Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/24344
Title: Rack-based Data Center Temperature Regulation Using Data-driven Model Predictive Control
Authors: Shi, Shizhu
Advisor: Yan, Fengjun
Department: Mechanical Engineering
Keywords: Data Center;Temperature Control;Data-driven Model;MPC controller
Publication Date: 2019
Abstract: Due to the rapid and prosperous development of information technology, data centers are widely used in every aspect of social life, such as industry, economy or even our daily life. This work considers the idea of developing a data-driven model based model predictive control (MPC) to regulate temperature for a class of single-rack data centers (DCs). An auto-regressive exogenous (ARX) model is identified for our DC system using partial least square (PLS) to predict the behavior of multi-inputs-single-output (MISO) thermal system. Then an MPC controller is designed to control the temperature inside IT rack based on the identified ARX model. Moreover, fuzzy c-means (FCM) is employed to cluster the measured data set. Based on the clustered data sets, PLS is adopted to identify multiple locally linear ARX models which will be combined by appropriate weights in order to capture the nonlinear behavior of the highly-nonlinear thermal system inside the IT rack. The effectiveness of the proposed method is illustrated through experiments on our single-rack DC and it is also compared with proportional-integral (PI) control.
URI: http://hdl.handle.net/11375/24344
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
shi_shizhu_2019March_MASc.pdf
Access is allowed from: 2020-03-24
3.67 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue