 2 - 18- Spectrogram of voiced plosive /g/ ('go ') 
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Transitional Speech Sounds 

The types of phonemes described earlier have mostly stationary articulators and the 

resulting formants are fairly constant throughout the duration of the phoneme. However, 

during speech there are fast transitions from one phoneme to the next so it is important to 

also consider the effects of these transitions. Transitional articulators occurring during 

speech are non-stationary. Many sounds are actually defined through their transition stage 

rather than their stationary stage. 

Diphthongs are phonemes that are characterized through their transitional nature. 

These phonemes are similar to vowels in that they are produced through vibration of the 

vocal cords. However, unlike vowels diphthongs are not generated through a steady vocal 

tract configuration but rather through constant transition of the vocal tract between two 

vowel-like configurations. Figures 2-19 and 2-20 show the waveform and spectrogram of 

the diphthong /0/ ('boy'). From the spectrogram, it can be seen that the rapid change in 

the vocal tract configuration is characterized by fast changing formant frequencies, 

especially F2. 
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Figure 2- 19- Waveform of diphthong /0/ (' boy') 
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Figure 2 - 20- Spectrogram of diphthong /0 / (' boy') 

Page 36 



MASc Thesis - Kamran Mustafa McMaster University- Dept. of Electrical and Computer Engineering 

Semi-vowels are another phoneme class that are similar to vowels and are 

characterized through their transitional phases rather than their steady state configuration. 

There are two kinds of semi-vowels; glides (/w/ as in 'we') and liquids (/r/ as in 'read'). 

They both have fast transitional configurations and fast moving formant frequencies. 

Figure 2-21 shows the variation of the second formant frequency versus the first 

formant frequency for 10 vowels spoken by 76 different speakers. Each dot on the figure 

represents the formant frequencies of a single speaker. From the figure it is clear that 

there are slight differences in the exact formant frequencies of individual speakers even 

for the same vowel. However, the formant frequencies for a given vowel are usually 

similar even for different speakers and can be grouped together (shown by circles 

surrounding a group of dots). This figure shows that despite the fact that the exact 

formant frequencies for a given vowel depend on the individual speaker, they (the 

formant frequencies) are often similar across different speakers and even genders. 
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Figure 2 - 21 -Variation of the second formant versus the first formant for vowels of 76 speakers 

(Reprinted from Peterson et a!. [22]) 
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2.2.3. Importance of Formant Frequencies in Speech Perception 

In this section the roles of different features of speech that help differentiate human 

perception between the phonemes will be discussed. In vowels the primary source of 

discrimination between the phonemes can be provided by the formant frequencies. It has 

been shown that Fl and F2 are highly discriminable features for vowel identification and 

the higher formants also play a smaller role [8]. It is thought that the formant spacing in 

vowels and vowel-like phonemes are an essential feature for proper identification of 

vowels [2]. Nasalization is another important feature for vowel identification; it can be 

checked by observing the increase in bandwidth of Fl. Identification of consonants is a 

more complex problem than identification of vowels. Among the cues used for consonant 

identification are formant frequency values, formant frequency transitions into the vowel 

following the consonant, voicing during the consonant production, and the timing of the 

onset ofthe vowel following the consonant. 

It is clear from the above discussion that formant frequencies play a major role in 

vowel identification and are also important for consonant identification. Speech 

processing systems that aim to help restore the ability of the human ear to discriminate 

between phonemes must provide fairly accurate formant frequency estimates, at least for 

the lower formant frequencies. 
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2.3. 	 Motivation- Restoring Normal Auditory Nerve Representation in 

Ears with Sensorineural Hearing Loss 

Liberman et al. [6] and Sachs et al. [1] have shown that sound induced or 

sensorineural hearing loss causes broadening of the neural response to the first formant 

frequency, leading to a reduction in speech perception. Simple hearing aid amplification 

schemes that apply amplification independently across different frequency bands cannot 

satisfactorily compensate for sound-induced hearing loss. Miller et al. [5] describe a 

hearing aid amplification technique that can improve the neural response to vowel sounds 

in sensorineural damaged auditory systems. This scheme, called Contrast Enhanced 

Frequency Shaping (CEFS) amplification, tries to reverse the effects of the sensorineural 

hearing loss by compensating for the frequency dependent threshold shift and tries to 

restore the neural representation to that of a 'normal' ear [ 1] [4]. CEFS tries to boost the 

speech signal energy in the regions where the neural thresholds have shifted to higher 

values. The result of proper CEFS amplification is to restore the 'normal' neural response 

representation of the formant frequencies to vowel like sounds [ 5]. 

Figure 2-22 shows the original and CEFS modified power spectra of a synthesized 

vowel (/r./). The CEFS spectrum is obtained by high-pass filtering the stimulus with a 

cut-off frequency set about 50 Hz below the second formant frequency (F2) ofthe vowel. 

The CEFS processed vowel is amplified for all frequency components above the cut-off 

frequency and all frequency components below the cut-off frequency are set to have the 

same magnitude as the original signal. Boosting the magnitude of the signal for all 

frequencies above F2 increases the speech signal energy in the regions where the neural 

thresholds have shifted higher due to the sensorineural hearing loss [1] [5]. 
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Figure 2 - 22 - Power spectra of the standard and the CEFS versions of the /&/ vowel (Reprinted from 

Sachs et al. [1]) 

For a constant vowel like sound such as /r./ the second formant frequency remains 

constant and therefore once F2 is accurately estimated the sound can be properly 

amplified as per the CEFS scheme. However, for complex stimuli such as continuous 

speech signals the different phonemes have different formant frequencies and so F2 

varies with time (and indeed so do all the formant frequencies). In order to apply CEFS to 

continuous speech the second formant frequency has to be accurately measured in real

time. This represents a significant engineering challenge, and is the primary motivation 

behind the formant estimation technique developed in this thesis, although other 

applications for the algorithm do exist.. 

Accurate formant frequency estimates are used for a variety of applications other than 

CEFS amplification for hearing aids. Formant frequencies have been used to make 

natural sounding computer synthesized speech. Ding & Campbell proposed a formant 

frequency based distance measure in unit selection for concatenation synthesis of speech 

[ 18]. Lincoln et al. proposed using formant estimates for speaker normalisation for 

automatic speech recognition (ASR) systems [19]. Applications for formant frequencies 

have also been identified for speech coding [20] and for speaker recognition [21]. 
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3. FORMANT TRACKING ALGORITHM 

A block diagram and brief description of the Formant Tracker being proposed was 

presented in Figure 1-4 and Section 1.4. In this chapter the formant tracking algorithm is 

discussed in greater detail. 

3.1. Pre-Emphasis 

Voiced speech signals have a natural spectral tilt, with the lower frequencies (below 1 

kHz) having greater energy than the higher frequencies. The lower frequencies have more 

energy because they contain the glottal waveform and the radiation load from the lips [8]. 

In some speech processing applications it is desirable that this spectral tilt be removed by 

pre-emphasis or spectral equalisation of the signal. A common method ofpre-emphasis is 

to filter the speech signal using a High-Pass Filter (HPF) that attenuates the lower 

frequencies. The result of the pre-emphasis is the approximate removal of the 

contribution of the glottal waveform and the radiation load effect from the lower 

frequencies of the signal, i.e. the energy in the speech signal is re-distributed to be 

approximately equal in all frequency regions. Figure 3-1 shows the frequency response of 

the FIR pre-emphasis HPF filter that is used in this formant tracking algorithm. Figure 3

2 shows a spectrogram of a speech signal before and after it has been pre-emphasised 

using the filter from Figure 3-1. After the signal has been the pre-emphasised it is 

equalised to have a global RMS energy value of 0 dB. This equalisation ensures that the 

energy threshold levels are set properly and to appropriate energy levels (see Section 

3.4). 
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Figure 3 - 2 - Spectrogram of the speech signal before and after pre-emphasis 
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3.2. Hilbert Transformer 

After the speech signal has been pre-emphasised, a complex version of the signal is 

calculated using an approximate Hilbert transformer. The primary reason behind 

converting the signal into its complex representation is to allow the use of complex filters 

in the formant filterbank (AZFs and DTFs). The formant filters are designed as complex 

filters because it is easier to design the unity gain and zero-lag filters in the complex 

domain (see Section 3.3). Converting the real-valued signal into its analytic version also 

decreases the amount of aliasing in the signal and thus increases the accuracy of the 

spectral estimation technique that is used for formant frequency estimation [11] [13]. 

The method of representing a real-time discrete signal as a discrete complex signal is 

shown in Figure 3-4. The real-time discrete signal, SR[n], can be represented by its 

complex form, Sc[n], as Sc[n] = SR[n] + j SH[n], where SH[n] is the Hilbert transform of 

SR[n]. Although Hilbert transformers have been commonly used in various signal 

processing applications, ideal Hilbert transformers can not be implemented in real-time. 

This limitation has led to the development ofvarious different methods that implement an 

approximate Hilbert transformer in real-time. The particular technique used to implement 

the Hilbert transformer in the formant tracking algorithm uses an optimum FIR filter [14]. 

Signal 
Delay 

Hilbert 
Transformer 

Sc [n] 

Figure 3 - 3 - Converting the real-valued signal into its analytic representation 
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The Hilbert transformer is implemented with a 20th-order linear-phase FIR filter 

designed using the Parks-McClellan algorithm (Remez exchange algorithm) [15]. The 

frequency and phase responses of the filter are shown in Figure 3-4. The filter is designed 

using the Remez exchange algorithm and Chebyshev approximation to have an optimal 

fit between the desired and actual frequency responses. The filter is optimal in a minimax 

Chebyshev sense (the maximum error between the desired and actual frequency response 

is minimized). The real part of the signal is added back to the Hilbert transformed part 

after a signal delay to account for the delay in implementing the approximate Hilbert 

transform (10 samples in this case). The results obtained for the analytic signal using the 

FIR filter method were found to be approximately the same as those obtained using an 

ideal Hilbert transform. 
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Figure 3 - 4- Frequency response of the Hilbert transformer 
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3.3. The Adaptive Band-Pass Filterbank 

The adaptive band-pass filterbank used in the formant tracking algorithm (shown in 

Figure 3-5) is similar to the one proposed by Rao and Kumaresan but it has a modified 

first formant filter that removes the effects of the pitch from the first formant filterband 

[11]. Each channel of the filter bank consists of an all-zero filter (AZF) cascaded with a 

single pole dynamic tracking filter (DTF). The combination of the AZF and the DTF is 

called a formant filter and is responsible for tracking one individual formant frequency. 

The filters are designed in the complex domain because it is easier to design the unity 

gain and zero phase lag filters in the complex domain [11]. Adaptively varying the zeros 

and pole of each formant filter, allows the suppression of interference from neighbouring 

formant frequencies and from other spectral noise sources, while tracking an individual 

formant frequency as it varies with time. 
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Figure 3 - 5- Adaptive band-pass filterbank 
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3.3.1. AZFs 

In Figure 3-5 the box labelled 'AZF' in each formant filter is the adaptive all-zero 

filter whose three zero locations are always set to the value of the previous formant 

frequency estimated from the other three formant filters. The transfer function of the kth 

AZF at time sample index n is 

4 

HAZFk(n,z) = Kk[n] X IT(1- rzej2rrft[n-1] z-1; Equation (3.1) 
1=1 
t.•k 

1
where Kk[n] = -----..,

4
-------- Equation (3.2)

IT<1- r2ej2~r(ft[n-1]-fdn-1])) 
1=1 
/;Ok 

and rz is the radius of the zeros on the Z-plane,fi[n-1} is the formant frequency ofthe zth 

filter estimated at time index n-1 and, fi[n} is the formant frequency of this filter (kth 

filter) estimated at index n-1. The gain of Kk[n} (Equation 3.2) ensures that the AZF has 

unity gain and zero phase lag at the estimated formant frequency of the kth component. A 

wide range ofvalues for rz were tested and the best results were obtained (for the range of 

values tested) for rz = 0.98 [11]. 

3.3.2. DTFs 

The box labelled 'DTF' in each formant filter in Figure 3-5 is a single-pole dynamic 

tracking filter. The pole location is always set to the previous estimate of the formant 

frequency of that formant filter. The transfer function ofthe kth DTF at index n is 

1-r 
H (n z) = P Equation (3.3)DTFk ' (1- rPej2nfdn-1J 2 -1) 
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where rp is the radius of the pole and filn-11 is the formant frequency of the k th filter at 

time index n-1. A wide range of values for rp were tested and the best results were 

obtained (for the range of values tested) using rp = 0.90 [11]. 

3.3.3. The First Formant Filter 

The transfer function of the 1st formant AZF is slightly different than that of the other 

AZFs. The AZF of the first formant filter has an additional zero at the location of the 

pitch estimate to suppress pitch effects on the first formant estimate. The transfer function 

of the 1st AZF at index n is 

4 
2 1 1HAZF1(n,z) = Kk[n] X TI (1- rzej nf/[n - lz- ) Equation (3.4) 

1=0 

l "' k 


1
where K[n] = ----,--------- Equation (3.5) 

4fl (1- rzej2Jr(t,[n - 1]-fdn-1])) 

1=0 
l "' k 

and fo [n-11 is the pitch estimate at time index n-1, that is provided to the 1st formant filter 

by the gender detector. 

After the placement of the pole and zeros for each of the formant filters, the transfer 

function and the complex filter coefficients of the four formant filters are calculated. 

These complex filter coefficients are then used to filter the analytic speech signal into 

four band-limited spectral regions from which the four formant frequencies are estimated. 

3.3.4. The Frequency Response and the Results of the Formant Filters 

The frequency responses of the four formant filters are shown in Figure 3-6. In this 

figure the pitch (FO) is set to 200Hz, the first formant frequency (F1) is set to 700Hz, the 

Page 47 



MASc Thesis- Kamran Mustafa McMaster University - Dept. of Electrical and Computer Engineering 

second formant frequency (F2) is set to 1500Hz, the third formant frequency (F3) is set 

to 2200Hz and the fourth formant frequency (F4) is set to 3500Hz. The position of the 

pole and the zeros of the filters is updated for each sample. The bandwidth ofthe formant 

filters is related to the values of rz and rp, and is kept constant since the values of rz and rp 

are not changed. All four of the filters have unity gain and zero phase lag at the location 

of the pole (peak of the band-pass filter that corresponds to the estimated formant 

frequency). 
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Figure 3 - 6- Filter response of the four formant filters 

Figure 3-7 shows the spectrograms of a speech signal and the spectrograms of the 

corresponding spectral regions that come out of the first formant filter (used for Fl 

estimation), second formant filter (used for F2 estimation), third formant filter (used for 

F3 estimation), and fourth formant filter (used for F4 estimation). As can be seen from 

the spectrograms, the pitch area is effectively filtered out and the higher formant 
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frequencies are greatly attenuated for the Fl regwn. The effect of the pitch, the first 

formant frequency and the upper formant frequencies are all minimized for the F2 region. 
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Figure 3 - 7- Spectrograms of the original speech signal and the signals from the formant filterbank 
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3.4. Adaptive Energy Detector 

After the speech signal has been filtered using the adaptive band-pass filterbank, the 

RMS energy of the signal over the previous 20 ms in each band is calculated. In order for 

the algorithm to estimate a particular formant frequency from the spectrum (instead of 

using the moving average value), the energy calculated in that formant band has to be 

above a certain 'energy threshold level', in addition to that speech segment being voiced. 

As mentioned in Section 3.1 the global RMS energy of the speech signal is 

normalised after pre-emphasis, so that the signal has an RMS of 0 dB. The energy 

threshold level for each of the formant frequencies is different and is adaptive to long 

term changes in the spectral energy of the formant frequency bands. The energy threshold 

level for each formant frequency is updated at every voiced segment of speech, allowing 

operation in dynamically changing environments. Equation 3.6 describes how the energy 

level of each formant frequency is updated during voiced segments of speech: 

ETF; (n) = ETF; (n -1)- (0.002 * (ETF; (n -1)- EF; (n) )) Equation (3.6) 

where ETF, (n) is the energy threshold level (in dB) of the lh formant frequency at time 
I 

index (n), ETF (n -1) energy threshold level (in dB) of the ith formant frequency at time 
I 

index (n-1 ), and EF, (n) is the RMS energy (in dB) of the previous 20 ms of the speech 
I 

signal. 

The energy in each band is calculated independently of the energy of the other bands. 

Therefore, it is possible for the energy in some of the bands to be below their threshold 

level and the energy in other bands to be above the threshold levels concurrently. This 

scenario results in one or more of the formant frequencies being spectrally estimated, 

while others revert to their moving average value. Keeping the threshold levels and the 

energy calculations in each of the frequency bands independent allows accurate formant 

estimation in at least a few of the formant bands when there is low energy in only some 
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of the frequency bands. If there are long term changes in the energy of a formant band, 

the threshold level adapts to these energy changes gradually. Not changing the threshold 

levels abruptly prevents long term errors to the energy detector and allows the algorithm 

to recover quickly from briefloud sounds. 

The threshold levels are measured in decibels and the initial energy threshold levels 

are set at the start of the algorithm and updated at voiced segments of speech. Various 

initial threshold levels were tested and the best results were obtained using the following 

initial threshold levels: 

Initial Fl Energy Threshold Level= -35 dB; 


Initial F2 Energy Threshold Level = -40 dB; 


Initial F3 Energy Threshold Level = -45 dB; 


Initial F4 Energy Threshold Level= -50 dB. 


It is important to note that these initial values are calibrated for speech signals whose 

energy levels have been normalised to have a mean of 0 dB. If the signal energy is not 

normalised, the algorithm would require some time to adapt to the actual levels of energy 

present in each formant frequency band, before normal operation of the algorithm can 

resume. The variation of the energy threshold levels for the four formant filters 

throughout an energy normalised speech signal is shown in Figure 3-8. The signal used is 

a synthesized speech signal for a female speaker saying "Five women played basketball". 
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Energy Threshold Levels for the different Formant Filters 
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Figure 3 - 8 - Variation of the energy threshold levels through time for a female speaker speech 

signal: ' Five women playing basketball' 

Page 52 



MASc Thesis - Kamran Mustafa McMaster University- Dept. of Electrical and Computer Engineering 

3.5. Calculating the Linear Predictor Coefficients 

The idea behind linear prediction is to approximate each sample of the speech signal 

as a linear combination ofpast samples. A linear predictor of orderp is defined as: 

- p
S[n] = Z:akS[n- k] Equation (3. 7) 

k=1 

where S[n] is the prediction of S[n] by the sum of p past weighted samples of S[n]. 

The system function of the pth order predictor is a FIR filter of length p given by: 

P(z) = fakz-k Equation (3.8) 
k=1 

and the associated prediction error filter is: 

p 

A(z) =1- L:akz-k =1-P(z) Equation (3.9) 
k=1 

The roots of the inverse of the prediction error filter corresponds to the poles placed 

to model the original signal as closely as possible while minimising the mean squared 

error between the estimated and original signals. First order linear prediction (p = 1) 

obtains one linear predictive coefficient and the corresponding single pole is placed to 

model the original signal as well as possible. Second order LPC tries to model the 

original signal using two poles, and so on [2]. The first four formant frequencies of the 

speech signal are estimated from the four filterbands of the adaptive bandpass filterbank 

using first-order LPC. The analytic signal from each of the bands is first windowed using 

a 20-ms periodic Hamming window and then the linear predictive coefficient (one per 

band) of the previous 20 ms of the windowed signal from each band is calculated. LPC 

tries to fit a single pole model to each signal and the location of the pole corresponds 

roughly to the vocal tract pole (formant frequency) in that band, for voiced segments of 

speech. The LPCs are only calculated from the bands if the entire previous 20-ms 

window of the speech signal is voiced (as determined by the voicing detector). 
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3.6. Voicing Detector 

Figure 3-9 shows a block diagram of the voicing detector that has been designed for 

use with the formant tracking algorithm. The purpose of the voicing detector is to provide 

the formant tracking algorithm with a reliable sample by sample decision on whether a 

signal is voiced or unvoiced. Functionality has been built into the voicing detector to 

prevent it from switching its decisions spuriously. Parameters of the voicing detector 

need to be changed to be able to work for both male and female speakers. The gender 

detector provides regular updates to the voicing detector about the gender of the speaker 

so that the voicing detector can use the correct set ofparameters. 

--- ....
1 From the G ender Detector .••... •t• ..................... 


HPF 

LPF 

. . I.GenderPitch _, . _Jt .. 
Decisionr--+ .. Extractor .. MakerI . •..........................
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AutocorrelationI ~ Delay 

I 
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VoicingI Decision ~ ---+IVoicing DetectorI To the Speech 1 Maker._.... Moving Average 
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Figure 3 - 9 - Block Diagram of the Voicing Detector 
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3.6.1. The High Pass Filter and Low Pass Filter of the Voicing Detector 

The original speech signal (the real valued signal) is filtered into two different 

frequency bands by passing it through a High-Pass Filter (HPF) and a Low-Pass Filter 

(LPF). Figure 3-10 shows the frequency and phase responses of the 20th -order 

Butterworth HPF and LPF where the cut-off frequency of the two filters is set to 700 Hz 

(dotted black line). 

Frequency and Phase response of the HPF and LPF 
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Figure 3 - 10- The Frequency and Phase responses of the HPF and LPF 

Once the signal is filtered into the two frequency bands, the log ratio of the RMS 

energy for the previous 20 ms of the signal, between the lower and the higher frequency 

bands is calculated. Voiced speech is made up of more lower frequency components than 

unvoiced speech, so the energy in the lower frequency band is expected to be greater than 

the energy in the higher frequency band during voiced speech. During voiced speech 

segments, the log ratio of the low frequency band to high frequency band is positive, 
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indicating that the energy in the lower frequency band is greater than that in the higher 

frequency band. The log energy ratio is calculated with a sliding window moving sample 

by sample and a windowed signal is classified as voiced if its log ratio exceeds a set 

threshold level. This energy ratio measure serves as the primary means of classification 

for determining if a speech segment is voiced or unvoiced. 

The best value of the cut-off frequency of the HPF and the LPF depends on the 

gender of the speaker. A large number of values were tested for the selection of the cut

off frequency for both genders. For the range of values tested, the best results were 

obtained when the cut-off frequency was set to 700 Hz for male speech and 1120 Hz for 

female speech. The voicing detector gets updates every 20 ms about the gender of the 

speaker from the gender detector and is able to modify the cut-off frequency of the LPF 

and the HPF if the gender of the speaker changes. If the cut-off frequency is to be 

changed, it is slowly increased or decreased so that there are no transient effects, as 

shown by Equation 3.9. The algorithm is configured to shift the cut-off frequency from 

700Hz to 1120Hz (from male speaker to female speaker) or vice versa over 40 ms. 

FJn] =Fc[n -1] + 10, if G[n ]= 0 and FJn] < 1120, 
Equation (3.1 0) 

Fc[n] =Fc[n -1] -10, if G[n ]= 1 and Fc[n] > 700, 

where Fc[n] is the cut-off frequency at time index nand G[n] is the estimated gender at 

time index n (zero for female and one for male). 

3.6.2. Threshold with Hysteresis 

The log energy ratio used to determine if the input is voiced or unvoiced is reliable 

and accurate only for phonemes whose frequency components do not vary too much over 

time. The presence of transient frequencies in certain phonemes makes the log energy 

ratio unreliable on its own for determining voicing in continuous speech. This is because 

transient frequency components can make the voicing detector results oscillate too 

quickly between the voiced and unvoiced states. In order to avoid these fast oscillations 
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between the two states, Bruce et al. [12] proposed a threshold with hysteresis. This allows 

changes in the voicing state (from voiced to unvoiced or vice versa) only if the state of 

the current sample changes from the previous sample and the current sample has a log 

ratio greater than a set threshold level. These threshold levels depend on the gender of the 

speaker and have to be changed as the gender of the speaker changes. 

If the previous sample is unvoiced and the current sample has a log ratio greater than 

a set threshold level (Log_Ratio_Threshold_ Voiced), then the current sample is assigned 

as being voiced, i.e. the switch from unvoiced to voiced state occurs only if the log 

energy ratio is greater than the proper threshold level. If the previous sample is voiced 

and the current sample has a log ratio less than a set threshold level 

(Log_ Ratio_ Threshold_ Unvoiced), then the current sample is assigned as being 

unvoiced, i.e. the switch from voiced to unvoiced state occurs only if the log energy ratio 

is below the proper threshold level. From the range of values tested, the best results were 

obtained when the level was set to 0.2 for males and 0.3 for females for 

Log_ Ratio_ Threshold_ Voiced and 0.1 for males and 0.2 for females for 

Log_ Ratio_ Threshold_ Unvoiced. The gender of the speaker is checked every 20 ms to 

confirm that the proper set of parameters are being used. If the gender of the speaker 

changes, the threshold levels are updated slowly over 40 ms to avoid any transient 

effects. 

3.6.3. Autocorrelation Test 

The contribution of energy due to A WGN over short time durations may not be 

'white', but instead be 'coloured' (be randomly concentrated in the lower or upper 

frequency band). Voicing decisions based solely on the log ratio measure would rely only 

on the energy distribution of the signal over the previous 20 ms of data. If the short-term 

energy from A WGN is concentrated in the lower frequency band, the log energy ratio 

will erroneously detect the signal as being voiced. In order to avoid the problem of 
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erroneous voicing detection in the presence of A WGN, the voicing detector algorithm 

performs an autocorrelation based test to check if the energy in the lower frequency band 

of the signal is due to A WGN or due to some other non-random signal. The 

autocorrelation of the previous 20 ms of the signal is calculated. The signal is classified 

as voiced, if the autocorrelation at any lag ( r -:f:. 0 ) is greater than the 

autocorrelation_ threshold_ multiplier times the autocorrelation at zero ( r =0) and there 

is at least one point in the window whose autocorrelation is greater than 0. If the low 

frequency energy in the signal is determined to be due to A WGN, the autocorrelation of 

the signal will be very low since random signals have very low or zero autocorrelation 

values (when r -:f:. 0 ), and the above test will fail. The value of the 

autocorrelation_threshold_multiplier is different for male and female speakers. Through 

trial and error the best results were obtained when the 

autocorrelation_threshold_multiplier was set to 0.25 for female speakers and 0.6 for male 

speakers. The gender of the speaker is checked every 20 ms and the value of the 

autocorrelation_threshold_multiplier can be changed if the gender of the speaker 

changes. 
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3.6.4. Voicing Detector Testing and Results 

The testing of the voicing detector algorithm was conducted using both synthesized 

sentences and recorded speech sentences from the TIMIT database. Testing using the 

synthesized sentences allows quantitative measurements of the performance of the 

voicing detector for both male and female speakers since the exact time of the onset of 

voicing is known. In tests using the TIMIT database sentences, it is only possible to 

visually gauge the performance and accuracy of the voicing detector (using the 

spectrogram) since the exact time of the onset of voicing is unknown. Figures 3-11 and 3

12 show the performance of the voicing detector for the male and female synthesized 

sentence "Five women played basketball". The dotted black line indicates the actual 

voicing information from the synthesized speech parameters and the solid black line 

shows the estimate of voicing obtained through the voicing detector. When the lines are 

at zero ('low'), it indicates that the speech is unvoiced and when the lines are non-zero 

('high'), it indicates that speech is voiced. 
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Figure 3 - 11 - Voicing Detector results for a synthesized male speaker 
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Figure 3- 12- Voicing Detector results for a synthesized female speaker 

Figures 3-13 and 3-14 show the results of the vmcmg detector applied to TIJ\.1IT 

database sentences for male and female speakers, respectively, saying 'Don't ask me 

carry an oily rag like that'. As mentioned earlier, the performance of the voicing detector 

can only be analysed visually because the actual onset ofvoicing is unknown. 
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Voicing Detector Results for a TIMIT Sentence - Male 
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Figure 3 - 13 -Voicing Detector results for a male speaker from TIMIT database 

Voicing Detector Results for TIM IT Sentence - Female Speaker 
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Figure 3 -14- Voicing Detector results for a female speaker from TIMIT database 
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From the results of the vmcmg detector for synthesized and TIMIT database 

sentences, it can be seen that the algorithm performs very well for both male and female 

speakers. Testing performed on the synthesized speech sentences shows that the voicing 

detector has a delay of approximately 10 ms, from the actual onset of voicing to the 

detection of voicing. This is the processing delay of the voicing detector algorithm. The 

duration is smaller than the typical length of voiced speech segments and is therefore 

within acceptable limits. Another reason why the processing delay of the voicing detector 

is acceptable is because it is lower than the processing delay of the formant tracking 

algorithm which is about 14 ms. The algorithm is also robust and there is very little or no 

oscillation of the output between voiced and unvoiced states. 
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3.7. Gender Detector 

The difference in pitch between male and female speakers is sufficient to serve as a 

discriminating parameter between the two types of speakers. The gender detector 

calculates the pitch and determines the gender of the speaker. It provides this information 

to the voicing detector so that the voicing detector can update its parameters to work 

properly for both male and female speakers. Accurate pitch estimation from continuous 

speech is a difficult task to accomplish. Several complicated algorithms have been 

proposed to achieve this task [2] [3] [15]. However, for the purposes of constructing a 

low-computation and low-delay gender detector, it was deemed sufficient to have an 

approximate estimate of the pitch as long as there is still clear discriminability between 

male and female speakers. Therefore, a well known fast and simple approach to pitch 

estimation is chosen that uses an autocorrelation based approach [2] [14]. 

In the gender detector algorithm, pitch is estimated from the real valued speech signal 

using the short-time autocorrelation of the previous 60 ms of the signal. The 60 ms signal 

is divided into non-overlapping frames whose length must be greater than at least one 

pitch period in order to measure the pitch in the frame accurately. The gender detector 

algorithm segments the signal into non-overlapping 20 ms-frames. Each frame is low

pass filtered using a fourth-order Butterworth filter (LPF) to reduce the range of spectral 

estimation. The pitch information is contained within the lower frequencies of speech ( < 

1000 Hz) so the higher frequencies contained in the signal can be discarded. The 

frequency response of the LPF is shown in Figure 3-15. 
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Gender Detector LPF Frequency and Phase Response 
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Figure 3 - 15 - LPF for the Gender Detector 

3.7.1. Centre Clipping 

There can be interaction between the pitch frequency and the first formant frequency 

when the first formant frequency bandwidth is narrow relative to the harmonic spacing. 

In such cases the autocorrelation function of the signal has higher peaks due to the vocal 

tract response (first formant frequencies) than due to the vocal excitation (pitch 

frequency). This makes it difficult to estimate the pitch frequency using short time 

autocorrelation [2]. To avoid this problem, a nonlinear time-domain technique called 

centre-clipping is used that makes the periodicity of the speech signal more prominent 

while suppressing the other features of the speech that contribute to the extra peaks of the 

autocorrelation function [16] [ 1 7] . The gender detector uses the three level centre 

clipping function shown in Figure 3-16 that was first proposed by Rabiner and Schafer 
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[ 16]. In this figure the clipping level is set to 68% of the maximum amplitude of the 

signal in that frame. A different clipping level is calculated and used for every frame. 

NonLinear Centre Clipping Function 
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Figure 3- 16- Three level centre clipping function 

Figure 3-17 shows an unclipped speech signal and its autocorrelation function while 

the centre clipped version of the same signal and its corresponding autocorrelation 

function is shown in Figure 3-18. The extra peaks in the autocorrelation function that do 

not represent the vocal excitation are removed by centre clipping the signal. 
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Figure 3 - 17- The unclipped speech signal and its autocorrelation 
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Figure 3 - 18- Centre-clipped speech signal and its autocorrelation 
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The problem with three-level centre clipping is the determination of the proper 

clipping level, CL, for each frame (indicated by the dotted red lines and set to 68% of the 

peak amplitude in the signal in Figure 3-16). It is possible for the amplitude ofthe signal 

to vary significantly within a frame. If the clipping level is set to too high a percentage of 

the maximum amplitude in that frame, most of the signal may be lost due to clipping. To 

avoid this problem, the clipping level is set to 68% of the average peak amplitude in the 

first third and last third segments of each frame. 

3.7.2. Determination of the average pitch period and the gender of the speaker 

After the signal has been centre clipped, its autocorrelation, Rn, is calculated and the 

location of the highest peak, p, of the autocorrelation function is located. If Rn(P) is less 

than 0.4 x Rn(O), then the segment is classified as being unvoiced and its pitch is set to 0 

Hz. Otherwise, the pitch period is calculated as being the location of the highest peak of 

the autocorrelation function. The range of acceptable values for the pitch frequency is 

between 60 and 320 Hz, and if the calculated value of the pitch is outside this range then 

it is set to the moving average value of the pitch in that segment. The value of the pitch 

frequency in each frame is used to calculate the average pitch frequency of each segment 

of the signal (of 60 ms duration) passed to the gender detector algorithm. The average 

pitch frequency of each segment is sent to the first formant filter to be used for the 

placement of the additional zero at the pitch frequency location. The gender G[n] of the 

speaker is considered to be male ('0') if the average pitch frequency is below 180Hz and 

is set to female (' 1') if it is above that value. Figure 3-19 shows the results of the gender 

detector algorithm for a female speech signal. 
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Figure 3 - 19- Gender Detector results for a female speaker speech signal 

In Figure 3-19 the gender of the speaker is represented by the dotted pink line where a 
; 

'high' represents a female speaker and a 'low' represents a male speaker. The pitch 

frequency is shown in blue and the threshold level for the gender classification is shown 

in red. The gender detected for the speaker changes through the test signal even though 

the original signal is actually only for a female speaker. This erroneous gender detection 

occurs when the pitch frequency dips below the threshold level (180 Hz) and the 

algorithm classifies the speaker as being male. Most of the erroneous gender detection 

occurs when the speech is actually unvoiced and therefore does not affect the 

performance of the overall formant detection algorithm (see sections 3.6 and 3 .8). Due to 

this reason, during unvoiced speech segments, the gender of the speaker is assumed to 

remain unchanged. 
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3.8. Moving Average Decision Maker 

The moving average decision maker has two main purposes: 

• 	 to calculate and update the moving average value of each formant frequency 

and 

• 	 to determine whether to assign the LPC estimated value or the movmg 

average value to each formant frequency. 

The moving average decision maker assigns the estimated value to the formant 

frequencies (from the LPCs) only when the segment is voiced and the energy of the 

formant frequency is above its respective threshold level (see section 3.4). If the segment 

is unvoiced or if the energy of a particular formant is below its respective threshold level, 

then the current value of the formant frequency decays toward the moving average value 

for that formant frequency according to: 

F;[n] =F;[n -1]- (0.002 *(F;[n -1]- F;MA[n -1])) Equation (3.11) 

where F; [n] is formant estimate the ith formant frequency at time index (n) and 

F;MA[n -1] is the previous value of the moving average for the ith formant frequency. 

Equation 3.12 describes the update rule for the moving average value of each formant 

frequency: 

MA 1~F; 	 [n] =-L..F;[k] Equation (3.12) 
n k=I 

where ~MA[n] is the moving average value for the ith formant frequency at index n and 

~[n] is the estimate ofthe ith formant frequency at index n. 

Page 69 



MASc Thesis - Kamran Mustafa McMaster University- Dept. of Electrical and Computer Engineering 

3.9. Other Considerations 

3.9.1. Limitations on the proximity of formant frequencies 

The filter response of the formant filterbank becomes poor when the location of the 

poles and zeros are very close. Therefore, the formant tracking algorithm limits how 

close the formant frequencies can come to each other. The algorithm does not allow F1 to 

be less than 150Hz from the pitch frequency and any estimate ofF1 that is less than 150 

Hz from the pitch is set to be pitch+200 Hz. F2 is also limited from being less than 300 

Hz from Fl. Any F2 values that are less than 300Hz from F1 are set to be F1 +400Hz. 

Similarly, F3 is not allowed to be less than 400 Hz from F2. All values of F3 that are less 

than 400Hz apart from F2 are set as F2+400 Hz. Finally, all F4 values that are less than 

400 Hz from the F3 values are set as F3+400 Hz. This limitation on the proximity of the 

formant frequency values ensures that the poles and zeros of the formant filterbank are 

never too close to cause problems to the frequency response of the filterbank. Figure 3-20 

shows the algorithm used for updating the formant frequencies values when they are too 

close to each other. 

F1, F2, F3, F4 

F4 =F1 = FZ = F3 = 
F1+400 Hz F2+400 Hz F3+400 Hz 200+FO Hz 

F1 F2 F3 F4 

Figure 3 - 20- Update rules for the formant frequency proximity 

Page 70 



MASc Thesis - Kamran Mustafa McMaster University- Dept. of Electrical and Computer Engineering 

4. TESTING REGIME AND RESULTS 


The primary goal of this project is to develop a reliable formant tracking algorithm 

that is robust in real-life noise scenarios. To this end, rigorous and systematic testing of 

the formant tracking algorithm has been conducted in order to find best values for the 

operating parameters as well as to ensure that the algorithm performs well under various 

levels of different background noise. In this chapter, the different test cases are described 

and the performance of the algorithm under these conditions is discussed. 

The algorithm has been tested using synthesized speech signals as well as speech 

signals from the TIMIT recorded speech database. Testing using synthesized sentences 

allows quantitive analysis of the performance of the formant tracker because the formant 

frequency values of the synthesized speech signals are known. The testing and analysis of 

the formant tracking algorithm for synthesized speech signals has been fully automated 

(using MATLAB scripts) to increase the efficiency of the testing regime and help speed up 

analysis of the results. These scripts test the formant tracking algorithm for over 80 

different scenarios and then determine the RMS error between each actual and estimated 

formant frequency. The TIMIT database speech signals are recorded from actual speakers 

and therefore sound more natural than the synthesized speech signals. However, the 

actual formant frequency values of the TIMIT database speech signals are unknown, 

therefore, only qualitative analysis of the results can be performed through visual 

inspection. 
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Formant Frequency Initializations 

There are a large number of values that have to be properly initialized before the 

formant tracking algorithm can start to estimate the formant frequencies from the speech 

signal. The formant frequency values are initialized to random values with a set mean and 

standard deviation, until the algorithm is able to estimate the formants from the speech 

signal. The initial values assigned to the formant frequencies are important because they 

will be used to determine the exact shape of the formant filterbank (at the start) that will 

be used to estimate the formant frequencies from the signal. If the initial formant 

frequencies assigned are not close to the actual formant frequency values, then the 

filtered spectrum from each of the filters will not contain the proper formant regions, and 

the resulting estimated formant frequencies will not be accurate. The initial formant 

values are set using the following general equation: 

IV - F; = aF; + F; Equation (4.1) 


where F;1v is the initial value of the i1
h formant frequency, a is a normally distributed 


random number with a standard deviation of 1, 'F; is the standard deviation of the i1
h 

formant frequency and ~ is the mean value of the i1h formant frequency. 

-The mean ( F; ) and the standard deviation ( F;) for the initial values of each formant 

frequency are obtained from the actual formant frequency values for a large selection of 

synthesized speech sentences. The initializations for the four formant frequencies and the 

pitch frequency are: 

Initial Pitch Frequency= (a x50) + 175Hz 

Initial First Formant Frequency= (ax 115.9433) + 397.3253 Hz 

Initial Second Formant Frequency= (ax 461.5834) +1490Hz 

Initial Third Formant Frequency= (ax 381.7358) +2490Hz 

Initial Fourth Formant Frequency= (ax 258.653) + 3550Hz 
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Calculating the RMSE 

Quantitive error is measured in terms of the root mean squared error between the 

actual and estimated formant frequencies, for voiced segments of speech when there is 

sufficient energy in the signal for the algorithm to estimate formant frequencies through 

spectral estimation. A function was created that finds the time indices, i, for which the 

algorithm uses spectral estimation to obtain the formant frequencies of a signal. When 

background noise is present in the signal the indices are calculated for the speech signal 

in the presence of the noise. Therefore, if there is sufficient background noise energy 

present in the signal, the indices will also include samples where the background energy 

causes the algorithm to use spectral estimation even though the actual speech signal may 

be unvoiced or may have insufficient energy. The inclusion of these points in the RMSE 

calculation means that if the formant tracker starts tracking the formant frequencies of a 

background speaker when the primary speaker is silent, the overall error of the algorithm 

will rise. Such a scenario only arises at very low SNRs and adds to the high RMSE 

observed for the algorithm at these SNRs. 

For some applications, it is not important what the formant frequency algorithm 

tracks when the primary speaker is silent and therefore the error indices should not 

include these points. For such applications, a better way to gauge the performance of the 

algorithm would be to measure RMSEs only for those time indices where the primary 

speaker's speech is voiced and has sufficient energy for spectral estimation, regardless of 

the background noise. This can be accomplished by using the existing RMSE calculation 

function and finding out the error indices, }, for the 'clean' signal (without any 

background noise). Then the RMSE should be calculated using these time indices no 

matter what the amount of background noise present. This new suggested method for 

calculating the RMSEs should show better performance of the formant tracking algorithm 

in lower SNRs than shown in the discussion in this thesis. 
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4.1. Testing with White Noise 

Additive White Gaussian Noise (AWGN) may be present in real-life environments 

from a variety of sources such as fans, air-conditioners, running water, etc. Since the 

formant tracker is to be implemented and used in a real-life environment, it must be able 

to operate in A WGN. The operation of the algorithm is tested and analysed in the 

presence ofbackground AWGN at various Signal-to-Noise Ratios (SNRs), from 40 dB to 

-10 dB, for various synthesized and TIMIT database speech signals (for both male and 

female speakers). AWGN adds wideband spectral noise to each of the four formant bands 

and the long-time average energy added to each of the bands is roughly equal. Due to the 

equal energy contribution of A WGN on the formant frequency bands and the nature of 

the formant tracker, the performance of the formant tracking filters should not be affected 

greatly in A WGN for voiced segments of speech. However, the performance of the 

voicing detector and the pitch will both be adversely affected due to AWGN at low SNRs 

because of the added energy in the lower frequency bands. The voicing detector in 

particular may erroneously detect voicing during unvoiced segments of speech. The 

addition of the autocorrelation based testing as well as the adaptive energy thresholds in 

the voicing detector (described in section 3.6) prevents this from occurring. 

Figure 4-1 shows the spectrogram of a female synthesized speaker saying "Five 

women played basketball" in A WGN at a SNR of 40 dB. The figure also shows the 

original formant frequencies (plotted in black), the estimated formant frequencies (plotted 

in white) as well as the voicing decisions (plotted in purple). It can be seen that at this 

high SNR level the formant frequencies are estimated accurately and the voicing detector 

estimates detects voicing accurately. As the formant frequencies change, the formant 

tracker is able to follow them and capture the formant frequency transitions. Figure 4-2 

shows the spectrogram of a synthesized male speaker saying the same sentence in 

A WGN at a SNR of40 dB. 
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Synthesized Female Speaker in 40 dB SNR AWGN 
Colour Scale 
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Figure 4 - 1 - Spectrogram for a synthesized female speaker in A WGN at 40 dB SNR 

Synthesized Male Speaker in 40 dB SNR AWGN Colour Scale 
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Figure 4 - 2 - Spectrogram for a synthesized male speaker in A WGN at 40 dB SNR 

Page 75 



MASc Thesis - Kamran Mustafa McMaster University- Dept. of Electrical and Computer Engineering 

It can be seen that at this SNR the formant tracker estimates the second and third 

formant frequencies better for the female speaker than for the male speaker. This happens 

because the second and third formant frequency values of the male speaker have very fast 

transitions during some phoneme boundaries and the energy of the formant frequency 

regions drops significantly during these transitions (at approximately t = 0.25 sec and 1.4 

sec). The formant tracker is unable to keep track of the formant frequencies during these 

fast transitions and the algorithm reverts to using the moving average value of the second 

and third formant frequencies. However, the algorithm recovers quickly and starts 

tracking the correct formant frequency when as soon as there is sufficient energy present 

in the formant regions. The algorithm estimates the first formant frequencies quite 

accurately for both males and females speakers during all voiced speech segments. 

Overall, the formant frequencies are estimated accurately and the algorithm is robust. The 

voicing detector performs well in predicting the voiced segments of speech for both male 

and female speakers. 

Figure 4-3 shows the RMS error between the actual and the estimated formant 

frequencies for a synthesized female speaker (same sentence as in Figure 4-1) in the 

presence AWGN at various SNRs. The test case was repeated 25 times and the figure 

shows the mean RMSE value as well as the standard deviation of the RMSE results over 

the 25 repetitions at each SNR. Figure 4-4 shows the RMS error between the formant 

frequencies for the same synthesized sentence but for a male speaker (same sentence used 

for Figure 4-2). As expected, the RMSE of the formant frequencies for both male and 

female speakers is low at high SNRs, but the RMSE increases as the SNR decreases. At 0 

dB SNR (when the energy of the noise and the signal are equal) the RMSE for all the 

formant frequencies is high. This occurs because the algorithm operates without any 

noise cancellation and at such low SNRs, it has difficulty separating the signal from the 

noise. Due to the reasons described earlier, the poor performance of the algorithm for the 

synthesized male speaker can also be seen and overall the performance of the algorithm 

for male speakers is generally worse than for female speakers. 
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RMSE vs SNR for a Synthesized Female Speaker in the presence of AWGN 
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Figure 4 - 3 - RMSE vs. SNR for a synthesized female speaker in A WGN 
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Figure 4 - 4- RMSE vs. SNR for a synthesized male speaker in A WGN 
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Figure 4-5 shows the spectrogram of a female synthesized speaker saying "Five 

Women Played Basketball" in A WGN at a SNR of -5 dB. The figure shows that the 

algorithm reverts to using the moving average value for the formant frequencies due to 

the presence of noise. It is clear that although the formant frequencies are not being 

spectrally estimated for most of the speech signal, the moving average values of the 

formant frequencies provide a good approximate estimate of the actual formant 

frequencies. This validates the assignment of the moving average values to the formant 

frequencies when a spectral estimate can not be made. The use of moving average values 

also ensures that the formant frequency estimates vary smoothly as the speech changes 

from voiced to unvoiced and vice versa, even at low SNRs. The RMSE for both male and 

female speakers drops for SNRs less than 0 dB because the algorithm reverts to using the 

moving average values of the formants instead of using spectral estimation. 
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Figure 4 - 5 - Spectrogram for a synthesized female speaker in AWGN at -5 dB SNR 
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The algorithm was also tested using recorded natural speech for both male and female 

speakers from the TIMIT database. Figure 4-6 shows the spectrogram and the estimated 

formant frequencies for a natural female speaker from the TIMIT database saying "Don't 

ask me to carry an oily rag like that" in the presence of background A WGN at a SNR of 

30 dB. From the spectrogram it can be visually observed the formant tracker is able to 

detect and track the formant frequencies relatively well and also makes good voicing 

decisions. The formant frequency transitions are also captured well by the algorithm as 

can be seen from the second formant frequency estimates for approximately t = 1.5 sec. 
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Figure 4 - 6- Spectrogram for a natural female speaker in A WGN at 30 dB SNR 

Figure 4-7 shows the spectrogram and the estimated formant frequencies for a natural 

male speaker from the TIMIT database saying "Don't ask me to carry an oily rag like 

that" in the presence of background A WGN at a SNR of 30 dB. Figure 4-8 shows a 

magnified version of the same spectrogram, illustrating the ability of the algorithm to 

track formants closely during phoneme transitions and to produce smooth formant 

frequency estimates as the speech switches between voiced and unvoiced segments. 
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Natural Male Speaker in 40 dB SNR AWGN Colour Scale 
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Figure 4 - 7 - Spectrogram for a natural male speaker in A WGN at 40 dB SNR 
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N";;_ 
> -1 0
0 
c: 

"' o:l 
::l "0 
C" 
~ 

u.. 

1.6 2.6 2.8 31.8 2 2.2 2.4 

Time(s) 

3.2 

Figure 4 - 8 - Spectrogram for a natural male speaker in A WGN at 40 dB SNR (magnified) 

Page 80 



MASc Thesis - Kamran Mustafa McMaster University- Dept. of Electrical and Computer Engineering 

4.2. Testing in the presence of a female single background speaker 

In real-life there is often more than just one speaker present in an environment and 

the formant tracking algorithm has to be able to accurately estimate formant frequencies 

for the dominant speaker in the presence the background speakers. In this test case, the 

algorithm is evaluated in the presence of a female single background speaker where the 

background speaker serves as the 'noise source'. The loudness of the background speaker 

often varies in real-life and therefore the algorithm is tested at varying SNRs (from 40 dB 

to -5 dB). This scenario is challenging for the algorithm because over a particular short 

time period, the background speaker may contribute significant energy to the formant 

frequency regions of the primary speaker, especially at lower SNRs. This will cause the 

algorithm to start tracking the formant frequencies of the background speaker instead of 

those of the primary (more dominant) speaker. 

There are short moments of silence during the speech of any speaker while the 

speaker inhales, or exhales, and during phoneme transitions etc. Another source of 

concern when there are background speakers present is that if the background speaker 

says something during the brief moments of silence of the primary speaker, the formant 

tracking algorithm may start to track the formant frequencies of the background speaker. 

In this case the formant frequencies estimated will switch back and forth between those 

of the primary and the background speakers. Another point to keep in mind is that the 

'noise source' is a female speaker and this can lead to one of two scenarios when the 

primary speaker is male. The formant frequencies of the background female speaker are 

higher than those of the primary male speaker. This may lead the overall performance of 

the algorithm to be better for male speakers, because there will be less energy 

contribution to the male speakers' formant frequency regions. On the other hand, at low 

SNRs, the formant tracking algorithm may start tracking the formant frequencies of the 

background female speaker and push the RMSEs of the algorithm higher. 
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Figure 4-9 shows the spectrogram of a synthesized female speaker saying "Five 

women played basketball" in the presence of a female single background speaker saying 

"He sees the ball" at a SNR of 25 dB. It can be seen that at this high SNR the formant 

frequencies are estimated fairly accurately for most of the speech signal, except at time t 

= 1 sec. when both the second and third formant frequencies suddenly jump. This sudden 

jump may be due to the energy contribution of the background speaker while there was a 

momentary silence from the primary speaker, as discussed above. 

Synthesized female speaker in 25 dB SNR with a 
single background speaker (female) Colour Scale 

·10 

4000 

3500 

3000 

N' e. 2500 

>
(J 
c: 
"' 2000 ,"' "'tT 
~ 

LL 

1500 

1000 

500 

02 OA 0.6 0.8 12 1A 1.6 1.8 

Time (s) 

Figure 4 - 9 - Spectrogram of a synthesized female speaker in the presence of female single 

background speaker at 25 dB SNR 

Figure 4-10 shows the spectrogram of a synthesized male speaker saymg "Five 

women played basketball" in the presence of a female single background speaker at a 

SNR of 30 dB. From the spectrogram it is clear that the algorithm is able to accurately 

detect the formants frequencies for the male speaker as well. Comparing Figure 4-9 to 

Figure 4-1 it can be seen that formant frequency estimates for both cases are very similar 

to each other. Therefore, it can be concluded that at high SNRs the background noise 
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does not affect the performance of the algorithm. This observation is once again noted 

when Figures 4-10 and 4-2 are compared. 

Synthesized male speaker in presence of a 
female single background speaker in 30 dB SNR 
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Figure 4- 10- Spectrogram of a synthesized male speaker in the presence of female single 

background speaker at 30 dB SNR 

Figure 4-11 shows the variation of the RMSE with the SNR for a female synthesized 

speaker (saying 'Five women played basketball') in the presence of a female single 

background speaker (saying 'Don't ask me to carry an oily rag like that'). From this 

figure it can be seen that the algorithm performs very well even at low SNRs and is able 

to estimate the first three formant frequencies with a reasonable amount of error for 

female speakers. 
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RMSE vs SNR for Female Single Background Speaker 
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Figure 4 - 11 - RMSE vs. SNR for a synthesized female speaker in the presence of female single 

background speaker 

Figure 4-12 shows the RMSE vs. SNR plot for a synthesized male speaker (saying 

'Once upon a midnight dreary') in the presence of a single female background speaker 

(saying 'Five women played basketball'). The algorithm performs well for the 

synthesized male speaker as well as, if not better than, it do~s for the synthesized female 

speaker. 
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RMSE vs SNR for a male synthesized speaker with a 
female single background speaker 
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Figure 4 - 12 - RMSE vs. SNR for a synthesized male speaker in the presence of female single 

background speaker 

The algorithm is also tested using more natural sounding speech (for both male and 

female speakers) from the TIMIT database at various SNRs. Figures 4-13 and 4-14 show 

portions of the spectrogram for natural female and male speakers in the presence of a 

female single background speaker at 20 dB and 15 dB SNR respectively. From visual 

inspection of these spectrograms, it can be seen that the algorithm performs well for both 

genders despite the relatively low SNRs. The algorithm is also able to track formant 

frequencies as the speech switches between voiced and unvoiced segments and provides 

smooth formant frequency estimates. The algorithm was tested for TIMIT database 

sentences for a wide range of SNRs from 40 dB to -5 dB to ensure that the performance 

was acceptable for the entire range. 
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Natural Female Speaker in 20 dB SNR 
with a female single background speaker 
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Figure 4 - 13 - Spectrogram of a natural female speaker in the presence of female single background 

speaker at 20 dB SNR 

Natural Male Speaker in 15 dB SNR in the presence of a 
female single background speaker 
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Figure 4- 14 - Spectrogram of a natural male speaker in the presence of female single background 

speaker at 15 dB SNR 
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4.3. Testing in the presence of a male single background speaker 

Due to reasons similar to those described for the previous test case, the algorithm was 

also tested in the presence of a male single background speaker at varying SNRs (from 40 

dB to -5 dB). Concerns still remain regarding the algorithm starting to track the formant 

frequencies of the background speaker instead of the primary speaker at low SNRs. 

Similar to the female single background speaker case, the estimated formant frequencies 

can still switch back and forth between those of the primary speaker and the background 

speaker due to the noise contributions from the background speaker during momentary 

periods of silence of the primary speaker. 

Figures 4-15 and 4-16 show the RMSE vs. SNR plot for a synthesized female and 

male speaker in the presence of a male single background speaker respectively. The 

RMSE is low for all the formant frequencies at higher SNRs but increases (as expected) 

when the SNR drops. 

R!VISE vs SNR for a synthesized female speaker in the presence 
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Figure 4- 15- RMSE vs. SNR for a synthesized female speaker (saying 'he sees the ball') in the 

presence of male single background speaker (saying 'Five women played basketball') 
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RMSE vs SNR for a male speaker in the presence of 
a male sing le background speaker 
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Figure 4- 16- RMSE vs. SNR for a synthesized male speaker (saying 'Five women played 

basketball') in the presence of male single background speaker (saying 'Once upon a midnight') 

Figure 4-17 shows the spectrogram for natural female speaker saying "Don't ask me 

to carry an oily rag like that" in the presence of a male single background speaker saying 

"Five women played basketball" at 30 dB SNR. Figure 4-18 shows the spectrogram for a 

natural male speaker saying "It was a fairly modem motel with quite a bit of electrical 

display in front" in the presence of the same male single background speaker at 25 dB 

SNR. Analysis of the spectrograms shows that the formant tracker performs well for both 

genders at these SNRs. The algorithm was also tested for a whole range of SNRs ( 40 dB 

to -5 dB) for this test case using various TIMIT database sentences. The overall 

performance of the algorithm for the TIMIT database sentences in the presence of a 

single background speaker is good. 
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Natural female speaker in the presence of a 
male single background speaker at 30 dB SNR 
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Figure 4 - 17- Spectrogram of a natural female speaker in the presence of a male single background 

speaker at 30 dB SNR 

Natural male speaker in the presence of a 
male sing le background speaker at 25 dB SNR Colour Scale 

Figure 4 - 18- Spectrogram of a natural male speaker in the presence of a male single background 

speaker at 25 dB SNR 
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4.4. Testing in the presence of multiple background speakers 

In this test case the algorithm is tested using synthesized and natural male and female 

speakers in the presence of multiple background speakers (background babble) to analyse 

the algorithm's behaviour in a real-life environment where there are often more than just 

one or two speakers present in the background. The SNR of the signal is varied from 40 

dB to -5 dB in the testing and the results of the formant frequency estimates are analysed. 

Figure 4-19 shows the spectrogram of a synthesized female speaker saying "Five women 

played basketball" in the presence of multiple background speakers at a SNR of 10 dB. 

As can be seen from the spectrogram, the algorithm estimates the formant frequencies 

quite well despite the low SNR. Figure 4-20 shows the variation of the RMSE of the 

formant frequencies at various SNRs for a female synthesized speaker in the presence of 

multiple background speakers. 

Synthesized Female Speaker in the presence of 
multiple background speakers at 10 dB SNR Colour scale 
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Figure 4 - 19 - Spectrogram of a synthesized female speaker in the presence of multiple background 

speakers at 10 dB SNR 
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RMSE vs SNR for a synthesized female speaker in the 
presence of multiple background speakers 
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Figure 4 - 20 - RMSE vs. SNR for a synthesized female speaker in the presence of multiple 

background speakers 

From the plot it is clear that the algorithm performs well in the presence of multiple 

background speakers until about 10 dB SNR after which the error rises sharply. This 

occurs, because below 1 0 dB SNR the energy from the background speakers causes the 

algorithm to start tracking the background speakers during the moments of silences of the 

primary speaker. This leads to the estimated formant frequencies (especially the second 

formant) to switch between those of the primary and the background speakers and leads 

to high RMSE. These findings are illustrated in Figure 4-21 which shows the spectrogram 

of the synthesized female speaker saying "Five women played basketball" in the presence 

ofmultiple background speakers at a SNR ofO dB. Figure 4-22 shows the variation ofthe 

RMSE of the formant frequencies at various SNRs for a male synthesized speaker in the 

presence of multiple background speakers. It shows similar behaviour to that of the 

female synthesized speaker. 
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Synthesized female speaker in the presence of 
multiple background speakers in 0 dB SNR Colour Scale 
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Figure 4 - 21 - Spectrogram of a synthesized female speaker in the presence of multiple background 

speakers at 0 dB SNR 

RMSE vs SNR for a male synthesized speaker in multiple background speakers 
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Figure 4 - 22 - RMSE vs. SNR for a synthesized male speaker in the presence of multiple background 

speakers 
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The algorithm was also tested for this test case using natural speech from the TIMIT 

database for both male and female speakers in a SNR range of 40 dB to -5 dB. The 

performance was similar to that in synthesized speech and the algorithm was able to track 

formant well until about 5 dB SNR, after which the estimated and visually observed 

formant frequencies seemed to diverge. Figure 4-23 and 4-24 show spectrograms of 

female and male speakers from the TIMIT database at a SNR of 15 and 10 dB 

respectively in the presence of multiple background speakers. The spectrograms show the 

formant tracker is able to estimate the first and second formant frequencies reasonably 

accurately for both the female and male speakers in these SNR levels. The third formant 

frequency shows some deviation from the actual formant frequency of the speakers at 

certain times, but is able to recover quickly and track the actual formant for most of the 

duration. Figure 4-25 shows the spectrogram for the male speaker at 5 dB SNR and it is 

clear that the algorithm is not able to accurately track the formant frequencies of the 

primary speaker the voicing detector also seems to have some problems correctly 

detecting voicing at this low SNR. 

Natural female speaker in the presence of 
multiple background speakers at 15 dB SNR Colour Scale 
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Figure 4 - 23 - Spectrogram of a natural female speaker in the presence of multiple background 

speakers at 15 dB SNR 
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Natural male speaker in the presence of 
multiple background speakers at 10 dB SNR Colour Scale 
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Figure 4 - 24 - Spectrogram of a natural male speaker in the presence of multiple background 

speakers at 10 dB SNR 
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Figure 4 - 25 - Spectrogram of a natural male speaker in the presence of multiple background 

speakers at 5 dB SNR 
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4.5. Testing in the presence of background music 

In real-life a speaker can be talking in the presence of background music from a 

variety of sources and the formant tracking algorithm has to be able to accurately 

estimate formant frequencies in the presence of this noise source. In this test case the 

algorithm is tested in the presence of background music for a range of SNRs from 40 dB 

to -5 dB. Musical instruments have particular spectral envelopes that give them their 

distinct sound and serve the same purpose as the vocal tract in the auditory system. The 

spectral envelope of an instrument may have an adverse effect on the performance of the 

formant tracking algorithm. Figure 4-26 shows a spectrogram of a female synthesized 

speaker saying "He sees the ball" in the presence of background music at a SNR of 40 

dB. The formant frequencies are estimated accurately for most of the signal except for the 

second formant frequency that oscillates briefly between t = 0.7 sec and t = 0.8 sec. The 

oscillations occur due of the lack of energy in the second formant frequency region from 

the primary speaker leading to the algorithm picking energy peaks from the background 

music as the second formant frequency. 
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Figure 4 - 26- Spectrogram of a synthesized female speaker in background music at 40 dB SNR 
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Figure 4-27 shows the variation of the RMSE with the SNR for a synthesized female 

speaker in the presence of background music. Trends similar to those observed in earlier 

test cases can be seen once again in this figure. The RMSE rises as the SNR decreases 

until about 0 dB when the algorithm adapts and starts using the moving average value of 

the formant frequencies instead of spectral estimates, leading to a drop in the RMSE. 
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Figure 4 - 27- RMSE vs. SNR for a synthesized female speaker in background music 

Figure 4-28 shows the spectrogram of a synthesized male speaker saymg "Five 

women played basketball" in background music at a SNR of 10 dB. At this low SNR the 

problems that the algorithm encounters are clear. The second and third formant 

frequencies in particular start to encounter problems as the SNR degrades. Due to the 

excess energy contributions from the background music into these formant frequency 

bands their RMSEs are higher than expected. This observation is confirmed in Figure 4

29 which shows the variation of the RMSE with the SNR for the synthesized male 

speaker in background music. Similar to the synthesized female speaker case, the overall 

RMSE rises with the decreases in SNR. 
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Synthesized male speaker in background music at 10 dB SNR 
Colour Scale 
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Figure 4- 28- Spectrogram of a synthesized male speaker in background music at 10 dB SNR 

RMS·E vs SNR for a synthesized male speaker in background music 
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Figure 4 - 29- RMSE vs. SNR for a synthesized male speaker in background music 
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The algorithm was also tested for this test case using natural sounding male and 

female TIMIT database sentences for a range of SNRs (40 dB to -5 dB). Figure 4-30 

shows the spectrogram of a natural female speaker saying "Don' t ask me to carry an oily 

rag like that" in the presence of background music at 30 dB SNR. 

Natural female speaker in background music at 15 dB SNR 
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Figure 4 - 30 - Spectrogram of a natural female speaker in background music at 15 dB SNR 

Figure 4-31 shows another spectrogram, this time of a male speaker saying "It was a 

fairly modem motel with quite a bit of electrical display in front" in the presence of 

background music at 0 dB SNR. Despite the very low SNR it is clear from the figure that 

the algorithm is still able to pick up formant frequencies relatively well and it is also able 

to track the formant frequency transitions accurately. This is evident from the 

spectrogram at t = 2.5 sec. where the first, second and third formant frequencies shift 

sharply (due to a phoneme transition) and the algorithm is able to track the formant 

frequencies well during the transition. The algorithm does have problems when the 

primary speaker is silent (t = 3.5 sec.). At t= 3.5 sec. the formant frequency estimates 

Page 98 



MASc T hesis- Kamran Mustafa McMaster Uni vers ity - Dept. of Electrical and Computer Engineering 

oscillate because the algorithms starts to track the formant frequencies of the background 

music instead of those of the speaker. 

Natural female speaker in background music at 0 dB SNR 
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Figure 4 - 31 - Spectrogram of a natural male speaker in background music at 0 dB SNR 
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4.6. Testing in the presence of background traffic noise 

This test case is similar to the previous one where the algorithm is tested in the 

presence of a background noise source that is found in real-life. The background traffic 

case is challenging for the algorithm because the type of noise that the algorithm is tested 

in is changing. The algorithm is tested using 'heavy traffic ' noise which is usually similar 

to white-noise due to the nature of the noise emitted from passing vehicles. However, it 

can change in intensity as the distances of the cars passing by changes and is often 

coupled with pseudo-impulsive noises (burst noise) due to car horns, etc. All these 

sources couple to form a challenging and dynamic background noise environment for the 

algorithm to operate in. The testing has been performed for a wide range of SNRs from 

40 dB to -5 dB for both synthesized and natural male and female speakers. Figure 4-32 

shows the spectrogram of a synthesized female speaker in the presence of background 

traffic noise in 20 dB SNR. 
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Figure 4 - 32 - Spectrogram of a synthesized male speaker in background music at 20 dB SNR 

Page 100 



MASc Thesis- Kamran Mustafa McMaster University - Dept. of Electrical and Computer Engineering 

The main problem associated with background traffic noise is illustrated in this figure 

where at t = 0.75 sec the second formant frequency shifts suddenly due a burst of noise 

from the background (e.g., car hom). However, the algorithm recovers quickly and is able 

to go back to tracking the proper formant frequencies soon afterwards. Figure 4-33 shows 

the variation of the RMSE with the SNR for the synthesized female speaker saying "Five 

women played basketball" in background traffic noise. This plot shows that the formant 

frequencies all have relatively low RMSEs (except for the fourth formant frequencies) 

even at very low and negative SNRs. This result conforms to expectations that the traffic 

noise is similar to white noise and therefore the algorithm should have low RMSEs even 

at low SNRs. The effect of burst noise present in traffic has localized effects on the 

ability of the algorithm to track formant frequencies and therefore is not a major source 

of error. 

RMSE vs SNR for a synthesized female speaker in background traffic 

- F1 RMSE 
800 - F2 RMSE 

- F3RMSE 
- F4RMSE 

700 

600 

N' 500 
;_ 
w 
(/) 

::!! 
0:: 

100 

OL-___L____L____L____L____L____L____L____L___~ 

·5 10 15 20 25 30 35 40 

SNR (dB) 

Figure 4 - 33 - RMSE vs. SNR for a synthesized female speaker in background traffic 
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Figure 4-34 shows the variation of the RMSE with the SNR for the synthesized male 

speaker saying "Once upon a midnight dreary" in background traffic noise. The RMSE of 

the male speakers is also relatively lower as in the synthesized female speaker case. 

RMSE vs SNR for a synthesized male speaker in background traffic 
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Figure 4 - 34 - RMSE vs. SNR for a synthesized male speaker in background traffic 

To illustrate that the algorithm also performs well in low SNRs for more natural male 

and female speech, it is tested using various TIMIT database sentences for a wide range 

ofSNRs (40 dB to -5 dB). Figures 4-35 and 4-36 show the spectrograms ofnatural male 

and female speakers in background traffic noise at 10 dB and 5 dB SNRs respectively. 

From the figures it is clear that the good performance of the algorithm holds for natural 

speakers. The algorithm is able to track the formant frequencies and formant frequency 

transitions well. 
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Natural female speaker in the presence of 
background traffic noise at 10 dB SNR 
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Figure 4- 35- Spectrogram of a natural female speaker in background music at 10 dB SNR 

Natural male speaker in the presence of 
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Figure 4 - 36 - Spectrogram of a natural male speaker in background music at 5 dB SNR 
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4.7. Testing in a natural noise background environment 

In this test case the background noise environment is made up of 'natural' sounds that 

a speaker is normally present in. This includes biological sounds from insects and 

animals, occasional low volume conversations, distant traffic noises, etc. Since this 

environment is more representative of the type of background noise that a speaker would 

be present in, the algorithm is tested using it as the background noise at various SNRs ( 40 

dB to -5 dB). Figure 4-37 shows the RMSE vs. SNR plot for a synthesized female 

speaker saying "Five women played basketball". The figure shows that RMSE is 

relatively low for high SNRs but rises after the SNR drops below 15 dB. 
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Figure 4 - 37 - RMSE vs. SNR for a synthesized female speaker in background natural sounds 

Figure 4-38 shows the RMSE vs. SNR plot for a synthesized male speaker saying 

"Five women played basketball" in background natural sounds. The same trends 

observed for synthesized female speaker are seen for the synthesized male speaker. 
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RMSE vs SNR for a synthesized male speaker in background natural sounds 
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Figure 4 - 38 - RMSE vs. SNR for a synthesized male speaker in background natural sounds 

The algorithm is also tested using natural speech signals from the TIMIT database for 

both male and female speakers. Figure 4-39 shows the spectrogram of a female speaker 

saying "A spring trap for solid mounting and a regular hand trap are also available" in the 

presence of background natural sounds at a 5 dB SNR. Figure 4-40 shows the 

spectrogram of a male speaker saying "Gus saw pine trees and redwoods on his walk 

through Sequoia national forest" in the presence of background natural sounds at a 0 dB 

SNR. From both these figures it is clear that, despite the low SNRs the algorithm 

performs acceptably in tracking the formant frequencies and providing smooth estimates 

during voiced and unvoiced speech for both male and female speakers. 
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Natural female speaker in 
natural background sounds at 5 dB SNR Colour Scale 
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Figure 4 - 39- Spectrogram of a natural female speaker in background natural sounds at 5 dB SNR 
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Figure 4 - 40 - Spectrogram of a natural male speaker in background natural sounds at 0 dB SNR 
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4.8. Testing the algorithm for fading speech 

In this test case the algorithm is tested to observe the effect of a speaker whose speech 

is fading 'in and out' on the algorithm's ability to track formant frequencies. The fading 

effect of speech is simulated by amplitude modulating the signal using a low-frequency 

sinusoid. Figure 4-41 shows the variation of the RMSE of the formant frequencies with 

the frequency of modulation of the speech for a synthesized female speaker saying "Five 

women played basketball". It is clear from the spectrogram that the amplitude modulation 

simulating fading of the volume of the speaker has little or no effect on the performance 

of the algorithm. 
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Figure 4- 41- RMSE vs. Freq. of modulation for a synthesized female speaker 
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RMSE Vs Freq of amplitude modulation of the speech for a synthesized mala speaker 
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Figure 4 - 42 - RMSE vs. Freq. of modulation for a synthesized male speaker 

Figure 4-42 shows the variation of the RMSE of the formant frequencies with the 

frequency of modulation of the speech for a synthesized male speaker saying "Five 

women played basketball". Similar to the synthesized female speaker case the frequency 

of modulation of the synthesized male speech has no significant effect on the 

performance ofthe algorithm. 

Figure 4-43 shows the spectrogram of a natural female speaker from the TIMIT 

database saying "a spring trap for solid mounting and a regular hand trap are also 

available" while the amplitude of the signal is modulated at 5 Hz. From the figure it can 

be seen that the amplitude modulation has no effect on the formant tracking as in the 

synthesized speaker cases. Figure 4-44 shows the spectrogram of a natural male speaker 

saying "it was a fairly modem motel with quite a bit of electrical display in front" while 

the amplitude of the signal is modulated at 10 Hz. The natural male speaker shows 

similar trends as the other speakers despite the higher frequency ofmodulation. 
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Natural female speaker in 5 Hz amplitude modulated speech 
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Figure 4 - 43 - Spectrogram of a natural female speaker in 5 Hz amplitude modulation of speech 

Natural rpale speaker in 10Hz amplitude modulation of speech
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Figure 4- 44- Spectrogram of a natural male speaker in 10Hz amplitude modulation of speech 
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4.9. Testing in a reverberant acoustic environment 

In real-life the speakers are often present in reverberant noise-environments and the 

speech that enters the formant tracking system is reverberant. In order to test the 

performance of the formant tracking algorithm with reverberant speech, the test cases 

described earlier (section 4.1 to 4.8) were repeated with reverberant synthesized speech. 

The 'clean' synthesized speech is convolved with the impulse response of a reverberant 

room and then passed into the formant tracking algorithm. The performance of the 

algorithm is not expected to degrade substantially due to the reverberant environment, 

because of the basic design of the algorithm. Figure 4-45 shows the RMSE vs. SNR plot 

of a reverberant synthesized female speaker saying "Five women played basketball" in 

A WGN. Comparing Figures 4-45 with 4-3 (which shows the RMSE vs. SNR plot for the 

same speech signal but without reverberance ), it is clear that reverberance does not have 

a significant effect on the performance of the algorithm in AWGN even at low SNRs. 
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Figure 4 - 45- RMSE vs. SNR of a reverberant female synthesized speaker in A WGN 
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The performance of the algorithm was also evaluated for reverberant synthesized 

male and female speakers in the presence of single and multiple background speakers. 

Figure 4-46 shows the RMSE vs. SNR plot of a reverberant synthesized male speaker 

saying "Five women played basketball" in the presence of multiple background speakers. 

This figure is compared to Figure 4-22, which shows the RMSE vs. SNR plot for the 

same speech signal but without any reverberance. From the comparison it is clear that 

reverberance has little effect on the performance of the algorithm in multiple background 

speakers. 
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Figure 4 - 46- RMSE vs. SNR of a reverberant male synthesized speaker in the presence of multiple 

background speakers 

Figures 4-47 and 4-48 show the RMSE vs. SNR plot of a reverberant synthesized 

female speaker in the presence of a male single background speaker and a female single 

background speaker, respectively. In both cases the performance of the algorithm does 

not degrade significantly due to the reverberant environment. 
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RMSE vs SNR for a reverberant synthesized fema le speaker in 
male single background speaker 
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Figure 4 - 47 - RMSE vs. SNR of a reverberant female synthesized speaker in the presence of a male 

single background speaker 

RMS,E vs SNR for a reverberant synthesized female speaker in 
female single background speaker 
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Figure 4 - 48 - RMSE vs. SNR of a reverberant female synthesized speaker in the presence of a 

female single background speaker 
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5. COMPARISON OF TRADITIONAL FORMANT 

ESTIMATION TECHNIQUES 

Numerous signal processing techniques for formant frequency estimation have been 

proposed. These traditional formant frequency estimations techniques can be classified as 

being frequency domain or parametric. Frequency domain techniques involve estimating 

the formant frequencies from the frequency spectrum of the speech signal and include 

methods such as spectral peak picking from the short-time frequency spectrum. 

Parametric techniques are also called "analysis by synthesis" and involve generating a 

best match signal to the incoming signal based on a model of speech production. 

Traditional approaches to formant estimation do not accurately estimate formant 

frequencies in transient background noise such as from A WGN or background speakers. 

These algorithms are also not robust and are susceptible to being thrown off-track during 

unvoiced speech segments and are unable to recover quickly after periods of silence. Due 

to these limitations traditional techniques for formant frequency estimation cannot be 

used for obtaining the second formant frequency (F2) from continuous speech, in real

time, for use in CEFS amplification. The poor performance of these techniques also 

limits their use for other applications such as ASR, speech coding, etc. 

Three algorithms that represent the best known traditional formant frequency 

estimation techniques have been selected for implementation in MATLAB in order to test 

and compare their performance with that of the formant estimation algorithm proposed in 

this thesis. The implementation of these traditional algorithms is discussed in some detail 

in this thesis. Further details on each implementation technique can be obtained from the 

references listed in each section. 
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5.1. 	 Formant Frequency Estimation through Peak Picking of the 

Cepstrally Smoothed Spectrum 

This is a frequency domain method and the formant frequency estimation technique 

involves computation of the smoothed spectrum, from the cepstrum, and then estimating 

the formant frequencies from the smoothed spectrum. The cepstrum is defined as the 

inverse transform of the log magnitude of the Fourier transform of the signal. The 

algorithm that was implemented is based on a paper by Schafer and Rabiner [8]. In this 

algorithm, formant frequencies are estimated from the smoothed log magnitude spectrum 

by adding constraints on the formant frequency ranges and relative levels of the spectral 

peaks in those frequencies ranges. The algorithm is designed to estimate the first three 

formant frequencies for voiced speech segments of male speakers. The block diagram for 

the smoothed spectrum peak picking based formant frequency estimation method Is 

shown in Figure 5-1. 

W(nT) 

Figure 5 - 1 - Block diagram of Cepstral peak picking based formant frequency estimation technique 
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5.1.1. Estimation of the Spectral Envelope and Peak Picking 

The speech signal is first segmented into non-overlapping 32 ms segments and then 

windowed using a Hamming Window of the same length. Each segment is pre

emphasised using the high-pass filter, shown in Figure 3-1, to remove the spectral tilt of 

the speech. Next, the DFT of each segment is evaluated and the log of the magnitude is 

taken, and then the inverse DFT of the log magnitude signal is calculated to obtain the 

cepstrum of the segment [8]. The 'low-time' part of the cepstrum corresponds to the 

vocal tract, glottal pulse and radiation information, while the 'high-time' part is due 

primarily to the excitation. The 'low-time' part of the cepstrum can be windowed or 

'liftered' to remove the glottal pulsing information and extract the spectral envelope of 

the speech signal. The spectral envelope of the speech signal depends on the vocal tract 

and displays resonant structure of the vocal tract and its peaks correspond to the formant 

frequencies. Therefore, the formant frequencies are estimated from picking peaks of the 

spectral envelope, obtained from the 'cepstrally smoothed' log spectra [16]. 

However, limitations are placed on the frequency ranges in which the formant 

frequencies can lie to improve the accuracy of the estimation and to minimise the effect 

of transient noise. Therefore, the frequency locations and magnitudes of all the peaks of 

the cepstrally smoothed signal are found using a peak picking algorithm that picks all 

peaks where the slope of the signal changes from positive to negative. The three highest 

peaks corresponding to the formant frequencies are checked to see if they are adequately 

separated and lie in the correct frequency ranges to be assigned as the formant frequency 

estimates. However, the three highest peaks of the smoothed log spectrum of any 

segment are often either not adequately separated or lie in the wrong frequency ranges to 

be used as the first three formant estimates. Therefore, additional logic operations, 

discussed in the next section, are applied to improve estimates for the formant 

frequencies. 
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5.1.2. Estimation of Formant Frequencies from the Smoothed Spectrum 

Before proceeding to details of the formant frequency estimation from the smoothed 

spectra, it is useful to know that the formant frequency ranges, to which the estimated 

formants frequencies are limited to, are derived from experimental data from male 

speakers. Table 1 shows these frequency ranges. For the three highest peaks of the 

smoothed spectrum to be the first three formant frequencies they must each be present in 

one of these formant frequency regions. The task of formant frequency estimation from 

direct peak picking is further complicated due to the high degree of overlap between the 

formant frequency regions. 

Formant Frequency Frequency range in Hz (Fmin- Fmax) 

F1 region 200-900 

F2 region 550-2700 

F3 region 1100-3000 

Table 1: Frequency ranges for the first three formant frequencies 

If the peaks are located too close to each other they may smear together, making it 

impossible to identify the individual formant frequencies through peak picking of the 

smoothed spectrum. The solution is to enhance the frequency resolution of the smeared 

formant frequency region by using the chirp-z transform (CZT). The CZT increases the 

frequency resolution at the expense of a decreased temporal resolution of the smoothed 

spectrum [8] [16]. 

Estimation of Fl 

Formant Frequencies are picked in sequence, beginning with Fl. First the amplitude 

ofhighest peak between 0-900 Hz is determined (FOAMP). The first formant frequency is 
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initially assigned to be the frequency of the highest peak in the F1 region and the 

amplitude of this peak is recorded (F1AMP). If F1AMP is greater than FOAMP-8.96 dB, 

then the current F1 is assigned to be the first formant frequency estimate and F1 

estimation is complete. However, occasionally the magnitude of the F1 peak does not 

satisfy this condition because the F1 peak is merged and indistinguishable from the peak 

due to glottal pulsing. In this case the CZT is used to expand and enhance the region 

between 0-900 Hz [8].The highest peak of this enhanced section of the cepstrum is 

assigned to be the first formant frequency (F1) if the peak is within the F 1 region and its 

amplitude is recorded (F1AMP). If the highest peak of the enhanced cepstrum lies outside 

the F1 region, the first formant frequency is assigned an arbitrary value of 200 Hz 

(F1min). Figure 5-2 shows the flowchart for estimating the first formant frequency from 

the cepstrally smoothed log spectrum of a speech segment. 

I 
I 
I 
I 
I 
I 
I 
I FIAMP•FOAioiP-1.119 dll 1-+-1-----l 

YES 

8I IFJ AND PEAK DUE TO SOURCE 

L--·~~~~!.._- _j Fl HAS BEEN PICKED 

Figure 5 - 2 - Flowchart depicting the process of estimating Fl from the smoothed spectrum (Reprinted 
from Schafer eta!. [8]) 
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Estimation of F2 

Figure 5-3 shows the flowchart for the determination of the second formant 

frequency. The frequency range to be searched for the second formant frequency depends 

on the value assigned to Fl. If Fl is less than F2min, then only the F2 region defined in 

Table 1 is searched for second formant frequency estimation. However, due to the 

overlapping formant regions it is possible that Fl is greater than F2min in which case the 

value previously assigned to Fl can in fact be the second formant frequency. In the latter 

case, the lower limit of the region to be searched is set to Flmin and the frequency region 

between Flmin and F2max are searched. F2 is set to be the location of the highest peak in 

the search region and its amplitude is recorded (F2AMP). If F1AMP-F2AMP is greater 

than the frequency dependent threshold shown in Figure 5-4, then F2 is found and the 

threshold for F3 estimation is set as -17.38 dB. However, ifno peak is found that exceeds 

the threshold then the Fl and F2 peaks are merged and further analysis using CZT is 

required to resolve these merged peaks. The enhanced region (Fl--450 Hz to F1+450 Hz) 

is searched for peaks and the highest peak is assigned to Fl while the second highest peak 

is assigned to F2. If only one peak is found, then F2 is arbitrarily set to Fl +200Hz. lfF2 

has been located by CZT analysis, the threshold for F3 estimation is set to -1000 dB [8]. 

Finally, the values of Fl and F2 are checked to ensure that Fl is less than F2. If Fl is 

greater than F2, the frequencies are swapped. 
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SEARCH REGION FL TO f2MX. 
F2 • LOCAnON OF HIGHEST. 

PEAK FOR WHICH 
FIAMP-F2AMP EXCEEDS THE 
THRESHOLD OF FIGURE 10. 

,.. -------------------,
EXPANO ANl ENHANCE 1 

REGION fl-4~ TO NO 
Fl-.4~ Hr. 

1 

I PEAK • -1000 

: Fl AHD F<! ARE NOT RESOLVED J 
~-------------------- NO 

Fl ANO F2 HAVE 
BEEN PICKED 

Figure 5 - 3 - Flowchart depicting the process of estimating F2 from the smoothed Spectrum (Reprinted 
from Schafer et al. [8]) r RELATIVE TO F1 LEVEL (dB)

LEVEL 

0 500 1500 2700 
-o+---+-------+-------~~--------~F2 

-8.7 

-24.3 

Figure 5 - 4 - Frequency dependent threshold for F2 estimation (Reprinted from Schafer et al. [8]) 
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Estimation of F3 

Figure 5-5 shows the flowchart for the determination of the third formant frequency. 

The frequency range to be searched for the third formant frequency depends on the value 

assigned to F2. If F2 is less than F3min, then only the F3 region defined in Table 1 is 

searched for the third formant frequency estimation. However, due to the overlapping 

formant regions, it is possible that F2 is greater than F3min. In this case, the value 

previously assigned to F2 can in fact be the third formant frequency. As such, the lower 

limit of the region to be searched is set to F2min and the frequency region between 

F2min and F3max is searched. F3 is set to be the location of the highest peak in the 

search region where the amplitude (F3AMP) is greater than the threshold set during F2 

estimation. However, if no peak is found that exceeds the threshold, then the F2 and F3 

peaks are merged and further analysis using CZT is required to resolve these merged 

peaks [8]. The enhanced region (F2--450 Hz to F2+450 Hz) is searched for peaks and the 

highest peak is assigned to F2 while the second highest peak is assigned to F3. If only 

one peak is found, then F3 is arbitrarily set to F2+200 Hz. Finally, the values of F2 and 

F3 are checked to ensure that F2 is less than F3. If F2 is not less than F3, then the 

frequencies are swapped. 
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SEARCH REGION FL TO F3MX 
F!< LOCATION aF HIGHEST 
PEAl< FOR WHICH F2AMP-F:w.f' 
EliCEEOS THIIESHOI..D SET 

DURING F2 SEARCH 

r- - - - ---- - - - -- - --, 

E~~~~A~~-~~\f~8E 'NO 
F2+450 Hz 

YES 

ALL FORMANTS ESTIMATED 

Figure 5 - 5 - Flowchart depicting the process of estimating F3 from the smoothed Spectrum (Reprinted 
from Schafer eta!. [8]) 

These same calculations are repeated for each segment of the speech signal. The 

formants (Fl, F2 and F3) are stored for each consecutive speech segment. 
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5.1.3. Results and Performance in noisy backgrounds 

The algorithm was designed specifically for use during voiced speech segments, so it 

was slightly modified to work for sentences that consist of voiced and unvoiced speech 

segments. The voicing detector developed for use with the new formant tracking 

algorithm was adapted to work for the Schafer and Rabiner algorithm [8]. During 

unvoiced speech segments, the formant frequencies are assigned the value that was 

estimated during the previous voiced speech segment. Figure 5-6 shows the spectrogram 

of a synthesized male speaker saying "Five women played basketball", with the first three 

estimated formant frequencies obtained using this algorithm shown in white and the 

actual formant frequencies plotted in black. From the figure it can be seen that algorithm 

does not perform well even for the voiced segments of speech at a high SNR. It is also 

not accurate in estimating formant frequency transitions and is slow to respond to 

formant frequency movements. 

Formant frequency estimates for a synthesized male speaker Colour Scale 

'N 
:s 
> ·1 0(,) 
1: 
4> a:l 

" "C 
C' 
~ 
u.. 

Time (s) 

Figure 5 - 6 - Spectrogram and formant frequency estimates for a synthesized male speaker 
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Figure 5-7 shows the RMSE vs. SNR plot for the first three formant frequencies of a 

synthesized male speaker saying "Five women played basketball" in the presence of 

A WGN. The figure shows that the RMSE is very high even at high SNRs, which means 

that the algorithm is not able to track the formants very well. 

RMSE vs SNR for a synthesized male speaker in the presence of AWGN 
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Figure 5 - 7- RMSE vs. SNR for a synthesized male speaker in A WGN 

The RMSEs drops sharply below 10 dB because below this SNR the formant 

frequencies are assigned an arbitrary value instead of being estimated from the cepstrally 

smoothed log spectrum. This occurs because the algorithm is unable to resolve distinct 

peaks for any of the formant frequencies at such a low SNR. Figure 5-8 shows a 

spectrogram for the same synthesized male speech sentence as in Figures 5-6 and 5-7 

except that the SNR is 0 dB. It can be seen from the figure that the estimated formant 

frequencies are constant and remain at their arbitrary assigned values throughout most of 

the signal. 
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Formant frequency estimates for a synthesized male speaker 
at Odb SNR in AWGN colour scale 
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Figure 5 - 8- Spectrogram for a synthesized male speaker in background AWGN at 0 dB SNR 

To prove that that ~he poor performance of the algorithm was not limited to the 

synthesized speaker sentence used for generating the previous three figures, it was tested 

in a large number of other synthesized male sentences. Figure 5-9 shows the RMSE vs. 

SNR plot for the first three formant frequencies of a synthesized male speaker saying 

"Once upon a midnight" in the presence of AWGN. This figure shows similar trends to 

those observed in Figure 5-7 and confirms that the overall performance of the algorithm 

Is poor. 
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RMSE vs SNR for a synthesized male speaker 
in the presence of AWGN 
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Figure 5 - 9- RMSE vs. SNR for a synthesized male speaker in A WGN 

The algorithm is a~so tested in the presence of a male single background speaker and 

in the presence of multiple background speakers for a wide range of SNRs. Figure 5-10 

shows the RMSE vs. SNR plot for a synthesized male speaker saying "Five women 

played basketball" in the presence of a male single background speaker. Figure 5-11 

shows the RMSE vs. SNR plot for the same synthesized male speaker in the presence of a 

multiple background speakers. From these figures it is clear that the performance of this 

algorithm is also poor in the presence of a male single background speaker as well as 

multiple background speakers. 
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RMSE vs SNR for a synthesized male speaker 

in the presence of male sing le background speaker 
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Figure 5- 10 - RMSE vs. SNR for a synthesized male speaker in the presence of a male single 
background speaker 

RMSE vs SNR for a synthesized male speaker 
in the presence of multiple background speakers 

600 

N':=. 500 

UJ 
en 
:;:
a:: 400 

300 

200 

100 

0 
-5 0 10 15 20 25 30 35 40 

SNR (dB) 

Figure 5 - 11 - RMSE vs. SNR for a synthesized male speaker in multiple background speakers 
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5.2. 	 Formant Frequency Estimation using Linear Predictive 

Coefficients 

Linear prediction analysis has been among the most popular methods for extracting 

spectral information from speech. Linear prediction of a speech signal involves modelling 

the next signal step as a linear combination of previous values in a statistically optimal 

way. The combination is a hypothetical proposal of the vocal tract impulse response. The 

parameters of the models are indicative of formant frequency positions hence, this is a 

parametric formant estimation technique. The solution of the linear prediction is a 

difference equation that expresses each sample of the original signal as a linear 

combination of the preceding samples. This difference equation is called the linear 

predictor and the coefficients of the equation are called the linear predictive coefficients 

(LPC). In the algorithm implemented [9], the first three formant frequencies are estimated 

from the peaks of the linear prediction spectra of the speech signal while minimizing the 

mean-square error between the predicted signal and the actual signal. 

The proposed algorithm can only track formants in heavily voiced sounds and uses a 

pitch based voicing detector to determine whether a segment is voiced or unvoiced. 

However, the voicing detector that was built for the new formant tracker was 

supplemented to be used in this algorithm instead of the one proposed in the paper [9]. 

The speech is first pre-emphasised using a high pass filter (see Section 3.1) to remove the 

spectral tilt of the speech. Then the speech signal is segmented into non-overlapping 

segments of length 16 ms and then windowed using a Hamming window. Next, the 14th 

order LPCs of the signal are found and the frequency response of the all-pole filter 

described by those coefficients is computed. This frequency response is called the LPC 

spectrum of the signal. The formant frequencies are estimated from the peaks of the LPC 

spectrum. Figure 5-12 compares the 14th-order LPC spectrum and the FFT of a segment 

of speech. From the figure it can be seen that the LPC spectrum is similar to a 'smoothed' 

version of the FFT spectrum of the speech segment. 
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FFT and LPG spectrum 
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Figure 5 - 12 - The LPC spectrum and the FFT spectrum of a speech segment 

The location and amJ?litude of all the peaks of the LPC spectrum are extracted and the 

peaks closest to the experimentally estimated anchor points are assigned as the best 

candidates for their respective formant frequency. For example, a peak at 500Hz would 

be closer to Est F1 than Est F2, and would therefore be assigned as the first formant 

frequency. The experimentally estimated anchor points for the formant frequencies for 

male and female speakers are shown in table 2 [9]

Anchor Points Est Fl (Hz) Est F2 (Hz) Est F3 (Hz) Est F4 (Hz) 

Male 320 1440 2760 3200 

Female 480 1760 3200 3520 

Table 2: Formant Frequency anchor points estimated using experimental data 
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However, sometimes the peaks of the LPC spectrum are merged together and are too 

close to each other to be assigned as formant frequencies. In this case, the frequency 

spectrum is enhanced by using the CZT, which increases the frequency resolution at the 

expense of a decreased temporal resolution of the spectrum [8], [9]. If the peaks are still 

not resolved, the peak frequency being obtained for both formant values is compared to 

the anchor values and the peak is assigned to the formant closest to the anchor point. The 

other formant is either found by interpolation or by taking the mean of the already 

available data. Finally, successive formant frequency values are "smoothed" over time 

when a formant frequency is missing or is grossly out of range, by assigning that formant 

frequency its moving average value. 

Figure 5-13 shows the spectrogram of a synthesized male speaker with the estimated 

and actual formant frequencies. From the figure it can be seen that the first formant 

frequency is tracked relatively well but the second and third formant frequencies are not 

accurately estimated using this algorithm. 

Formant frequency estimates for a synthesized male speaker 
Colour Scale 

Figure 5 - 13 - Spectrogram for a synthesized male speaker 

Page 129 



MASc Thesis- Kamran Mustafa McMaster University - Dept. of Electrical and Computer Engineering 

Figure 5-14 shows the RMSE vs. SNR plot for a synthesized male speaker saying 

"Five women played basketball" in the presence of AWGN. Figure 5-15 shows the 

RMSE vs. SNR plot for a synthesized female speaker saying the same sentence in the 

presence of a background AWGN. The figures illustrate that the performance of the 

algorithm is acceptable at high SNR levels for both male and female speakers. The 

RMSEs starts to drop below 20 dB because below this SNR level the formant frequencies 

are assigned an arbitrary value instead of being estimated from the spectrum. Overall, the 

algorithm performs poorly for both male and female speakers in AWGN below that SNR. 

RMSE vs SNR for a synthesized male speaker in the presence of AWGN 
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Figure 5- 14- RMSE vs. SNR for a synthesized male speaker in A WGN 
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RMSE vs SNR for a synthesized female speaker in the presence of AWGN 
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Figure 5 - 15- RMSE vs. SNR for a synthesized female speaker in A WGN 

The algorithm is :also tested in the presence of single and multiple background 

speakers at varying SNRs. Figure 5-16 shows the RMSE vs. SNR for a female 

synthesized speaker saying "She gave the kitten to Budd today" in the presence of a male 

single background speaker. This figure shows that the second and third formant 

frequencies are affected greatly by the background speaker and as a result, their RMSEs 

are very high even at high SNRs. Figure 5-17 shows the RMSE vs. SNR for a synthesized 

male speaker saying "Five women played basketball" in the presence of multiple 

background speakers. This figure shows similar trends to those observed in the male 

single background speaker case and the second and third formant frequencies show an 

unusually large RMSE even at high SNRs. 
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RMSE vs SNR for a synthesized female speaker 

in the presence of male signle background speaker 
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Figure 5 - 16 - RMSE vs. SNR for a synthesized female speaker in male single background speaker 

RMSE vs SNR for a synthesized male speaker 

in the presence of mult iple background speakers 
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Figure 5 - 17- RMSE vs. SNR for a synthesized male speaker in multiple background speakers 
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5.3. 	 Formant Frequency Estimation using Physiological Models 

of the Ear 

The ability of the human auditory system to process speech in noisy environments 

makes it superior to any human-designed speech processing system to date. Spectral 

estimation using auditory models has been shown to be efficient and robust but the 

success of the system depends on the accuracy and robustness of the auditory model it 

uses. A formant tracking algorithm that uses a human auditory model has been proposed 

by Metz et al. [10] and has been implemented using MATLAB. 

