Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/24212
Title: Representation of Tones and Vowels in a Biophysically Detailed Model of Ventral Cochlear Nucleus
Authors: Yayli, Melih
Advisor: Bruce, Ian C.
Department: Electrical and Computer Engineering
Keywords: Biophysically detailed neural network models, ventral cochlear nucleus, computational neuroscience
Publication Date: 2019
Abstract: Biophysically detailed representations of neural network models provide substantial insight to underlying neural processing mechanisms in the auditory systems of the brain. For simple biological systems the behavior can be represented by simple equations or flow charts. But for complex systems, more detailed descriptions of individual neurons and their synaptic connectivity are typically required. Creating extensive network models allows us to test hypotheses, apply specific manipulations that cannot be done experimentally and provide supporting evidence for experimental results. Several studies have been made on establishing realistic models of the cochlear nucleus (Manis and Campagnola, 2018; Eager et al., 2004), the part of the brainstem where sound signals enter the brain, both on individual neuron and networked structure levels. These models are based on both in vitro and in vivo physiological data, and they successfully demonstrate certain aspects of the neural processing of sound signals. Even though these models have been tested with tone bursts and isolated phonemes, the representation of speech in the cochlear nucleus and how it may support robust speech intelligibility remains to be explored with these detailed biophysical models. In this study, the basis of creating a biophysically detailed model of microcircuits in the cochlear nucleus is formed following the approach of Manis and Campagnola (2018). The focus of this thesis is more on bushy cell microcircuits. We have updated Manis and Campagnola (2018) model to take inputs from the new phenomenological auditory periphery model of Bruce et al. (2018). Different cell types in the cochlear nucleus are modelled by detailed cell models of Rothman and Manis (2003c) and updated Manis and Campagnola (2018) cell models. Networked structures are built out of them according to published anatomical and physiological data. The outputs of these networked structures are used to create post-stimulus-time-histograms (PSTH) and response maps to investigate the representation of tone bursts and average localized synchronized rate (ALSR) of phoneme 'e' and are compared to published physiological data (Blackburn and Sachs, 1990).
URI: http://hdl.handle.net/11375/24212
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
YAYLI_Melih_201903_MASc.pdf
Open Access
21.55 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue