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Abstract

Biophysically detailed representations of neural network models provide substantial

insight to underlying neural processing mechanisms in the auditory systems of the

brain. For simple biological systems the behavior can be represented by simple equa-

tions or flow charts. But for complex systems, more detailed descriptions of individual

neurons and their synaptic connectivity are typically required. Creating extensive net-

work models allows us to test hypotheses, apply specific manipulations that cannot be

done experimentally and provide supporting evidence for experimental results. Sev-

eral studies have been made on establishing realistic models of the cochlear nucleus

(Manis and Campagnola, 2018; Eager et al., 2004), the part of the brainstem where

sound signals enter the brain, both on individual neuron and networked structure lev-

els. These models are based on both in vitro and in vivo physiological data, and they

successfully demonstrate certain aspects of the neural processing of sound signals.

Even though these models have been tested with tone bursts and isolated phonemes,

the representation of speech in the cochlear nucleus and how it may support robust

speech intelligibility remains to be explored with these detailed biophysical models.

In this study, the basis of creating a biophysically detailed model of microcircuits

in the cochlear nucleus is formed following the approach of Manis and Campagnola

(2018). The focus of this thesis is more on bushy cell microcircuits. We have updated

iv



Manis and Campagnola (2018) model to take inputs from the new phenomenological

auditory periphery model of Bruce et al. (2018). Different cell types in the cochlear

nucleus are modelled by detailed cell models of Rothman and Manis (2003c) and up-

dated Manis and Campagnola (2018) cell models. Networked structures are built out

of them according to published anatomical and physiological data. The outputs of

these networked structures are used to create post-stimulus-time-histograms (PSTH)

and response maps to investigate the representation of tone bursts and average lo-

calized synchronized rate (ALSR) of phoneme /ε/ and are compared to published

physiological data (Blackburn and Sachs, 1990).
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Notation and abbreviations

AN Auditory Nerve

ANF Auditory Nerve Fiber

AVCN Anteroventral Cochlear Nucleus

BF Best Frequency

BNN Bio-physically-accurate Neural Network

CF Characteristic Frequency

ChS Sustained Chopper

ChT Transient Choppper

CN Cochlear Nucleus

CV Coefficient of Variation

DCN Dorsal Cochlear Nucleus

DS D Stellate

EPSC Excitatory Post-Synaptic Current

EPSP Excitatory Post-Synaptic Potential

GABA Gamma-Aminobutyric Acid

GABAa GABAergic subtype A

GlyR Glycine Receptor

HH Hodgkin-Huxley
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HSR High Spontaneous Rate

IC Inferior Colliculus

IHC Inner Hair Cell

IPSC Inhibitory Post-Synaptic Current

IPSP Inhibitory Post-Synaptic Potential

KLT Low-threshold Potassium Channel

KHT High-threshold Potassium Channel

LSR Low Spontaneous Rate

MNTB Medial Nucleus of Trapezoidal Body

MOC Medial Olivocochlear

NMDA N-Methyl-D-aspartic Acid

OHC Outer Hair Cell

OnC Onset Chopper

OnL Onset with Latent Response

PL Primary-like

PLn Primary-like with Notch

PSP Post-synaptic Potential

PSTH Peri-stimulus Time Histogram

PVCN Posteroventral Cochlear Nucleus

RM Rothmann and Manis

SNR Signal to Noise Ratio

SPL Sound Pressure Level

SR Spontaneous Rate

TS T Stellate
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TV Tuberculoventral

VCN Ventral Cochlear Nucleus
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Chapter 1

Introduction and Literature

Review

1.1 Introduction

The mammalian auditory system is a complex structure consisting of sections that

apply different type of processing to sound signals. Creating extensive models of this

system based on physiological and anatomical data is important in terms of providing

researchers with new tools for inspecting sound processing in the auditory system.

Each stage shows nonlinear behaviour and creating detailed models of these stages

has its own challenges. The focus of this thesis is on the cochlear nucleus where

the sound signals first enter the brain. In the cochlear nucleus features of sound are

extracted that help understanding where the sound comes from and what the sound

is.

The cochlear nucleus consists of various types of neurons. Two types of primary

neurons that send information to the upper stages on the central auditory system
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are bushy cells and stellate cells (Campagnola and Manis, 2014). Detailed Hodgkin-

Huxley type models of these cells have been created by Rothman and Manis (2003c).

By interconnecting them with simple synapse models, networked structures are cre-

ated to simulate the behaviour of cochlear nucleus microcircuits. The circuit models

are tested and the parameters of the model are tuned to match with the physiological

recordings and simulation results presented in Rothman and Manis (2003c), Eager

et al. (2004) and Manis and Campagnola (2018).

In this part of the thesis, important background information is presented: an

overview of how sound is processed by the auditory system, stages of the auditory

system, a detailed description of the cochlear nucleus, Hodgkin-Huxley models, and

synaptic modeling. This information is relevant to understand how realistic models

of the cochlear nucleus are created.

Chapter 2 introduces the Bruce et al. (2018) auditory periphery model and the

Rothman and Manis (2003c) model of ventral cochlear nucleus (VCN) neurons. An

updated version of VCN cell models presented by Manis and Campagnola (2018) is

also reviewed.

In Chapter 3 the results of various tests are presented. Individual cell models

are tested by applying current injections and synaptic inputs. The synaptic model

mechanism is tested to check if mechanisms like synaptic convergence (more than

one neuron connecting to a single neuron) and summation are working properly.

Small interconnected structures called as microcircuits are formed out of cell models

to further investigate the cell behaviour to auditory nerve (AN) like inputs. The

AN model is fed with tone bursts with different frequencies to conduct these tests.

Resulting post-stimulus-time-histograms (PSTH), the regularity of firing and response
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maps are checked to see if the model is acting according to physiological data. At

the end of the chapter, the microcircuits are tested by appyling a synthetic phoneme

as inputs to the AN model. The results are compared with the physiological data

presented in Blackburn and Sachs (1990).

Chapter 4 finalizes this thesis by commenting on the results and future work.

The code used in this research can be found in the Appendix.

1.2 Auditory Periphery

1.2.1 Outer Ear

The processing of the sound starts before it enters the ear canal. The outer ear is a

structure consisting of the pinna, concha and ear canal (external auditory meatus)

that ends at the eardrum (tympanic membrane) (Fig. 1.1). The mission of the outer

ear is to collect sound waves coming from different directions and channel them into

the ear canal. With the help of resonance effects, the outer ear helps increase the

pressure on the eardrum which causes more energy to be transferred to the middle

ear (Schnupp et al., 2011).

In humans, this pressure increase has a broad peak (15-20 dB) centered around

2.5 kHz since the combined length of the concha and ear canal is approximately equal

to a quarter wavelength of this frequency. Even though the pinna and concha create

a complex acoustic cavity, which is expected to cause pressure gain to be highly

frequency dependent, the changes are fairly uniform between 2 kHz and 7 kHz (Fig.

1.2).

Another contribution of the outer ear to the sound processing is providing valuable

3
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Figure 1.1: Auditory periphery of humans. Reprinted with permission of the Brill
Publishers, Figure 2.1 from Pickles (2013) c©2013.
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Figure 1.2: (A) Average pressure gain of human outer ear as a function of frequency
for different directions. 0◦ indicates the sound source is straight ahead. (B) The
change in the gain as a function of frequency of cat ear related to the elevation of
the sound source. 0◦ indicates the horizontal plane. Reprinted with permission of the
Brill Publishers, Figure 2.2 from Pickles (2013) c©2013.
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information about the sound location. The most obvious indicator of where the sound

comes from is the timing difference between left and right ear. Depending on the

direction of the sound the intensity will also tend to be higher in the ear that is closer

to the source. But binaural timing and level differences do not directly indicate

whether the sound is coming from behind or front, or from a lower or higher source.

The pinna and concha have distinctive shapes that reflect the sounds into the ear

canal differently depending on the direction and elevation of the source. This causes

waves to arrive in different phases which leads to cancellation. So the intensity of the

stimulus is reduced at certain frequencies dependent on sound location in the vertical

plane. Later stages of the auditory system use this information to distinguish the

vertical location of the sound source.

1.2.2 Middle Ear

After the sound wave travels through the ear canal, it hits the tympanic membrane.

As a result the tympanic membrane vibrates and these vibrations are propagated

through the middle ear by ossicles, three small bones named the malleus, incus and

stapes (hammer, anvil and stirrup) (Fig 1.3). The purpose of this system is to trans-

mit the sound signal while reducing the energy loss between the air, which has a low

acoustic impedance, and the cochlea which is filled with a physiological fluid that has

a higher acoustic impedance than air. Without a system like this, most of the sound

energy would be reflected at the eardrum. So it can be said that the middle ear is

applying impedance matching.

The mechanism works as follows: when sound waves hit the tympanic membrane,

incus and malleus which are bonded tightly, are pushed by membrane. The bones

6
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Figure 1.3: Physiology of middle ear which consists of incus, malleus and stapes.
Reprinted with permission of the Brill Publishers, Figure 2.4 from Pickles (2013)
c©2013.

start to rotate, appyling a force to the stapes, which causes a displacement in the

oval window of the cochlea.

The main impedance gain comes from focusing the forces that hits the tympanic

membrane having a large surface area to the oval window which has smaller surface

area. This phenomena causes an increase in the pressure over the oval window. The

gain is dependent on the surface area ratio and the bony structures vibration response

to the sounds.

The middle ear also works as a protection mechanism. By contracting the stapedius

muscle the motion of the stapes can be reduced, which helps protect the inner ear

structures from damage caused by loud sounds.

7
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1.2.3 Cochlea

The cochlea is a coiled structure located deep in the temporal bone. The anatomical

structure of the cochlea is shown in the Fig. 1.4. The cochlea is divided into three

sections called scalae: the scala vestibuli, the scala tympani, and the scala media

which separates the other two. But this separation is not complete, as the scala

tympani and scala vestibuli connect with each other at the apex of the cochlea by an

opening called the helicotrema. The scala vestibuli is separated from the scala media

by Reissner′s membrane, while the scala tympani is separated from the scala media

by the basilar membrane. The scala vestibuli and the scala tympani are filled with an

ionic fluid called perilymph, while the scala media has endolymph. Perilymph has a

high concentration of sodium ions (Na+) and a low concentration of potassium (K+).

Endolymph has a high K+ and low Na+ concentrations and rests at a high positive

potential (of about +80mV).

There are two types of mechanical resistance in the cochlea: the basilar membrane

stiffness and the cochlear fluid inertia. The basilar membrane is a structure that has

more resistance on the end near the oval window (base) and is more elastic near

the helicotrema. On the other hand, the inertial gradient is increasing while moving

towards apex and this inertial resistance is dependent on the frequency. Higher fre-

quencies tend to cause maximal displacement of the basilar membrane towards the

base, while lower frequencies cause maximal displacement towards the apex. As a re-

sult, these two factors contribute to the frequency mapping in the basilar membrane,

meaning that if a single sinusoidal input with a certain frequency is presented, it will

cause movement that has a sharp peak in a highly localized region of the basilar mem-

brane. This frequency specific response also occurs at higher levels of the auditory

8
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Figure 1.4: An illustration of anatomy of cochlea. (a) A cross section of coilings. (b)
3 major compartments of cochlea; scala vestibuli, scala media, scala tympani. (c)
The structure of organ of corti. From Anatomybody-charts (2016).
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system (Fig 1.5).

The mechanical movement of basilar membrane turns into electrical signal in a

structure called the organ of Corti that is attached to the basilar membrane. When

the basilar membrane moves up and down, the corresponding part of the organ of

Corti also moves along with it. The organ of corti achieves the transduction via hair

cells (Fig. 1.6).

Figure 1.5: (a) The different gradients of resistance in cochlea. Reprinted with per-
mission of the MIT Press, Figure 2.2 from Schnupp et al. (2011) c©2011. (b) The
frequency selectivity of the basilar membrane. Higher frequency inputs cause a dis-
placement closer to the base while the lower frequency ones cause a vibration on the
apex side of cochlear duct. Inner Figure, a rough sketch of the distribution of fre-
quency tuning across cochlea. Numbers indicate frequencies in kHz. From Standring
(2015).
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Figure 1.6: (a) Three rows of outer hair cells and a row of inner hair cells, captured
by scanning electron micrograph after removing the tectorial membrane. (b) The
cylindirical body of OHCs. (c) A closer look at inner hair cell bundles. (d) A closer
look at outer hair cell bundles. Reprinted with permission of the Brill Publishers,
Figure 3.4 from Pickles (2013) c©2013.

The tectorial membrane, which sits on top of the inner hair cells (IHCs), pushes

cells by moving the highest stereocilia in the bundle as the basilar membrane moves.

Inner hair cells sits in a row and are closer to the center part of the cochlea. The

movement of the inner hair cells are dependent on the fluid movement since they

do not have any direct contact with tectorial membrane. Even though the move-

ment mechanisms are different, they succesfully capture the movement of the basilar

membrane.

As the tectorial membrane moves, outer hair cells (OHCs), which contains dozens
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of stereocilia, are deflected. These stereocilias are not in the same length and con-

nected to each other by fine protein fibers (Fig. 1.7). When the longest stereocilia

moves, it causes all of the stereocilia on the same bundle to move and this causes the

K+ ions, which are supplied by the stria vascularis, to flow inside hair cells. This flow

causes a depolarization in the hair cell. And this flow is dependent on the displace-

ment of the basilar membrane since the greater displacement causes more channels

to open which means more depolarizing current to flow inside. By this mechanism,

the movement pattern of the membrane is translated into a current.

Outer hair cells have unique structural properties. Their membrane has a protein

called prestin which makes them shorter when depolarized and longer when they are

hyperpolarized. This protein gives outer hair cells the ability to change their length

at high speed. Even though the exact mechanism is not clear, it is known that OHCs

provide mechanical gain in a feedforward manner. It is suggested that the more the

basilar membrane moves, the more OHCs are deflected, and in return OHC movement

causes basilar membrane to move even more. But this improvement is not the same

along the basilar membrane, and the low amplitude sounds are boosted more than

high amplitude sounds (Fig. 1.8). Since OHCs have crucial roles in the transduction

process, damaging these cells would cause extreme disruption in hearing process. In

fact the most common cause of hearing problems is damage to OHCs (Schnupp et al.,

2011).
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Figure 1.7: (a) The mechanism of the hair cell transduction. When the tectorial
membrane moves, it causes a movement on the highest one of the stereocilia bundle.
This movement results in the opening of the channels reside on the tips of stereocilia.
The K+ ions flow into the cell and produce a current according to the movement of the
membrane. (b) The movement of the membrane can have excitatory or inhibitory
effects on the hair cell bundle. Reprinted with permission of the Brill Publishers,
Figure 3.19 from Pickles (2013) c©2013.
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Figure 1.8: The characteristic of gain of 9kHz CF point on the basilar membrane
in response to different frequency stimulus. Reprinted with permission of the MIT
Press, Figure 2.10 from Schnupp et al. (2011) c©2011.

1.2.4 Auditory Nerve

The outer and inner hair cells are connected to auditory nerve fibers (Fig. 1.9). Ac-

cording to Pickles (2013), the human cochlea is innervated by 30000 sensory neurons.

The auditory information is carried to the upper levels of auditory system via these

afferent fibers. These fibers have their cell bodies in the spiral ganglion, while one

side takes the auditory information from hair cells and the other side projects to the

cells of the cochlear nucleus which resides in the brainstem. 95% of the afferent fibers

are exclusively connected to the inner hair cells. Each fiber connects to one IHC.

These fibers are specified as Type I fibers and they have myelinated cell bodies and

axons. OHCs are connected by unmyelinated Type II fibers. Fibers that connect to

OHCs branch and innervate about 10 hair cells.
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Figure 1.9: IHC and OHC connections to the auditory nerve fibers. Most of the
auditory nerve fibers (type I) connect to IHC’s. IHC, inner hair cells; OHC, outer
hair cells; SG, spiral ganglion; OSB, outer spiral bundle. Reprinted with permission
of the Brill Publishers, Figure 3.6 from Pickles (2013) c©2013.

Since Type I neurons have thick, myelinated axons they are capable of transfer-

ring the signals rapidly while Type II fibers are slow. Type I fibers are easier to

record from, so their role on the conduction of the signal is known in detail. On the

other hand recording from Type II fibers is more difficult. However, according to

some anatomical observations their role is relatively minor compared to type I fibers

(Schnupp et al., 2011).

Many of these fibers exhibit spontaneous activity, which means even if there is no

stimulation from the hair cells, there are spikes occuring. The spontaneous firing rate

has a huge range of variation from as low as 0.5/sec to as high as 160/sec (Pickles,

2013).

AN fibers respond to pure tone stimuli and if there are no other stimuli present,
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these responses are always excitatory. Taking a look at just one instance of a re-

sponse to a stimulus might not explain the nature of the fibers response to it since

there is random behaviour in the firing patterns of these fibers. Every other trial for

the same procedure will give different results in terms of the exact spike times. But

the behaviour of these fibers can be characterized using post-stimulus-time-histograms

(PSTH), which are created by presenting the same stimulus multiple times and record-

ing the number of spike occurance in the same time bin. With this approach, the

patterns in the firing behaviour of the fibers can be observed. A typical PSTH of a

single auditory nerve fiber (Fig. 1.10) to a tone burst shows a sharp increase in the

activity to the onset of the stimulus. This response will then decrease slowly to a

steady rate until the end of the stimulus (Pickles, 2013). The spike occurances in the

bins where stimulus are not presented anymore are caused by the spontaneous firing

of the fiber.

Another powerful tool for examining the behaviour of the ANFs is the tuning

curve. Tuning curves are obtained by increasing the intensity of the tone burst until

there is a detectable increase in the firing rate. Doing this for multiple frequencies

will give the relationship between threshold and frequency. Fig. 1.11 shows different

examples of tuning curves. From the figures it can be seen that different fibers have

a tendency to fire more easily to a specific frequency. In other words, they are more

responsive to that frequency than to the other stimulus frequencies. This frequency is

known as the best frequency (BF) or characteristic frequency (CF) of that fiber. As

the characteristic frequency of the fiber increases, the sharpness of its curve becomes

more and more prominent on a log frequency scale, but in terms of absolute bandwith

the frequency tuning decreases at higher CFs.
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Figure 1.10: Recorded post-stimulus-time-histogram (PSTH) of an auditory nerve
fiber stimulated with a tone burst. Reprinted with permission of the Brill Publishers,
Figure 4.2 from Pickles (2013) c©2013.

Rate-level curves show firing rates as a function of stimulus intensity. For ANFs

the function has a sigmoidal shape where fibers saturate above at 20-50dB their

threshold. Below the CF, the slope of the response is steeper but for the above values

the curve gets shallower. The spontaneous rate (SR) of the fiber also affects the slope

of this curve. The slope gets shallower as the SR gets lower (Fig. 1.12).

The frequency resolution of ANFs for broadband stimuli and narrowband stimuli

is similar. When a stimulus consists of multiple frequencies presented to ANF simul-

taneoulsy, depending on the CF of the fiber, the strength of the phase locking for

individual frequency component of the stimulus would be different. A tuning curve

can be constructed from this information. It is found that this type of tuning curve

is similar to the ones constructed by presenting pure tone stimuli and measuring the

threshold of the fibers response Pickles (2013). On the other hand when the stimulus
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Figure 1.11: Tuning curves for different AN fibers. As the CF of the fiber gets
higher the sharpness of the frequency selectivity feature is increased. Reprinted with
permission of the Brill Publishers, Figure 4.3 from Pickles (2013) c©2013.
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Figure 1.12: Rate-level curves of ANFs. Reprinted with permission of the Brill Pub-
lishers, Figure 4.6 from Pickles (2013) c©2013.

intensity increases the width of tuning curves gets wider. Although some level of

frequency resolution is preserved, the sharp tuning response of the curve gets less

prominent as the intensity increases.

1.3 Central Auditory System

The mammalian central auditory system incorporates multiple subcortical nuclei (Fig.

1.13). Each stage has different types of physiological and anatomical structures,

therefore applying different types of processing to the neural representation of the

sound signal propagated from lower stages of the auditory system. Features are

progressively extracted at different stages in terms of identifying the sound content

and localization of the source. Information is propagated through higher levels of the

system in multiple parallel pathways. Later, these features are combined to create

an ‘auditory object’ that can be defined as the representation of a sound in the brain

grouped as coming from a common source.

Auditory nerve fibers enter the cochlear nucleus via the VIIIth cranial nerve and
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Figure 1.13: Main ascending pathways of the mammalian central auditory system.
AVCN, anteroventral cochlear nucleus; PVCN, posterovenrtal cochlear nucleus; DCN,
dorsal cochlear nucleus; LSO, lateral superior olive; MSO, medial superior olive;
MNTB, medial nucleus of the trapezoid body; VNLL, ventral nucleus of the lat-
eral lemniscus; DNLL, dorsal nucleus of the lateral lemniscus; IC, inferior colliculus;
MGB, medial geniculate body. Reprinted with permission of the Brill Publishers,
Figure 6.12 from Pickles (2013) c©2013.
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bifurcate upon entrance. The ascending branch enters the anteroventral cochlear

nucleus (AVCN) and the descending branch enters the dorsal cochlear nucleus (DCN)

through the posteroventral cochlear nucleus (PVCN). Feature extraction starts in

the cochlear nucleus. Then, localization and identification cues propagate to higher

levels via several parallel pathways. Depending on the type of the cell they rise from,

some of these streams are mainly responsible for carrying the sound identification

features such as temporal variation and spectral information while others transfer fine

timing information which is crucial for sound localization. AVCN mainly projects to

the superior olivary complex while PVCN projects to ventral nucleus of the lateral

lemniscus (VNLL) and superior olivary complex. The superior olivary complex is

involved in the sound localization process by comparing the timing and intensity of

inputs coming from both ipsilateral and contralateral VCN parts. On the other hand,

DCN projects the vertical plane localisation cues to the contralateral inferior colliculus

(IC). IC integrates the features which are propagated through parallel streams. The

MGB acts like a relay structure: the ventral part of MGB projects the information

coming from IC to the primary auditory cortex, while the medial and dorsal part of

MGB projects to the area surrounding the primary auditory cortex.

Since this research is mainly focused on the ventral part of the cochlear nucleus,

processing in the other areas of the central auditory system are not going to be

explained further.

1.4 Cochlear Nucleus

The cochlear nucleus is the first stage in the central auditory system that the auditory

nerve fibers make connections to. Based on the anatomical, physiological structure
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and functionality, the nuclei are divided into two main parts: dorsal and ventral.

The ventral side of the cochlear nucleus is further divided into anterior and posterior

parts. The frequency mapping introduced in the basilar membrane is reflected in the

cochlear nucleus by the pattern of innervation of the AN fibers. The main physi-

ological structure and the tonotopic mapping of the cochlear nucleus is shown Fig.

1.14. From the figure it can be seen that the DCN has more capability to do higher

frequency processing than VCN (Ryugo and Parks, 2003).

Auditory nerve fibers have similar physiological properties, therefore modelling

their behaviour as a population can be achieved by adding small variations to the

same type of model. In contrast, the cochlear nucleus has several different type of

cells which show different behaviours. This diversity makes the cochlear nucleus an

important feature extractor. Each cell type selectively emphasizes different aspects

of the sound signal to form sound localization, temporal fluctuations and frequency

spectrum cues (Pickles, 2013). However, the processing applied to elevate one aspect

of the sound usually degrades the other features of the sound signal. For example,

to locate the source of a sound signal, exact timing cues from both ears is needed

for comparison. There are different type of cells in the CN which contribute to

enhancing the timing information. However while this cue is extracted by these cells

by firing primarily on the onset of the signal, the complex spectral information is

lost. Therefore, the multiple parallel pathways of the CN using different cell types is

an advantage. The distinction between the functions of these parallel pathways (i.e.

sound identification and sound localization cues) becomes less prominent as features

reach to the upper levels of central auditory system since the features are combined

and get more complex in structure.
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Figure 1.14: Three main compartments of the mammalian cochlear nucleus. The
projection of afferent AN fibers and the tonotopic mapping is also shown. ANR,
auditory nerve root; AVCN, anteroventral cochlear nucleus; DCN, dorsal cochlear
nucleus; PVCN, posteroventral cochlear nucleus. Reprinted from Ryugo and Parks
(2003) c©2003, with permission from Elsevier.
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There are two main methods of classification of cell response types in the cochlear

nucleus: PSTH based and response map based schemes. These methods emphasize

different aspects of the responses. PSTH based classification shows the temporal firing

patterns of the cell, while response maps emphasize more on receptive field properties

that shows the excitatory and inhibitory frequency bands (Shofner and Young, 1985).

Different behaviours of PSTHs shown by VCN cells can be seen in Fig. 1.15.

Another useful tool to investigate the response behaviour of cells is the coefficient

of variation (CV). It is calculated by taking the ratio of the standard deviation of

inter spike intervals (ISI) with respect to mean ISIs. CV shows the irregularity of

the firing patterns of cells’ reponses to tone bursts. Young et al. (1988) investigate

the VCN cells’ regularity of firing and showed that it is a useful tool to distinguish

different type of cells.

Chopper type cells exhibit regular firing responses with consistent intervals to a

stimuli regardless of its frequency (Rhode and Smith, 1986). This chopping behaviour

may persist through the response or it can attenuate through time and is followed by

random firing behaviour. Chopper responses are the most common firing behaviour

seen in the VCN, and they are produced by stellate cells (Feng et al., 1994; Oertel,

1983). For positive square wave intracellullar current injections the cells respond

with regularly spaced action potentials (Oertel, 1983). This firing behaviour and its

relation to the amplitude of input can be seen in Fig. 1.16.

Primary-like responses show a sharp onset component and exponential decay to a

steady firing rate like those seen in AN fiber firing. Primary-like with notch behaviour

is similar to the primary-like but there is a brief notch after the onset. This notch

is a result of the refractoriness. Primary-like and onset type of units have similar
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Figure 1.15: Several distinct PSTH types seen in VCN cells. PL: primary-like pattern;
PLs: primary-like pattern seen in auditory nerve fibers with low spontaneous firing
rates (SR near zero); PL (low CF): primary-like response showing phase locking; Cs:
sustained chopper; Cs (low CF): sustained chopper showing phase locking; OI: onset
response; OL: onset response with small amount of late activity; OC: onset unit with
initial chopper behaviour; Olf : onset unit with low CF; PLN: primary-like with notch.
Reprinted with permission of The American Physiological Society, from Rhode and
Smith (1986) c©1986.
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Figure 1.16: Current-voltage relationship of stellate cells. Until a threshold of 0.3 nA,
the current and membrane voltage has fairly linear relationship. When the 0.3 nA
threshold is exceeded the cell begins to fire regularly. The frequency of firing is pro-
portional to the the magnitude of input current pulse. Republished with permission
of Society for Neuroscience, from Oertel (1983) c©1983; permission conveyed through
Copyright Clearance Center, Inc.
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responses. The difference is onset type cells do not fire as much as primary-like cells

after the initial spike. Onset type cells divide into subtypes: OI, OL and OC. Although

these subtypes’ responses are not diverse from each other too much, including them

in this chapter is important in terms of explaining the diversity of responses of cells in

VCN. OI is the classic onset type response. OL presents small amount of late activitiy

after the initial spike. OC is an onset unit with a weak chopping behaviour after the

initial spike. Both onset and primary-like cells show strong phase-locking behaviour

which helps preserve timing information. This information is used for sound location

estimation by the upper stages of the central auditory system. Bushy cells shows

primary-like type of behaviour (Feng et al., 1994; Rhode et al., 1983; Rhode and

Smith, 1986). Intracellular recordings done by Oertel (1983) are shown in Fig. 1.17.

In this study, mostly PSTH based methods are conducted so the emphasis will be

more on this method instead of response maps in following sections.

1.4.1 Projections of the Cochlear Nucleus to the Central Au-

ditory System

Specific cell types in the cochlear nucleus project to a specific parts in the upper levels

of central auditory system (Cant and Benson, 2003). These pathways are mapped

by injecting intracellular tracers and checking the axonal branching patterns or using

extracellular tracing techniques. The projections of cochlear nucleus can be seen in

Fig. 1.18.

Cells types are named according to the studies of Osen (1969) and Brawer et al.

(1974). In the ventral side of CN main cell types are identified as bushy cells (spherical

and globular), multipolar or stellate cells (d-stellate and t-stellate), octopus cells,
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Figure 1.17: Current voltage relationship of bushy cells. After the threshold value,
the cell fires only at the beggining of the stimuli and after that the membrane voltage
returns to a steady state value proportional to the magnitude of external current
input. The black dots indicate the final value of the membrane voltage at the end
of the stimuli while the white dots shows the peak voltage of the hyperpolarization.
Republished with permission of Society for Neuroscience, from Oertel (1983) c©1983;
permission conveyed through Copyright Clearance Center, Inc.
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Figure 1.18: The cochlear nucleus’ projections to the ascending auditory pathways.
AVCNa, anterior part of the anteroventral cochlear nucleus; AVCNp, posterior part of
the anteroventral cochlear nucleus; CN, central nucleus of the inferior colliculus; DAS,
dorsal acoustic stria; DC, dorsal cortex of the inferior colliculus; DCN, dorsal cochlear
nucleus; DMPO, dorsomedial periolivary nucleus; DNLL, dorsal nucleus of the lat-
eral lemniscus; EC, external cortex of the inferior colliculus; IAS, internal acoustic
stria; IC, inferior colliculus; INLL, intermediate nucleus of the lateral lemniscus; LSO,
lateral superior olivary nucleus; mc, magnocellular division of the medial geniculate
body; MGB, medial geniculate body; MNTB, medial nucleus of the trapezoid body;
MSO, medial superior olivary nucleus; PGCL, lateral paragigantocellular nucleus;
PnC, caudal pontine reticular nucleus; PnO, oral pontine reticular nucleus; PO, peri-
olivary nuclei; pm, posteromedial part of the ventral nucleus of the lateral lemniscus;
PVCNa, anterior part of the posteroventral cochlear nucleus; PVCNp, posterior part
of the posteroventral cochlear nucleus; sag, sagulum; SC, superior colliculus; SPN,
superior paraolivary nucleus; TB, trapezoid body; VCN, ventral cochlear nucleus;
VLMN, ventrolateral medullary nucleus; VLTg, ventrolateral tegmental area; vm,
ventromedial part of the ventral nucleus of the lateral lemniscus; VNLL, ventral nu-
cleus of the lateral lemniscus. Reprinted from Cant and Benson (2003) c©2003 with
permission from Elsevier.
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small cells and granule cells. In the dorsal part, fusiform cells, giant cells, granule

cells and some types of small cells can be found. The classification of these cells are

based on their distinct morphologies and their response to tone stimuli. Projections

of these various cell types to the central auditory system are shown in Fig. 1.19.

1.4.2 Principal Cells of the Ventral Cochlear Nucleus

1.4.2.1 Bushy Cells

Bushy cells have big round cell bodies with short dentritic branches which gives the

dentritic tree a ‘bushy’ look. (Fig. 1.20). Two types of bushy cells are identified in

the VCN according to the shape of their somas: spherical bushy cells and globular

bushy cells. Spherical bushy cells are also divided into two groups: large spherical

bushy cells which take their inputs from lower frequency AN fibers and small spherical

bushy cells which takes a full range of inputs from the cochlea.

Spherical bushy cells receive their excitatory AN inputs from a specialized synap-

tic connection called the Calyx of Held. This glutamatergic synapse has high number

of synaptic release sites and is able to succesfully follow rates of synaptic input.

Therefore it allows the postsynaptic neuron to follow the firing pattern of the presy-

naptic neuron. When depolarized, the membrane resistance decreases for bushy cells

which results in a decrease in membrane time constant. This aspect of bushy cells

is associated with low-threshold-conductance potassium channel and is not in favor

of repetitive firing (Feng et al., 1994). However bushy cells can show irregular firing

activity after the initial spike. This firing behaviour does not show any relation with

the level of stimuli and might be related with the spontaneous firing of the cell. Com-

bining all of these aspects together, bushy cells show primary-like responses. The
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Figure 1.19: Specific CN cell types’ projections to the central auditory system. Abre-
vations are the same with previous figure with additions of; POL, lateral periolivary
group; POV, ventral periolivary group. Reprinted from Cant and Benson (2003)
c©2003, with permission from Elsevier.
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Figure 1.20: Camera lucida drawing of bushy cell morphology. Reprinted with per-
mission of John Wiley and Sons, from Rhode et al. (1983) c©1983.

CV of these units are large which means the regularity of the firing is low. This can

be seen in the middle column of Fig. 1.21. Spherical bushy cells are also targeted

by glysinergic or GABAergic inhibitory inputs. These inputs are argued to adjust

the gain of the responses to AN inputs (Caspary et al., 1994). Globular bushy cells

exhibit a primary-like with notch PSTH profile. There are on the order of 36600

spherical bushy cells and 6300 globular bushy cells in the VCN (Young and Oertel

(2004)).

1.4.2.2 Stellate Cells

Identified as multipolar cells before, stellate cells have multiple dentrites extending

away from their soma in multiple directions. Stellate cells have two main types; T

stellate cells (also identified as Type I multipolar or planar cells) whose main axons

project through the Treapezoid body, and D stellate cells (also identified as Type II

multipolar or radiate cells) that project Dorsalward. T stellate cell dentrites project
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Figure 1.21: Some examples of bushy cell firing behaviour to different frequencie
stimuli. As the frequency of the stimulus increase the primary like behaviour becomes
more prominent. The middle column shows the CV of cells. The right column shows
the irregularity of the firing response to two same tone bursts presented back to back
to the same cell. Reprinted with permission of John Wiley and Sons, from Feng et al.
(1994) c©1994.
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parallel with AN fibers and end with highly branced tips. D stellate cell dentrites are

not aligned with AN fiber directions. Some D stellate and T stellate cell morphology

and current evoked responses are shown in Fig. 1.22.

Figure 1.22: Examples of D stellate (radiate) and T stellate (multipolar) cell morphol-
ogy and current evoked responses. Left column shows drawings of cell morphology
and locations in AVCN. Dots in yellow areas show the location of the cell. Dashed
lines represents the direction of ANFs. Right column shows the response of cells to
500 pA, 200 pA and -500 pA current injections. Raster plots are also included to
show the regularity of spiking. From Xie and Manis (2017).

T stellate cells exhibit onset behaviour and are excitatory, while D stellate show

onset chopper behaviour and are inhibitory (Rhode et al., 1983; Young and Oertel,

2004). D stellate cells receive more broadly tuned inputs then T stellate cells. D

stellate cells are innervated almost entirely by AN fibers, while T stellate cells receive
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their narrowly tuned excitatory input from AN fibers and other T stellate cells. T

stellate cells receive inhibitory inputs from D stellate cells and tuberculoventral cells

of the DCN. T stellate cells have larger input resistance, so small changes in the

input current produce large voltages that might result in the cell firing. T stellate

cells lack the low-voltage-activated potassium channels that hinder repetitive firing

in bushy cells. Experiments done on T stellate cells show that they have less synaptic

depression which makes them less adaptive. All of these factors contribute to the

repetitive firing behaviour of T stellate cells.

T stellate cells fire tonically to incoming stimuli. As the stimulus intensity in-

creases, the frequency of firing also increases and the firing rate of T stellate cells

are almost constant. These tonical firing properties makes T stellate cells suitable

for propagating the envelope information of the sound signal that is important for

speech recognition.

D stellate cells have higher current thresholds than T stellate cells that makes

them less excitable. As a result of this property, D stellate cells require powerful or

broadband input stimuli to evoke an action potential. This is consistent with the

hypothesis that D stellate cells integrate large number of weak AN inputs coming

from a range of CFs to provide robust inhibition (Xie and Manis, 2017).

There are on the order of 9400 stellate cells in the VCN. The ratio of T stellate

to D stellate cells is about 15:1 (Young and Oertel, 2004).

1.4.2.3 Octopus Cells

Octopus cells (Fig. 1.23) have two to three big dentrites running perpendicularly

across multiple AN fibers that indicates they are getting broadly tuned inputs like D
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stellate cells. But unlike D stellate cells, octopus cells show an onset type response.

Octopus cells exhibit a tightly locked spike to the onset of the stimulus. After the

initial spike, the membrane voltage stays in a depolarized state until the end of

stimulus (Fig. 1.24). Like bushy cells, octopus cells have low input resistance that

make it sensitive only to inputs coming at the same time (synchronous).

Figure 1.23: Camera lucida drawing of an octopus cell. Reprinted with permission of
John Wiley and Sons, from Rhode et al. (1983) c©1983.

1.5 Neural Modelling

Nerve cells receive their inputs through their dendrites. When these inputs causes

the membrane potential to exceed a certain threshold, the cell produces an action

potential (AP), which is also referred to as a spike. The underlying mechanism

of creation of these APs can be understood by inspecting ionic changes governed
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Figure 1.24: Octopus cell response. Left column shows the PSTH of the response
to stimuli with 75 and 25 repetitions respectively. The middle column shows the
depolarization behaviour of the membrane after initial spike. Right column shows
the response to two tones presented back to back. Reprinted with permission of John
Wiley and Sons, from Feng et al. (1994) c©1994.

by channels in the membrane. In 1952, by using voltage clamping techniques and

blocking specific types of ion channels with pharmacological agents on squid giant

axon, Hodgkin and Huxley came up with a quantitative model (Fig. 1.25) that

explained the characteristics of membrane voltage changes.

According to Hodgkin and Huxley, the total membrane current can be defined as

the summation of ionic and capacitive currents,

Im(t) = Iionic(t) + Cm
dV (t)

dt
. (1.1)

The ionic current consists of two major time and voltage dependent ionic currents,

Na+ and K+, and a leakage current;

Iionic(t) = INa+ + IK+ + ILeak, (1.2)
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Figure 1.25: Equivalent circuit model of Hodgkin-Huxley model. gNa+ and gK+ are
voltage dependent sodium and potassium conductances, Cm is membrane capacitance,
ENa+ , EK+ and ELeak is reversal potentials.

while the change in the individual ionic currents is governed by;

Ii(t) = gi(V (t), t)(V (t)− Ei), (1.3)

where Ei is the reversal potential of that particular ion, and gi is the conductance of

the ion channel that depends on time and the membrane voltage.

According to the model, the ionic potassium current can be described as;

Ik(t, V ) = gk(t, V )(V − Ek) (1.4)

The conductance of the potassium channel is:

gK(t, V ) = gKn
4(t, V ). (1.5)
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The ionic conductance gK is defined by a maximum conductance value gK multi-

plied by a gating particle that indicates the fraction of open ion channels.

The rate of change of the activating gating particle n is defined by,

dn

dt
=
n∞ − n
τn

, (1.6)

where n∞ is the steady state value of the gating particle and τn is the time constant:

τn = (αn + βn)−1. (1.7)

The rate constants αn and βn can be defined as:

αn =
0.01(10− V )

exp
10− V

10
− 1

(1.8)

βn = 0.125exp
−V
80

(1.9)

The same set of equations can be written for Na+ current as,

INa+(t, vm) = gNa+(t, V )(V − ENa+) (1.10)

gNa+(t, V ) = gNa+m
3(t, V )h(t, V ) (1.11)

The difference for the Na+ ion channel is that the conductance is governed by two

gating particles m and h. m is an activation particle and h is an inactivation particle.

For a depolarizing input, the h particle closes the channel and m particle opens the
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channel. All three m particles and the h particle have to be open for the channel to

conduct.

dm

dt
= αm(1−m)− βmm (1.12)

dh

dt
= αh(1− h)− βhh (1.13)

m∞ =
αm

αm + βm
(1.14)

τm = (αm + βm)−1 (1.15)

h∞ =
αh

αh + βh
(1.16)

τh = (αh + βh)
−1 (1.17)

αm =
0.01(25− V )

exp
25− V

10
− 1

(1.18)

βm = 4exp
−V
18

(1.19)

αh = 0.07exp
−V
20

(1.20)
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βh =
1

exp
30− V

10
+ 1

(1.21)

The change in the activating and inactivating gating particles of K+ and Na+ ionic

currents are shown in Fig. 1.26.

Figure 1.26: The change in the (a) time constants and (b) steady state values of the
gating particles regarding to the change membrane voltage.

All of these individual components are summed to calculate the membrane poten-

tial for the Hodgkin-Huxley model,

Cm
dV

dt
= gNam

3h(ENa − V ) + gKn
4(EK − V ) + gleak(Vrest − V ) + Iinj(t) (1.22)

where Cm is the membrane capacitance, gleak represents the membrane leakage con-

ductance, Vrest is the membrane resting potential and Iinj is the injected current.

Hodgkin and Huxley assigned parameter values such as EK = 50 mV, ENa = -77 mV,

Erest = -54.4 mV and gK = 36 mS/cm3, gNa = 120 mS/cm3, gleak = 0.3 mS/cm3 to

match model responses with the physiological data. The K+ current depolarizes the

membrane (EK = 50 mV) while Na+ current hyperpolarizes (ENa = -77 mV) it.

This model can reproduce various phenomena of the membrane potential and
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can be tested for different inputs such as direct current injection, synaptic inputs

etc. Although it is a computationally expensive model, since it succesfully captures

the membrane voltage behaviour, it has been used extensively for modelling neural

dynamics.

1.6 Synaptic Modelling

In the Hodgkin-Huxley model, voltage gated ion channels located in the membrane

are modelled. But in the membrane of the nerve cells there are several other different

types of ion channels. One of the most important type of channel is the synaptic

channel that allow for inter-neuron communication and computation.

The synaptic process consist of several stages. After the action potential travels

along the axon of the presynaptic cell it reaches a synaptic terminal. At this loca-

tion neurotransmitters are released into the synaptic cleft between the presynaptic

cell and the post-synaptic cell. These neurotransmitters then bind to the receptors

on the dentrites of the postsynaptic cells. Depending on the transmitter type, the

connection between pre and post synaptic cells are excitatory or inhibitory. The

main transmitters used by cortical neurons are GABA (inhibitory) and glutamate

(excitatory).

The synaptic conductance can be modelled as:

Isyn(t) = gsyn(t)(V − Vrev), (1.23)

where V is the membrane voltage and Vrev is the reversal potential. Unlike the voltage-

gated ion channels mentioned before, gsyn is dependent on the state of the presynaptic
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neuron that depends on the transmission and binding of neurotransmitters at the

postsynaptic cell.

The most common way to model the change in gsyn is changing by the conductance

only when a presynaptic neuron spikes. Each spike alters this conductance, which can

be modelled as an exponential function. This assumption is based on the whole cell

excitatory-post-synaptic-current (EPSC) and inhibitory-post-synaptic-current(IPSC)

recordings from neurons showing such exponential behaviour shown in Fig. (1.27).

Depending on the receptors mediating the post-synaptic currents, this exponential

change can be fitted as a first order exponential decay, alpha functions or double

exponential functions. AMPA and GABAA receptors has fast kinetics with lower rise

and decay times. Therefore modelling them with a first order exponential decay is

appropriate. On the other hand NMDA mediated currents has fast rise time and slow

decay time while GABAB mediated currents are observed to have long rise and decay

time.

Figure 1.27: Whole cell recordings of AMPA, NMDA, GABAA and GABAB mediated
currents. Reprinted with permission of the MIT Press, Figure 1.2 from Koch and
Segev (1998) c©1998.
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In most of the cases, postsynaptic neurons get their inputs from multiple presy-

naptic neurons. For these cases, the change in conductance can be modelled by adding

each neuron’s spike train outputs together and convoluting them with the exponential

functions depending on the nature of the synaptic input (Fig. 1.28).

Figure 1.28: (A) Modelling the synaptic convergence. Inputs coming from different
sources connects to different points at the dentrites of postsynaptic neuron. This can
be modelled as sum of outputs of presynaptic neurons that are represented as delayed
spike trains. (B) A demonstration of synaptic processing. Two inputs are summed
and convoluted with and exponential function and given the Hodgkin - Huxley type
neuron as input. The resulting membrane voltage change can be seen at the bottom
figure. Reprinted with permission of Cambridge University Press through PLSclear,
from Carnevale and Hines (2006) c©2006.
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Chapter 2

Modelling Background

2.1 Auditory Periphery Model

To create detailed neural network models that are capable of capturing the behaviour

of the cochlear nucleus, one has to incorporate realistic models of the earlier stages

in the auditory system. Auditory periphery modelling is a well established research

area that has decades of history. The mechanical processes of middle ear, the non-

linearity of the cochlea and the synapse mechanism between hair cells and AN has

been inspected through various in vivo acoustical experiments. In the early studies

of AN modelling, AN spiking behaviour is described as a renewal process. According

to this approach, the spiking behaviour is only dependent on the timing of the last

spike, earlier spikes does not have any effect on this process. This kind of spiking

behaviour can be modelled as a Poisson process with added recovery effects (abso-

lute and relative refractory periods). According to the Poisson model, the ISI’s are

distributed exponentially and a refractory period can be included by adding an offset

to the exponential distribution. If we want to attribute this behaviour to a synaptic
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mechanism between an IHC and the AN, it can be characterized by a large number of

synaptic vesicles with a small probability of release. To make the model’s behaviour

resemble to the actual processing more closely in this specialized synapse, recovery

effects must be included. The recovery effects include the absolute refractory period,

where an ANF will not generate any spike events, and the relative refractory period,

where an ANF will have a reduced probability discharging..