The auditory model consists of stages for the outer, middle and inner ears. The output 

of the auditory model is the ensemble interval histogram (EIH), which shares similarities 

to the auditory nerve response of the mammalian ear. The algorithm proposes using the 

peaks of the EIH for estimating formant frequencies from voiced speech. The three 

highest peaks of the EIH for each short-time speech segment are designated as the three 

formant frequencies of that segment. Figure 5-18 shows the auditory model of the inner 

ear and cortical processing used by Metz et al. for formant tracking [10]. 

In this algorithm formant tracking is broken down into three main steps. First is the 

spectrum estimation of the speech signal (obtaining the EIH), second is the determination 

of the peaks from the spectrum and the last is the picking of the proper peaks. The speech 

signal is first pre-emphasised using a HPF (see Section 3.1) to remove the spectral tilt of 

the signal and then normalized so that the maximum amplitude of the signal is slightly 

above 40dB. Normalization is necessary for proper use of the level crossing detectors 

(LCDs) and will be discussed in detail later. Next, the signal is broken into non

overlapping 40 ms segments. Formant frequencies of each segment are estimated by 

passing it through each of the band pass filters (BPFs) and picking peaks from the EIH. 
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5.3.1. The BPFs 

The band pass filters (BPF) are designed to simulate the psycho-acoustic tuning 

curves (PTCs) [10]. The model is made up of 90 uniformly distributed 2nd-order 

Butterworth IIR filters. The bandwidth of each filter is constant at 200 Hz and the centre 

frequencies of the filters are separated by 50Hz. The BPFs are distributed evenly to cover 

a frequency range from 200 Hz to 5 kHz. Figure 5-19 shows the frequency and phase 

responses of the 2nd, 20th, 50th, 60th and 90th BPF. 

'··········~·-············ 

Synchrony Analysis 

Figure 5- 18- The Auditory Model used by Metz et al. (Reprinted from Metz eta!. [!OJ) 
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FILTER RESPONSES FOR VARIOUS FILTERS 
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Figure 5- 19- The filter response of various BPFs 

Page 135 



MASc Thesis- Kamran Mustafa McMaster University - Dept. of Electrical and Computer Engineering 

5.3.2. The Level Crossing Detectors (LCD) and Frequency Histograms (FH) 

After a speech segment has been passed through a BPF, the filtered signal is put 

through a bank of eight level crossing detectors (LCD). The level crossing that each LCD 

checks for is different and the eight levels for which the signal is checked for are: 5, 10, 

15, 20, 25, 30, 35, and 40 dB. Each LCD checks to see if a positive going level crossing 

has occurred and uses linear interpolation to determine the exact time of the crossing. 

Figure 5-20 shows a speech signal and its positive going level crossings for the 5 dB 

LCD. The time intervals between successive positive going level crossings for all the 

LCDs are inverted and summed together to obtain the frequency histogram (FH) of the 

segment for a particular BPF. 

Level Crossings at 5dB 
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Figure 5 - 20 - The filter response of various BPFs 

The segment is passed through all 90 of the BPFs and the above process is repeated. 

Finally, the FHs from each BPF are summed to obtain the EIH for the segment [1 0] . 
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Figure 5-21 shows a sample Elli of a segment of speech. Notice that the first three 

formant frequencies of the segment of speech have the three highest peaks of the EIH. 
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Figure 5- 21 -The EIH of a segment of speech (Reproduced from Metz. eta!. [10]) 

A peak picking algorithm picks the top three peaks of the Elli for every segment of 

speech and these are assigned to be the first three formant frequencies of that segment. 

5.3.3. Results 

The Metz et al. algorithm works well for estimating the first three formant 

frequencies of sustained vowels whose formant frequencies remain constant. However, 

the parameters of the algorithm have to be modified for each sustained vowel in order for 

it to work properly. Figure 5-22 shows the spectrogram of a sustained vowel /a/ with 

constant actual formant frequencies. It is clear from the spectrogram that the algorithm is 

able to predict the three formant frequencies very accurately. However, the algorithm 

performs very poorly for speech signals where the formant frequencies are non

stationary. Figure 5-23 shows the spectrogram of a synthesized female speaker saying 

"Five women played basketball". From this figure it is clear that the algorithm is not able 

to estimate formant frequencies accurately even at high SNRs. 
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Formant Frequency estaimtes for a sustained vowel /e/ 
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Figure 5 - 22 - Spectrogram and estimated formant frequencies for a sustained vowels 

Formant frequency estimates for a synthesized female speaker 
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Figure 5 - 23 - Spectrogram for a synthesized female speaker 

Page 138 



MASc Thesis- Kamran Mustafa McMaster University - Dept. of Electrical and Computer Engineering 

Figure 5-24 shows the RMSE vs. SNR for a synthesized male speaker saying "Five 

women played basketball" in the presence of A WGN. This figure shows that the RMSEs 

are constant across the different SNRs. This is because (as seen from Figure 5-23) the 

estimated formant frequencies remain constant throughout the signal. Therefore, the 

difference between the actual and estimated formant frequencies also remains constant. 

RMSE vs SNR for a synthesized male speaker in AWGN 
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Figure 5 - 24 - RMSE vs. SNR for a synthesized male speaker in A WGN 

Figure 5-25 shows the RMSE vs. SNR for a synthesized female speaker saying "Five 

women played basketball" in the presence of a male background speaker. Overall, the 

algorithm performs poorly for all types of sounds except sustained vowels. 
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RMSE vs SNR for a synthesized male speaker in AWGN 
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Figure 5 - 25 - RMSE vs. SNR for a synthesized female speaker in the presence of a male single 
background speaker 
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6. CONCLUSIONS 


Quantitive analysis of the formant tracking algorithm described in this thesis has 

shown that it provides accurate formant frequency estimates for both male and female 

speakers for a wide range of SNRs in real-life noise conditions such as AWGN, a single 

competing background speaker (male and female), multiple background speakers, and 

reverberant acoustic environments. The algorithm provides mostly smooth formant 

frequency estimates. The formant tracker is also robust and recovers quickly after 

erroneous estimates to go back to tracking the actual formant frequencies in the speech 

signal. There have been some problems identified with the formant tracker. The 

algorithm occasionally gives 'choppy' and oscillating formant frequency estimates. This is 

an undesirable result because the actual formant frequencies of speech normally vary 

slowly with time and have smooth transitions. This problem is only encountered when the 

SNR is very low (typically below 5 dB as in Figure 4-21) and occurs due to the algorithm 

tracking the excess energy added outside the formant frequency regions from the 

background noise source. However, the overall performance of the proposed formant 

tracking algorithm is still much better than those of traditional formant estimation 

techniques. 

The algorithm developed in this thesis is geared primarily towards use for CEFS 

amplification. It was identified earlier that in order to apply CEFS to continuous speech 

the second formant frequency has to be estimated accurately and in real-time. 

Furthermore, the estimated formant frequencies have to be smooth and the algorithm has 

to be able to identify formant transitions accurately so that the proper frequency

dependent amplification is applied to the speech signal. Testing on the algorithm has 

shown that the formant frequency estimates are smooth and the formant frequency 

transitions are tracked accurately. The algorithm has been designed to operate in real

time and estimate formant frequencies from continuous speech for both male and female 
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speakers. Therefore, the formant tracking algorithm developed in this thesis can be used 

to implement CEFS amplification. 

Limitations of Traditional Formant Frequency Estimation Techniques 

The traditional formant frequency estimation techniques that were implemented have 

shown that they do not meet the criteria to be able to provide formant frequency 

estimation for CEFS amplification. The formant frequency estimation based on peak 

picking of the cepstrally smoothed spectrum provides good formant frequency estimates 

at high SNRs for voiced speech segments of male speakers. However, its performance 

degrades considerably in background noise (AWGN and single competing speaker) at 

lower SNRs and it cannot track formant frequency transitions accurately even at 

moderate SNRs. The algorithm is not designed to work for female speakers and many of 

the parameters have to be adjusted manually for the algorithm to function for female 

speakers. The technique also requires a large number of logic operations ( eg. Figure 5.2, 

5.3, 5.5) in order to constrain and refine the formant frequency estimates and is therefore 

computationally complex. 

The formant frequency estimation method based on LPCs provides good first formant 

frequency estimates for both male and female speakers at high SNRs. However, the 

estimates for the second and third formant frequencies are poor even at high SNRs and 

the algorithm is not able to track formant frequency transitions. The formant frequency 

estimates that the algorithm provides are not smooth and have large jumps. The overall 

performance of the algorithm deteriorates significantly in the presence of background 

noise (AWGN, single competing speaker, or multiple background speakers) at moderate 

SNRs. The algorithm also requires a large number of logic operations in order to 

constrain and refine the formant frequency estimates making it computationally complex. 
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The physiological model based formant frequency estimation technique was unable to 

provide accurate formant frequencies for continuous speech for either male or female 

speakers. 

Other Applications of the Formant Tracking Algorithm 

Although the algorithm developed in this thesis is primarily designed to meet the 

criteria for CEFS amplification, other applications were identified earlier. Speaker 

identification systems often use front-end phonetic segmentation prior to feature 

extraction from phonemes [21]. For such an application, the algorithm no longer needs to 

obtain formant frequencies from continuous speech and only needs to operate on voiced 

speech segments. The algorithm can be modified to remove the voicing detector and the 

moving average decision maker so that the formant frequencies are always estimated by 

spectral estimation. The algorithm should perform very well in this environment and will 

be able to provide accurate formant frequency estimates for the voiced speech segments. 

Another application identified for the formant tracking algorithm is for speech 

coding. For this application it may be more important that the algorithm provides actual 

formant frequency estimates of the speech even if the estimates are not smooth and that 

the algorithm is able to recover quickly. The formant tracking algorithm can be modified 

to remove the moving average decision maker so that the algorithm is able to quickly 

recover and provide erratic but accurate formant frequency estimates. The algorithm will 

also be able to identify voiced speech segments for which it is able to provide accurate 

estimates. 

The formant tracking algorithm can also be used for concatenation synthesis of 

speech [18]. For this application the formant frequencies have to be accurately identified 

during phoneme transitions. Since the formant tracker is already able to identify formant 
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transitions accurately, it should be able usable for this application without extensive 

modifications. 

Future Work 

The oscillating formant frequency problem may be solved in future updates to the 

formant tracker by either smoothing the formant frequency estimates or by incorporating 

additional logical limitations to prevent abnormal jumps in the formant estimates. 

Another future improvement may be to modify the formant pre-filters to have variable 

bandwidths that are dependent on the magnitudes of the poles estimated by the linear 

prediction coefficients. This may further improve the formant estimates during rapid 

formant transitions at high SNRs, but the performance at low SNRs would likely remain 

unchanged. 
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APPENDIX I - CODE 


The MATLAB code used to implement the formant tracking algorithm 1s also publicly 
available from this webpage: 

http://www.ece.mcmaster.ca/~ibruce/ 

Formant Tracker Frontend 

%function F = formant tracker_frontend 

% FORMANT_TRACKER FRONTEND 
% 
% F = FORMANT TRACKER FRONTEND 
% 
% This function acts as the frontend for the 'FORMANT_TRACKER_BACKEND.m' function, which 
it calls. 
% It provides similar functionality to the 'FORMANT TRACKER. m' function but all the 
parameters for 
% the function are passed on to the 'FORMANT_TRACKER_BACKEND. m' function by this 
function. All adjustments 
% to the formant tracker parameters can be made here. 
% 
% 
% See also FORMANT_TRACKER_BACKEND, FORMANT_TRACKER, and FORMANTFILTERS. 

% Inputs 

% none 

% 

% Outputs 

% none 

% 

% Author: Kamran Mustafa 

% E-mail: mkamran®hotmail.com or mkamran®ieee.org 

% 

%Modification List: 

% 

% June 13, 2002 - First Created 

% June 16, 2002 - Modified to add more parameters 

% June 17, 2002 - Added more parameters 

% June 18, 2002 - Added more parameters 

% June 22, 2002 - Modified function to accomodate independent RMS threshold Ratios for 

each formant 

% June 24, 2002 - Made changes to the RMS threshold levels to see if a moving average of 

RMS thresholds is feasible 

% for each of the formants. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 


%Clear MATLAB Memory 

clear all; 

clc; 


%Setup and load the signal and the correstaponding Actual Formant Frequncies 
[X, Fs] = wavread('fwpb female energy modified 1.wav'); %<---change filename here 
load 'fwpb_female_energy_modifled_1hl~mat'; 
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%downsample to 8 Khz 

X= resample(X,8e3,Fs); 


%New Sampling Frequency (after downsampling) 

Fs = 8e3; 


% %Add noise to the original signal 

%X= addnoise(X,30); 


%LPC Window size assignment - 20 ms 

lpc_window_size = 0.02*Fs; 


%Declare the number of filters to create the window for 

num_of_filters = 4; 

%LPC Window - of duration LPC windowsize 

window= repmat(hamming(lpc_window_size, 'periodic') ,1,num_of_filters); 


%%%%%%%%%%%%%%%%%%VOICING DETECTOR INITIALIZATIONS%%%%%%%%%%%%%%%%%%%% 


%Cut-ff frequency for the voicing detector HPF and the LPF 

Filter_Cutoff = 700; 


%The Hysterisis Log Ratio Threshold1 for switching from unvoiced speech to voiced speech 

(0 --> 1) 
Log_ratio_threshold1 = 0.2; 

%The Hysterisis Log Ratio Threshold1 for switching from voiced speech to unvoiced speech 
(1 --> 0) 
Log_ratio_threshold2 = 0.3; 


%The Threshold Level for use with the Autocorrelation vs. logratio calculation for white 

noise consideration 

Autocorrelation_Threshold_Level = 0.4; 


%Set RMS Ratio threshold value 

RMS_Ratio_F1 -35; 

RMS_Ratio_F2 -40; 

RMS_Ratio_F3 -45; 

RMS_Ratio_F4 -50; 


%%%%%%%%%%SET ALL PARAMETERS BEFORE THIS POINT%%%%%%%%%%%%%%%%%%%%%%% 


%Call the Formant Tracking function 

[F, Voice, Y RMS, Avg Y RMS, Gender, Pitch] formant_tracker_backend (X, Fs, 

lpc_window_size~ window,- -Filter_Cutoff, Log ratio threshold1, Log ratio threshold2, 

Autocorrelation_Threshold_Level, RMS_Ratio_F1, RMS_Ratio_F2, RMS_Ratio_F3, RMS=Ratio_F4); 


%%%%%%%%%%%%%%%%%%%%%PLOT THE RESULTS%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 


%Spectrogram 

figure; 

specgram(X,256,Fs,256,192) 

caxis ( [-65 5]); 

xlabel ( '\bf Time (s) '); 

ylabel('\bf Frequency (Hz)'); 

hold on; 

plot(time/1000-(256/2)*(1/Fs),fl, 'k -','linewidth',2.5); 

plot(time/1000-(256/2)*(1/Fs),f2, 'k -','linewidth',2.5); 

plot(time/1000-(256/2)*(1/Fs) ,f3, 'r- ', 'linewidth' ,2.5); 

plot (time/1000- (256/2) * (1/Fs), f4, 'r -', 'linewidth', 2. 5); 

plot ( [0: 1/Fs: (length (X) -1) /Fs] 
( ( (lpc window size+256) /2) +10) * (1/Fs), F, 'w', 'linewidth', 2. 5) 

plot( [0:1/Fs:(length(X)-1)/Fs]-(((lpc_window_size+256)/2)+10)*(1/Fs) ,250*Voice, 'm 

', 'linewidth',2) 
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Formant Tracker Backend 

function [F, Voice, Y_RMS, Avg_Y_RMS, Gender, Pitch] = formant tracker backend (X, Fs, 
lpc_window_size, window, Filter_Cutoff, Log_ratio_thresholdl~ Log ratio threshold2, 
Autocorrelation_Threshold_Level, RMS_Ratio_Fl, RMS_Ratio_F2, RMS_Ratio_F3, RMS_Ratio_F4) 

% FORMANT TRACKER BACKEND 
% 
% F = FORMANT TRACKER BACKEND f 

% This function acts as the backend for the 'FORMANT_TRACKER_FRONTEND.m' function, which 
calls it. 
% It provides similar functionality to the 'FORMANT TRACKER. m' function but all the 
parameters for 
% the function are passed on to it from the 'FORMANT TRACKER FRONTEND.m' function. 
% 
% 
% See also FORMANT_TRACKER_FRONTEND, FORMANT_TRACKER, and FORMANTFILTERS. 

% Inputs 
% none 
% 
% Outputs 
% F = The 4 formants frequencies 

% Author: Kamran Mustafa 
% E-mail: mkamran®hotmail.com or mkamran®ieee.org 
% 
%Modification List: 
% June 13, 2002 - First Created from formant tracker.m function 
% June 16, 2002 - Changed the method to calculate the initial formant frequencies 
%June 17, 2002 -Modified method to calculate initial formant frequency assignments 
% June 18, 2002 Added the formant filter parameters to the list of modifiable 
parameters. 
% June 24, 2002 - Modified to adjust to negative frequency predictions by the LPC 
% June 25, 2002 - Added an adaptive RMS Threshold Level detector based on a 'moving 
average' RMS_Threshold Level 
% July 8, 2002 - Added Moving average based RMS Threshold Levels 
% July 9, 2002 - Modified teh Moving Average based RMS Threshold Levels to decay when 
below the threshold 
% July 16, 2002 - Fixed problems with the initializing of the formant frequencies before 
the LPC starts 
% September 10, 2002 - Started playing around with the Pre-Empahsis. 
% September 11, 2002 - Added a second order Pre-Emphasis filter with a higher spectral 
tilt below the cut-off freq. 
% September 13, 2002 - Selected a 1st order Buterworth IIR Pre-Emphasis filter after 
trying different types of Pre-Emphasis filters. 
% September 25, 2002 - Started integrating the pithch based gender detector into the 
tracker. 
% September 26, 2002 - Completed integrating the gender detector and started testing the 
results 
% October 12, 2002 - Made changes to the gender detector so that it only polls for voiced 
speeech. 
% October 22, 2002 - Modified the function to inculde Pitch based calculations when 
calculatinh formants. 
% April 19, 2003 - Cleaned Code 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Turn off warnings 
warning off; 

%Equalize the input file to have an RMS of 1 
X= X./rms(X); 
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%Replicate the origianl signal to be sent to the voicing detector 

X VD = X'; 


%Apply the Pre-Amphasis filter to the input signal 

Xhf_preemphasis = filter([0.2618 -0.2618],[1 0.4764],X); %Butterworth IIR filter, Order 

1, stable 


%Hilbert Transform the signal into a complex signal using the FIR Hilbert function. 

X= firhilbert(Xhf_preemphasis); 

X=X.'; 


%Generate 4 uniformly distributed random numbers between 0 and the Nyquist Frequency 
sort them in ascending order 

Q = (sort(rand(1,5))); 


% %Assign initial formant frequency values to each of the formants based on experimental 

values (randn*std + mean) 

Pitch_Initial = Q(1)*50 + 175; 

F1 Q(2)*115.9433 + 397.3253; 

F2 Q(3)*461.5834 + 1.49E+03; 

F3 Q(4)*381.7358 + 2.49E+03; 

F4 Q(5)*258.653 + 3.55E+03; 


%Intialize F_freq 

F_freq = [F1;F2;F3;F4]; 


%Check for any non-Nyquist and non-zero initial formant frequency assignments 

F_freq_Bad = find( (F_freq <= 0) I (F_freq >= Fs/2) ) ; 


if (any(F_freq_Bad)) 


%If the first formant is less then or equal to zero 

if (F_freq(1) <= 0) 


%Set the first formant to it's (MEAN - 2*STD) 

F1 = 397.3253 - 2*115.9433; 


end %endif (F_freq(1) <= 0) 

%If the fourth formant is more than or equal to the Nyquist freq. 

if (F_freq(4) >= Fs/2) 


%Set the fourth formant frequency to it's (MEAN+ 2*STD) 

F4 = 3.55E03 + 2*258.653; 


end %endif (F_freq(4) >= Fs/2) 

F_freq = [F1;F2;F3;F4]; 

end %endif (any(F_freq_Bad)) 


%Initial Filter assignments 

[B,A] = formantfilters(Fs, Pitch_Initial, [F_freq(1), F_freq(2), F_freq(3), F_freq(4)]); 


B B.'; 

A= [A. ';zeros(3,4)]; %To equalize A into a 5 x 5 matrix as well (like B). 


%Initialize the Avg. Formant Frequency 

Avg_F_freq = [F1; F2; F3; F4]; 


%Initialize the Moving Average of the RMS Levels 

Avg_Y_RMS [RMS_Ratio_F1; RMS_Ratio F2; RMS Ratio_F3; RMS_Ratio_F4]; 

Avg_Y_RMS = repmat(Avg_Y_RMS,l,lpc_window_size+l); 


%Set the previous formant frequency 

Last_F_freq = F_freq; 
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%Order of the filter - doesn't change 

[tmp, num of filters] = size(B); 

filter_order-=tmp-1; 


%Zero Pad the input signal to deal with the initialization 

Y = zeros(num_of_filters,size(X,2)); 

X_VD = [(zeros(1,filter_order)) X_VD]; 

X= [(zeros(1,filter_order)) X]; 

Y_temp = zeros(num_of_filters,size(X,2)); 


%Frequency movement indicators (they are only here to keep track of the movement)

initialize 

F1_Mov(1:lpc_window_size+1) F1; 

F2_Mov(1:lpc_window_size+1) F2; 

F3_Mov(1:lpc_window_size+1) F3; 

F4_Mov(1:lpc_window_size+1) F4; 


%%%%%%%%%%%%%%VOICING DETECTOR and GENDER DETECTOR INITIALIZATIONS%%%%%%%%%%%%%%%%% 


%Initialize the return variable: 1 for voiced speech; and 0 for unvoiced speech 

Voice= zeros(1,length(X_VD)); 


%Initialize the gender 0 for male and 1 for female and -1 for no change from last (hold 

at previous) 

Gender= zeros(1,length(X VD)); 

Pitch= zeros(1,length(X_Vn)); 


%Initialize the Avg. Pitch 

Avg_Pitch = Pitch_Initial; 


%Setup Jump counter to an inital value of 20 ms - Determines how often the Pitch/Gender 

is checked 

Jump_Counter = Fs/20; 


%The HPF Parameters - 20th order high-pass Butterworth filter. 

[B_HPF,A_HPF] = butter(20,Filter_Cutoff/(Fs/2), 'high'); 


%The LPF Parameters - 20th order low-pass Butterworth filter 

[B_LPF,A_LPF] = butter(20,Filter_Cutoff/(Fs/2)); 


%Delay Filter Parameters 

B_Delay [zeros(1,10),1,zeros(1,10)]; 

A_Delay = 1; 


%High-pass part - for log ratio calculation - Voicing Detector 

X_HPF= filter(B_HPF,A HPF,X VD); 


%Low-pass part - for log ration calculation - Voicing Detector 

X_LPF= filter(B_LPF,A_LPF,X_VD); 


%Delayed part - for Autocorrelation 

X_Delayed= filter(B_Delay,A_Delay,X_VD); 


%Setup the waitbar. 

wb1 = waitbar(O, 'Running ... '); 

set(wb1, 'name', 'Formant Tracker- 0%'); 


%Compute over entire signal 

for n=filter_order+1:length(X) 


%Compute filtered signal for each filter (each formant) 

for c = 1:num_of filters 


Y temp(c,n) = [X(n:-1:(n-filter order))]*[B(1:(filter order+1),c)] [Y_temp (c,n
1:-1: (n-filter_order))] * [A(2: (filter_order+1), c)]; 
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end %inner loop endfor c = 1:num_of_filters 

%Calculate the RMS values (complex) of the filetred signals 
Y_RMS(:,n) = rms(Y_temp(:,max(n-(lpc_window_size-1),1) :n). ') .'; 

%%%%%%%%%%%%%%%%% VOICING DETECTOR %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Calculate Autocorrelation on a moving square window of the same size as the LPC 
window - 20 ms 

if (n > lpc_window_size+1) 
%autocorrelation of the delayed signal on a moving 20 ms square window - after 

LPC kicks in 
autocorr = xcorr(X_Delayed(n-(lpc_window_size-1) :n)); 

else 
%set the autocorrelation to zero for the length of the signal before the LPC 

kicks in. 
autocorr = zeros(2*lpc_window_size-1,1); 

end %endif (n > lpc_window_size+1) 

%Calculate the logratio of the LPF and the HPF 
Log ratio(n) log((rms(X LPF(max(1, n-(lpc window size

1)) :n))/sqrt(Filter_Cutoff))/(rms(X_HPF(max(1, - n-(lpc_window_size-1)) :n))/(sqrt(Fs/2
Filter_Cutoff)))); 

%- HYSTERISIS - Assign voiced/unvoiced to each of the data points in the sample 
%If the previous sample was unvoiced AND the current sample had a log ratio of MORE 

than the 
%log ratio threshold1 (for switcing from 0 --> 1), then the current sample is voiced. 

ie. 
%The switch from unvoiced to voiced occurs only if the log ratio threshold 1 is 

crossed. 
if ((Voice(max(1,n-1)) == 0) & (Log_ratio(n) > Log_ratio_threshold1)) 

%set current sample to be voiced speech 
Voice(n) = 1; 

%If the previous sample was voiced AND the current sample had a log ratio of LESS 
than the 

%log ratio threshold2 (for switcing from 1 --> 0), then the current sample is 
unvoiced. ie. 

%The switch from voiced to unvoiced occurs only if the log ratio threshold 2 is 
crossed. 

elseif ((Voice(max(1,n-1)) 1) & (Log_ratio(n) < -(Log_ratio_threshold2))) 

%set current sample to be unvoiced speech 
Voice(n) = 0; 

%If the log ratio threshold is NOT crossed then assign the current sample to be 
like the last one 

else 
Voice(n) = Voice(max(1,n-1)); 

end %endif Hysterisis. 

%Use the results for the autocorrelator AND the Hysterisis to make a final decisions 
regarding voiced/unvoiced speech. 

%The Sample is voiced if the logratio says it voiced AND the the autocorrelation at 
atleast one point in the window 

%is greater than 0.25 (Autocorrelation_Level) times the autocorrelation at the centre 
of the window AND 

%there is at least one point in the window whose autocorrelation is greater than 0. 

Voice(n) (Voice(n) & any(abs(autocorr([1:lpc_window_size-1 
lpc window size+1:2*lpc window size-1])) >= 
Autocorrel~tion_Threshold_Level*autocorr(lpc_window_size)) & any(abs(autocorr) > 0)); 
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%%%%%%%%%%%%%%%%%%%%%%% GENDER DETECTOR %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Satisfy indexing and length requirements for the Gender Detector 
%Check Gender iff sample is voiced AND the check hasn't been done in a while 

(determined by Jump_Counter) 
if ( (Voice(n) == 1) & (n >= Jump_Counter) 

%Setup Jump counter to setup how often the pitch is going to be checked - every 
20 ms 

Jump_Counter = Jump_Counter + (Fs/50); 

%Setup the windowed data to send to the Gender Detector 

X GD = X_VD ( (n-399) :n); 


%Call the Gender Detector and obtain pitch as well 

[Gender(n), Pitch(n)] = gender_detector(X_GD, Fs); 


%Round the Pitch to the closest integer 

Pitch(n) = round(Pitch(n)); 


%Move Voicing Detector threshold levels depending on the result from the Gender 
Detector - Males 

if (Gender(n) == 0) 

%It's MALE AND we need to change ANY one of the parameters any further 
if (Filter_Cutoff > 700) I (Log_ratio_thresholdl > 0.1) 

(Log_ratio_threshold2 > 0.2) I (Autocorrelation_Threshold_Level < 0.6) 

%Change filter_cutoff gradually, if requied 
if (Filter_Cutoff > 700) 

%Decay fast enough so that it can change from one end to the other in 
40 ms 

Filter_Cutoff = Filter_Cutoff - 10; 

%If there has been 	 a change in the parameters re-calculate the LPF 
and the HPF for the 	Voicing Detector 

%The HPF Parameters - 20th order high-pass Butterworth filter. 
[B_HPF,A_HPF] = butter(20,Filter_Cutoff/(Fs/2), 'high'); 

%The LPF Parameters - 20th order low-pass Butterworth filter 
[B_LPF,A_LPF] = butter(20,Filter_Cutoff/(Fs/2)); 

%High-pass part - for log ratio calculation - Voicing Detector 
X HPF= filter(B_HPF,A_HPF,X_VD); 

%Low-pass part - for log ration calculation - Voicing Detector 
X LPF= filter(B_LPF,A_LPF,X_VD); 

end %endif (Filter_Cutoff > 700) 

%Change Log_ratio_thresholdl gradually, if requied 
if (Log_ratio_thresholdl > 0.1) 

%Decay fast enough so that it can change from one end to the other in 
40 ms 

Log_ratio_thresholdl = Log_ratio_thresholdl - 0.0025; 

end %endif (Log_ratio_thresholdl > 0.1) 

%Change Log_ratio_threshold2 gradually, if requied 
if (Log_ratio_threshold2 > 0.2) 

%Decay fast enough so that it can change from one end to the other in 
40 ms 

Log_ratio_threshold2 = Log_ratio threshold2 - 0.0025; 
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end %endif (Log_ratio_threshold2 > 0.2) 

%Change Autocorrelation_Threshold_Level gradually, if requied 
if (Autocorrelation_Threshold_Level < 0.6) 

%Decay fast enough so that it can change from one end to the other in 
40 ms 

Autocorrelation Threshold Level Autocorrelation_Threshold_Level + 
0.00875; 

end %endif (Autocorrelation_Threshold_Level < 0.6) 

end %endif (Filter Cutoff > 700) (Log_ratio_threshold1 > 0 .1) 
(Log_ratio_threshold2 > 0.2) I (A~tocorrelation_Threshold_Level < 0.6) 

elseif (Gender(n) == 1)%- Females 

%It's FEMALE AND we need to change ANY one of the parameters any further 
if (Filter Cutoff < 1120) I (Log ratio threshold1 < 0.2) 

(Log_ratio_threshold2 < 0:3) I (Autocorrelation_Threshol~Level-> 0.25) 

%Change filter_cutoff gradually, if requied 
if (Filter_Cutoff < 1120) 

%Decay fast enough so that it can change from one end to the other in 
40 ms 

Filter_Cutoff = Filter_Cutoff + 10; 

%If there has been 	 a change in the parameters re-calculate the LPF 
and the HPF for teh 	Voicing Detector 

%The HPF Parameters - 20th order high-pass Butterworth filter. 
[B_HPF,A_HPF] = butter(20,Filter_Cutoff/(Fs/2), 'high'); 

%The LPF Parameters - 20th order low-pass Butterworth filter 
[B_LPF,A_LPF] = butter(20,Filter_Cutoff/(Fs/2)); 

%High-pass part - for log ratio calculation - Voicing Detector 
X HPF= filter(B_HPF,A_HPF,X_VD); 

%Low-pass part - for log ration calculation - Voicing Detector 
X_LPF= filter(B_LPF,A_LPF,X_VD); 

end %endif (Filter_Cutoff < 1120) 

%Change Log_ratio_threshold1 gradually, if requied 
if (Log_ratio_threshold1 < 0.2) 

%Decay fast enough so that it can change from one end to the other in 
40 ms 

Log_ratio_threshold1 = Log_ratio_threshold1 + 0.0025; 

end %endif (Log_ratio_threshold1 < 0.2) 

%Change Log_ratio_threshold2 gradually, if requied 
if (Log_ratio_threshold2 < 0.3) 

%Decay fast enough so that it can change from one end to the other in 
40 ms 

Log_ratio_threshold2 = Log_ratio_threshold2 + 0.0025; 

end %endif (Log_ratio_threshold2 < 0.3) 

%Change Autocorrelation Threshold Level gradually, if requied 
if (Autocorrelation_Threshold_Level > 0.25) 

%Decay fast enough so that it can change from one end to the other in 
40 ms 
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Autocorrelation Threshold Level Autocorrelation Threshold Level 
0.00875; 

end %endif (Autocorrelation_Threshold_Level > 0.25) 

end %endif (Filter_Cutoff < 1120) I (Log_ratio_thresholdl < 0. 2) 
(Log_ratio_threshold2 < 0.3) (Autocorrelation_Threshold_Level > 0.25) 

end %endif (Gender 0) 

end %endif ( (Voice(n) 1) & (n >= Jump_Counter) ) 


%%%%%%%%%%%%%%%%%%%%%%% Pitch Calculations %%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Smooth out the pitch - avoid it from going to zero and jumping around during voiced 


speech 
if ( (Pitch(n) == 0) & (Voice(n) == 1) 


%Hold Pitch at previous value 

Pitch(n) = Pitch(n-1); 


end %endif ( (Pitch(n) == 0) & (Voice(n) == 1) ) 


%Set the Pitch to the moving average during unvoiced sections 

if ( (Voice (n) == 0) ) 


%Decay Pitch to a moving avg. 

Pitch(n) = Avg_Pitch; 


end %endif ( (Pitch(n) == 0) & (Voice(n) 0) ) 


%Update the moving average of the Pitch 

Avg_Pitch ( ( ( (n-1) . * Avg_Pitch) + Pitch (n)) . I n) ; 

%%%%%%%%%%%%%%% Moving Average Calculations and LPC %%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Calcualte as long as the last sample has not been reached 

if ((n > lpc_window_size+l) & (n <= length(X))) 


%If the entire window is voiced 

if(all(Voice(n-(lpc_window_size-1) :n)) == 1) 


%1st order LPC formant region calculations ON WINDOWED DATA 
F_lpc = lpc (window.*Y_temp(:, (n-lpc_window_size+l) :n). ',1); 

%convert LPC values into formant frequencies 

F_freq sort(angle(-F_lpc(:,2))/(2*pi))*Fs; 


%Check to see if any of the formant results from the LPC are invalid 
frequencies 

if(isempty(find(isfinite(F_freq) ==0)) == 0) 

%Set all 'NaN' frequencies to the last valid Formant Frequency 
F_freq(find(isfinite(F_freq) == 0)) = Last_F_freq; 

end %endif (isempty(find(isfinite(F_freq) ==0)) 0) 

%Deal with any Negative Frequencies by Decaying to Average 
if (any(F_freq < 0)) 

%Find the Formant frequencies that are less than ZERO 
F_freq_Bad = find(F_freq < 0); 

%Decay Each of the Negative Frequencies 
F_freq(F_freq_Bad) (Last_F_freq(F_freq_Bad) 

(0.002*(Last_F_freq(F_freq_Bad) - Avg_F_freq(F_freq_Bad)))); 

end %endif 
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%Update the RMS_Thresholds based on a moving average (within set limits) if 
the sentence is VOICED 

Avg_Y_RMS(:,n) = ((((n-1) .* Avg_Y_RMS(:,n-1)) + db(Y_RMS(:,n))) ./ n); 

%Check to see if any of the formant frequencies are below the Threshold 
Levels 

%If the Formant Frequency is less then the threshold level (moving threshold 
parameter - Avg_Y_RMS) then decay ONLY that formant 

if (db(Y_RMS(1,n)) < (Avg_Y_RMS(1,n) -6)) 

F_freq(1) = Last_F_freq(1) - (0.002*(Last_F_freq(1) - Avg_F_freq(1))); 

end %endif (db(Y_RMS(l,n)) < Avg_Y_RMS(l,n)) 

if ( (db(Y_RMS(2,n)) < (Avg_Y_RMS(2,n) -8)) (abs(F_freq(2)-Last_F_freq(2)) 

> 900) ) 

F_freq(2) = Last_F_freq(2) - (0.002*(Last_F_freq(2) - Avg_F_freq(2))); 

end %endif (db(Y_RMS(2,n)) < Avg_Y_RMS(l,n)) 

if ( (db(Y_RMS(3,n)) < Avg_Y_RMS(3,n) - 10) (abs(F_freq(3)-Last_F_freq(3)) 
> 900) ) 

F_freq(3) = Last_F_freq(3) - (0.002*(Last_F_freq(3) - Avg_F_freq(3))); 

end %endif (db(Y_RMS(3,n)) < Avg_Y_RMS(3,n)) 

if (db(Y_RMS(4,n)) < Avg_Y_RMS(4,n) - 14) 

F_freq(4) = Last_F_freq(4) - (0.002*(Last_F_freq(4) - Avg_F_freq(4))); 

end %endif (db(Y_RMS(4,n)) < Avg_Y_RMS(4,n)) 

%Update the moving average Formant Frequency 
Avg_F_freq = ( ( ( (n-1) .* Avg_F_freq) + F_freq) ./ n); 

else %elseif (all (Voice (n- (lpc_window_size-1) :n)) == 1) %If the entire window is 
NOT voiced 

%Decay the Formant Frequency for ALL formants 
F_freq = (Last_F_freq- (0.002*(Last_F_freq- Avg_F_freq))); 

%Decay the Avg_Y_RMS value based on the current RMS values and the Average 
RMS value. 

if (all(db(Y_RMS(:,n)) > (Avg_Y_RMS(:,n-1) - 5))) 

Avg_Y_RMS (:, n) Avg_Y_RMS(:,n-1) (0.002*(Avg_Y_RMS(:,n-l) 
db(Y_RMS(:,n)))); 

else 

Avg_Y_RMS(:,n) = Avg_Y_RMS(:,n-1); 

end %endif (all(db(Y_RMS(:,n)) > (Avg_Y_RMS(:,n-1) - 5))) 

end %endif (all(Voice(n-(lpc_window_size-1) :n)) == 1) 


%Limit how close the formants are allowed to come to each other 

%F1 should not get closer than 150 Hz to the Pitch 

if (F_freq(l) < (Pitch(n)+l50)) 


F_freq(l) F_freq(l) + 200; 

end %endif (F_freq(1) < (Pitch(n)+l50)) 
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%F2 should not get closer than 300 Hz to Fl 

if (F_freq(2) < (F_freq(1)+300)) 


F_freq(2) F_freq(2) + 400; 

end %endif (F_freq(2) < (F_freq(1)+300)) 

%F3 should not get closer than 400 Hz to F2 

if (F_freq(3) < (F_freq(2)+400)) 


F_freq(3) F_freq(3) + 400; 

end %endif (F_freq(3) < (F_freq(2)+400)) 

%F4 should not get closer than 500 Hz to F3 

if (F_freq(4) < (F_freq(3)+500)) 


F_freq(4) F_freq(4) + 400; 

end %endif (F_freq(4) < (F_freq(3)+500)) 

%Set the previous formant frequency to the final assignment for the current 
formant frequency 

Last_F_freq ; F_freq; 

%Re-Calculate Formant Filter Parameters 

[B,A] formantfilters(Fs, Pitch(n), [F_freq(1), F_freq(2), F_freq(3), 


F_freq(4)]); 
B B. I; 
A; [A. ';zeros(3,4)]; %To equalize A into a 4 x 4 matrix as well (like B). 

%re-assign Formant Frequency Tracking info. based on the Voicing Detector Info. 

F1 F_freq(1); 

F2 F_freq(2); 

F3 F_freq(3); 

F4 F_freq(4); 


%Frequency movement indicators - update 

F1_Mov(n) F1; 

F2_Mov(n) F2; 

F3_Mov(n) F3; 

F4_Mov(n) F4; 


end %end if (n > lpc_window_size+l) 

%UPDATE WHITE-BAR every 1% 
if (mod(n, (round(length(X_VD)/100))) 0) 

waitbar(n/length(X_VD) ,wb1) 
set(wb1, 'name', ['Voicing Detector- ' sprintf('%2.1f',n/length(X_VD)*l00) '%']) 

end 

end %end for - outter loop 


%Close Waitbar 

close (wb1) 


%Turn warnings back on 

warning on; 


% Remove the extra padded info. form the matrix 

Y; Y temp(:, (filter order+1) :end); 

X; x(:, (filter_orde;+1) :end); 

X VD; X VD(:, (filter order+l) :end); 

Voice; Voice(:, (filter_order+l) :end); 

F1_Mov F1_Mov(:, (filter_order+1) :end); 

F2_Mov F2_Mov(:, (filter_order+1) :end); 
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F3_Mov F3_Mov(:, (filter_order+l) :end); 

F4_Mov F4_Mov(:, (filter_order+l) :end); 

Gender Gender(:, (filter_order+l) :end); 

Pitch= Pitch(:, (filter_order+l) :end); 


%Formant Frequencies 

F = [Fl_Mov; F2_Mov; F3_Mov; F4_Mov]; 


keyboard 


figure 

subplot(5,1,1); 

specgram(X,256,Fs,256,round(0.85*256)) 

[caxis_low_lim caxis_up_lim] = caxis; 

caxis([caxis up lim-80 caxis up lim]); 

xlabel('\bf Time (s) '); - 
ylabel('\bf Frequency (Hz)'); 

title('\bf Spectrogram of the original signal'); 

subplot(5,2,1); 

specgram(Y (1, :) , 256, Fs, 256, round (0. 85*256)) 

[caxis low lim caxis up lim] = caxis; 

caxis([caxis up lim-BO ~axis up lim]); 

xlabel ( '\bf Time (s) '); - 
ylabel('\bf Frequency (Hz)'); 

title('\bf Spectral region of estimation for the first formant filter'); 

subplot(5,3,1); 

specgram(Y(2, :) ,256,Fs,256,round(0.85*256)) 

[caxis low lim caxis up lim] = caxis; 

caxis([caxis up lim-BO ~axis up lim]); 

xlabel('\bf Time (s) '); - 
ylabel('\bf Frequency (Hz)'); 

title('\bf Spectral region of estimation for the second formant filter'); 

subplot(5,4,1); 

specgram(Y(3, :) ,256,Fs,256,round(0.85*256)) 

[caxis_low_lim caxis_up_lim] = caxis; 

caxis([caxis up lim-80 caxis up lim]); 

xlabel('\bf Time (s) '); - 
ylabel('\bf Frequency (Hz)'); 

title('\bf Spectral region of estimation for the third formant filter'); 

subplot(5,5,1); 

specgram(Y(4, :) ,256,Fs,256,round(0.85*256)) 

[caxis low lim caxis up lim] = caxis; 

caxis([caxis up lim-BO ~axis up lim]); 

xlabel ( '\bf Time (s) '); - 
ylabel('\bf Frequency (Hz)'); 

title('\bf Spectral region of estimation for the fourth formant filter'); 


Formant Tracking Filters 

function [BT, AT] formantfilters(Fs, Pitch, formant_frequencies) 

% FORMANTFILTERS2 
% 
% [BT, AT] = formantfilters(Fs, Pitch, formant frequencies) 
% 
% 
% This function calculates and returns the filter coefficients, BT, AT for a set of 4 
% formant tracking filters. 

% Fs: Sampling Frequency of the signal to be filtered. 
% 
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% PITCH: The value in (Hz) of the Pitch, to be able to add an extra Zero in the Fl 
filter. 
% 
% FORMANT_FREQUENCIES: Each component of this vector contains the locations (in Hz) of 
the 
% formant frequency estimates (pole locations for each of the formant filters) . 
% 
% Each row of the filter coefficients returned (BT and AT) contain the values for one 
% Formant Tracking Filter, so BT and AT both have 4 rows - for 4 different tracking 
filters. 
% 
% THIS FUNCTION CALCULTAES AND RETURNS THE FILTER COEFFICIENTS OF 4 FORMANT TRACKING 
FILTERS 
% SIMULTAENOUSLY! 
% 
% See also FORMANTFILTER COEFFICIENTS, MATRIXFILTER, FILTER, and FILTER2 

% Inputs 
% 
% Fs: Sampling Frequency of the signal to be filtered 
% 
% PITCH: Location in (Hz) of the Pitch for the first Formant 
% 
% FORMANT_FREQUENCIES: Each component of this vector contains the locations (in Hz) of 

the 

% formant frequency estimates (pole locations for each of the formant filters) . 

% 

% 

% 

% Outputs 

% BT: Filter coefficients a 4 x 4 matrix - each row represents one filter 

% AT: Filter coefficients a 4 x 2 matrix - each row represents one filter 

% 

% Author: Kamran Mustafa 

% E-mail: mkamran®hotmail.com 

% 

%Modification List: 

% March 25, 2002 - First Created 

% October 21, 2002 - Started modifications to include an extra AZF at the location of the 

Pitch in the Fl filter 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 


%Initialize the return variables 

AT zeros(4,2); 

BT = zeros(4,5); 


%Setup the general DTF parameters 

Rp = 0.9; 

K = 1-Rp; %The DC gain 


%set-up the PITCH DTF pole at the location of the Pitch 

FkO = Pitch; 

PO= Rp*exp(j*2*pi*Fk0/Fs); %Location of the pole- Pitch dependent 


%set-up the 1st DTF pole at the first Formant Frequency location 

Fkl = formant frequencies(l); 

Pl = Rp*exp(j*2*pi*Fkl/Fs); %Location of the pole 


%set-up the 2nd DTF pole at the second Formant Frequency location 

Fk2 = formant_frequencies(2); 

P2 = Rp*exp(j*2*pi*Fk2/Fs); %Location of the pole 


%set-up the 3rd DTF pole at the third Formant Frequency location 

Fk3 =formant frequencies(3); 

P3 = Rp*exp(j*2*pi*Fk3/Fs); %Location of the pole 


%set-up the 4th DTF pole at the fourth Formant Frequency location 
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Fk4 =formant frequencies(4); 
P4 = Rp*exp(j*2*pi*Fk4/Fs); %Location of the pole 

%set-up the 4 AZF Parameters 
Rz = .98; 
FlO Pitch; 
Fl1 formant frequencies(1); 
Fl2 formant-frequencies(2); 
Fl3 formant-frequencies(3); 
Fl4 formant=frequencies(4); 

%set-up the Pitch dependent AZF 
ZO = [Rz*exp(j*2*pi*Fl0/Fs)]; %The single zero at the pitch location 

%set-up the first AZF 
Z1 = [Rz*exp{j*2*pi*Fl1/Fs)]; %The single zero location 

%set-up the second AZF 
Z2 = [Rz*exp(j*2*pi*Fl2/Fs)]; %The single zero location 

%set-up the third AZF 
Z3 = [Rz*exp(j*2*pi*Fl3/Fs)]; %The single zero location 

%set-up the fourth AZF 
Z4 = [Rz*exp(j*2*pi*Fl4/Fs)]; %The single zero location 

%FIRST TRACKING FILTER COEFFICIENTS 
%Construct the first formant tracking filter with a pole at the 1st formant frequency 
estimate 
%setup the appropriate all zero filter DC gain values 
KnO 1/(1-Rz*exp(j*2*pi*{(Fl0-Fk1)/Fs))); %The zero filter DC gain - for the pitch 
Kn2 1/(1-Rz*exp(j*2*pi*((Fl2-Fk1)/Fs))); %The zero filter DC gain 
Kn3 1/(1-Rz*exp(j*2*pi*((Fl3-Fk1)/Fs))); %The zero filter DC gain 
Kn4 1/(1-Rz*exp(j*2*pi*((Fl4-Fk1)/Fs))); %The zero filter DC gain 
%The overall Filter Function 
PT1 P1; %pole location 
ZT1 = [ZO; Z2; Z3; Z4]; %combine the zero locations 
KT1 = K.*KnO.*Kn2.*Kn3.*Kn4; %combine the DC gain terms of the AZF and the DTF 
%Obtain the filter coefficients for the 1st filter 
[BT(1,:), AT(1,:)] = zp2tf_complex (ZT1,PT1,KT1); %Final filter values at this pole 
location 

%SECOND TRACKING FILTER COEFFICIENTS 
%Construct the second formant tracking filter with a pole at the 2nd formant frequency 
estimate 
%setup the appropriate all zero filter DC gain values 
Kn1 1/(1-Rz*exp(j*2*pi*((Fl1-Fk2)/Fs))); %The zero filter DC gain 
Kn3 = 1/(1-Rz*exp(j*2*pi*((Fl3-Fk2)/Fs))); %The zero filter DC gain 
Kn4 = 1/(1-Rz*exp(j*2*pi*((Fl4-Fk2)/Fs))); %The zero filter DC gain 
%The overall Filter Function 
PT2 P2; %pole location 
ZT2 = [Z1; Z3; Z4]; %combine the zero locations 
KT2 = K.*Kn1.*Kn3.*Kn4; %combine the DC gain terms of the AZF and the DTF 
%Obtain the filter coefficients for the 2nd filter 
[BT(2,1:4), AT(2, :)] = zp2tf_complex (ZT2,PT2,KT2); %Final filter values at this pole 
location 

%THIRD TRACKING FILTER COEFFICIENTS 
%Construct the third formant tracking filter with a pole at the 3rd formant frequency 
estimate 
%setup the appropriate all zero filter DC gain values 
Kn1 1/(1-Rz*exp(j*2*pi*((Fl1-Fk3)/Fs))); %The zero filter DC gain 
Kn2 = 1/(1-Rz*exp(j*2*pi*{(Fl2-Fk3)/Fs))); %The zero filter DC gain 
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Kn4 = 1/(1-Rz*exp(j*2*pi*((Fl4-Fk3)/Fs))); %The zero filter DC gain 
%The overall Filter Function 
PT3 P3; %pole location 
ZT3 = [Z1; Z2; Z4]; %combine the zero locations 
KT3 = K.*Kn1.*Kn2.*Kn4; %combine the DC gain terms of the AZF and the DTF 
%Obtain the filter coefficients for the 3rd filter 
[BT(3,1:4), AT(3,:)] = zp2tf_complex (ZT3,PT3,KT3); %Final filter values at this pole 
location 

%FOURTH TRACKING FILTER COEFFICIENTS 
%Construct the fourth formant tracking filter with a pole at the 4th formant frequency 
estimate 
%setup the appropriate all zero filter DC gain values 
Kn1 1/(1-Rz*exp(j*2*pi*((Fl1-Fk4)/Fs))); %The zero filter DC gain 
Kn2 = 1/(1-Rz*exp(j*2*pi*((Fl2-Fk4)/Fs))); %The zero filter DC gain 
Kn3 = 1/(1-Rz*exp(j*2*pi*((Fl3-Fk4)/Fs))); %The zero filter DC gain 
%The overall Filter Function 
PT4 P4; %pole location 
ZT4 = [Z1; Z2; Z3]; %combine the zero locations 
KT4 = K.*Kn1.*Kn2.*Kn3; %combine the DC gain terms of the AZF and the DTF 
%Obtain the filter coefficients for the 4th filter 
[BT(4,1:4), AT(4,:)] = zp2tf_complex (ZT4,PT4,KT4); %Final filter values at this pole 
location 

Gender Detector 

function [gender, avgFO] gender_detector (X,Fs) 

% GENDER DETECTOR 
% 
% gender = gender_detector(X,Fs) 
% 
% This function will use a pitch detection algorithm to decide if the speaker is 
MALE(O) or FEMALE (1). 
% It is designed to work with short speech samples (up to or greater than 50 ms) . The 
function returns a 
% '0' if X contains male speech and a '1' if it contains female speech. 
% 
% X is the speech sample and Fs is the sampling frequency. 
% 
% Note that the function uses an average pitch based approach, where the pitch is 
calculated using an autocorrelation 
% based method (with centre clipping and median filtering) . The method is similar to 
the Pitch estimation algorithm used by 
% Philip Loizou (loizou@utdallas.edu) in COLEA. 
% 
% See also PITCH DETECTOR and TEST PITCH DETECTOR. 

% Inputs 
% X: Speech Signal 
% Fs: Sampling Frequency 
% 
% Outputs 
% gender: Gender of the speaker in speech sample X 
% 
% Author: Kamran Mustafa 
% E-mail: mkamran®hotmail.com or mkamran®ieee.org 
% 
% Modification List: 
% 

%September 17, 2002 - First Created 
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% September 18, 2002 - Adapted to work with the Formant tracker over one window length of 

50 ms 

% September 25, 2002 - Modified the function to be able to work independently and retrun 

gender values instead of pitch est. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 


%Turn Warnings off 

warning off; 


%Figure out the number of samples in X 

n_samp1es = length(X); 


% Window update rate - Window spacing - 5 ms 

updRate=floor(S*Fs/1000); 


%Window size - 20 ms 

fRate=floor(20*Fs/1000); %Use a 20 ms window 


%Number of frames in this sample 

nFrames=floor(n_samples/updRate)-1; 


%Initialize variables 

avgFO=O; 

f01=zeros(1,nFrames); 

k=1; 

m=1; 


%Calculate over all the frames in the sample 

for t=1:nFrames 


%Make sure that the pitch estimations don't run over the index limits of the sample 
if (k+fRate-1) > length(X) 

%Select the window (20 ms) over which to do the pitch estimation 

X_Win X{(length(X)-fRate) :length(X)); 


else 

%Select the window (20 ms) over which to do the pitch estimation 

X Win= X(k:k+fRate-1); 


end %endif (k+fRate-1) > length{X) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Do the Pitch Estimation over one frame 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Remove the DC bias 

X Win= X Win- mean(X_Win); 


%LPF the speech at 900 Hz to remove upper freq. (since Pitch info. will be below 900 
Hz) 

[bfO,afO]=butter(4,900/(Fs/2)); 
X_Win = filter(bfO,afO,X_Win); 

%Perform Centre Clipping and find the Clipping Level (CL) 

i13=fRate/3; 

maxi1=max(abs(X_Win(1:i13))); 


i23=2*fRate/3; 

maxi2=max(abs(X_Win(i23:fRate))); 


%Choose the appropriate clipping level 

if maxi1>maxi2 


CL=0.68*maxi2; 

else 


CL= 0.68*maxi1; 
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end %endif maxil>maxi2 

%Perform Center clipping 

clip=zeros(fRate,l); 

indl=find(X Win>=CL); 

clip(indl)=X_Win(indl)-CL; 


ind2=find(X Win <= -CL); 
clip(ind2)=X_Win(ind2)+CL; 

%Compute the autocorrelation 

RR=xcorr (clip) ; 

g=fRate; 


%The pitch estimates are limited to being between 60 and 320 Hz 

%Find the max autocorrelation in the range 60 Hz <= FO <= 320 Hz 

LF=floor(Fs/320); 

HF=floor(Fs/60); 


Rxx=abs(RR(g+LF:g+HF)); 

[rmax, imax]= max(Rxx); 

imax=imax+LF; 


%Estimate raw pitch 
pitch=Fs/imax; 

%Check max RR against V/UV threshold 
silence=0.4*engy; 

%Make Voiced/Unvoiced descions 

if (rmax > silence) & {pitch > 60) & (pitch <=320) 


pitch=Fs/imax; 

else 


% It is a unvoiced segment 

pitch=O; 


end %endif (rmax > silence) & (pitch > 60) & (pitch <=320) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% End of Pitch Estimation per 
Window %%%%%%%%%%%%%%%%%%%%%%%%%% 

%Assign Pitch estimate 
fO(t)=pitch; 

% Do median filtering 
if t>2 & nFrames>3 

z=f0(t-2:t); 

md=median(z); 

f01(t-2)=md; 


if md > 0 

avgFO=avgFO+md; 

m=m+l; 


end %endif md > 0 

elseif nFrames<=3 

disp('# of frames less than 3'); 

fOl(t)=pitch; 

avgFO=avgFO+pitch; 

m=m+l; 


end %endif t>2 & nFrames>3 
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%Put next window 'updRate' appart from where the last one was. 
k=k+updRate; 

end %endfor t=1:nFrames 

%Calculate the avg. pitch estimate for the whole sample X. 
if m==1 

avgFO=O; 
else 

avgFO=avgFO/(m-1); 
end %endif m==1 

%Find Gender (The pitch being used is the avg. pitch - avgFO) 
if (avgFO >= 180) 

%It's female 

gender = 1; 


else 

%It's male 

gender = 0; 


end %endif 

%Turn Warnings back on 

warning on; 
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