In 1993, Laurel H. Carney came up with a phenomenological model for the audi-

tory periphery (Fig. 2.1). This model was an extention of their earlier 1988 model.

The main aim of this model was to produce realistic mean discharge rates and tem-

poral properties in response to different sound pressure level (SPL) of sound stimuli.

The Carney model consists of various stages that implement the different levels

of the auditory periphery. The basis of this model was to implement the compressive

nonlinearity of the basilar membrane as a narrow band filter. Fluctuations in the

input sound level creates a damping effect on the gain of this filter. As the level of

input increases, the bandwith of the filter also increases. This damping effect was

implemented using a saturating feedback mechanism. This allows the model to make

a connection between the change in the mean rate temporal response patterns of AN

and the SPL of input stimuli. The output of the filter is delayed to simulate the

travelling wave delay that occurs along the length of the basilar membrane.

After the initial cochlear filtering stage, the remaining feedforward path imple-

ments the IHC and IHC-AN synapse. The IHC is modelled by a saturating non-

linearity (hyperbolic tangent) that characterizes the IHC input/output functions and

two lowpass IIR filters. The adaptation stage regulates the discharge rate of the fiber.

The synapse is implemented as a time varying three stage diffusion model. The last
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Figure 2.1: Carney (1993) model of auditory periphery. Reprinted with permission
of Acoustic Society of America, from Carney (1993) c©1993.
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stage takes the output of the IHC-AN synapse and generates a spike train using a

Poisson discharge generator. The absolute refractory period is constant and the rela-

tive refractory period is implemented as a discharge - history effect that incorporates

time dependency using the sum of two exponentials. Outputs produced by this model

at different stages are shown in Fig. 2.2.

The model was able to capture the temporal processing and average firing rate of

ANFs using simple tone bursts with frequencies different than the CF of fiber and to

complex stimuli like wideband noise. The two-tone suppression phenomenon can be

defined as one tone’s reducing the basilar membrane response to the other tone when

presented together. The model was not able to simulate two-tone suppresion effects.

So rate and temporal responses to stimuli that has energy dominated by frequencies

other than CF cannot be produced correctly by this model. Also the simulations

made with this model were limited with low CF, high SR ANFs.

To capture the accurate neural representation of complex stimuli like speech sig-

nals, nonlinear interactions between frequency components are important. Zhang

et al. (2001) is an extention of Carney (1993) that focuses on implementing nonlinear

cochlear gain and bandwidth changes that occur with sound level, level dependant

phase property and two-tone suppression. All of these properties are attributed to

the active cochlear amplifier. The Zhang et al. (2001) model aims to capture these

properties with a single mechanism.

For stimuli that consist of different frequency components, two-tone suppression

effects the response in a drastic way. To implement this property in the model,

the feedback control mechanism in the Carney (1993) is replaced with a wideband

feed-forward control path. This allows the model to be able to capture the two-tone
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Figure 2.2: Outputs of different stages of Carney (1993). An ANF model with 800
Hz CF is subjected to 25 ms long, 800 Hz input stimulus with a 2.5 ms rise and fall
time. Reprinted with permission of Acoustic Society of America, from Carney (1993)
c©1993.
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Figure 2.3: Comparison of PSTH’s between recordings and model outputs for different
SPL’s. Real ANF recordings were done by a previous study of Carney. Reprinted
with permission of Acoustic Society of America, from Carney (1993) c©1993.

suppression by adjusting the suppression tuning to be broader than the excitatory

tuning. The model is shown in Fig. 2.4.

There are two main paths in the model: a signal path and a control path. The

signal path consists of a cascaded time-varying narrowband filter and a linear filter.

Time-varying narrowband filter is a third-order gammaband filter. The linear filter

is a first-order gammatone filter. The linear filter is introduced to eliminate the dc

component resulting from the asymetriccal response of the narrowband filter. The

gain and bandwidth of narrowband filter is changed according to the control signal.

The control path consists of a time-varying wideband filter that is implemented

as third-order gammatone filter, a symmetrical nonlinear function followed by an

asymmetrical nonlinear function to characterize the compression dynamics of the

cochlear amplifier. A final nonlinear stage controls the level of compression. The

wideband filter has more bandwidth then the filter in the signal path.

The IHC model is implemented as a logarithmic compressive function followed by

a low pass filter to represent the low pass filtering effect of the IHC. The synapse model
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Figure 2.4: Zhang et al. (2001) auditory periphery model.Reprinted with permission
of Acoustic Society of America, from Zhang et al. (2001) c©2001.
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used in this study was a simplified version of the synapse model used in Carney (1993)

model. The output of the model is a Poisson process modified to include refractory

effects. The results taken from different stages of the model is presented in Fig. 2.5.

The compression effect gets more prominent as the CF of the fiber increases. This

can be seen from the output of the signal path Psp(t). This model also produces the

adaptation property since the model can fire more on the onset of the signal and firing

settles down to a steady level in exponential manner.

Since this model is phenomenological, the parameters are fitted in a way to cap-

ture the processes that happen in the AN fibers instead of the actual physiological

mechanism of the fibers. This model, again, included only high spontaneous rate

fibers. Also some properties of AN fiber responses and BM mechanisms such as tails

of tuning curves and simple-tone interference which can be explained by other ap-

proaches are not addressed in this study. Both the Carney (1993) and Zhang et al.

(2001) models do not include middle ear or outer ear effects on the stimuli.

In the Bruce et al. (2003) model, a middle ear filter is added to Zhang et al.

(2001) model and modifications are made to implement OHC and IHC impairment

(Fig. 2.6). The symmetric nonlinearity after the wideband filter of the control path

is removed and its effect is compensated for with a linear scaling of 4103. The OHC

linear filter cutoff frequency is decreased from 800 Hz to 600 Hz. To implement the

OHC impairment, a scaling factor COHC is added at the end of the control path.

The value of COHC is between 0 and 1, lower values indicate more impairment. The

OHC impairment effects can be seen in Fig. 2.7. The model also predicts the IHC

impairment by introducing a scaling factor, CIHC after the narrowband filter section

on the signal path. By doing this the IHC impairment effect on elevated threshold
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Figure 2.5: Results of three different CF fibers of Zhang et al. (2001) model taken
from different stages of model. The stimulus is 60 dB tone burst presented for 25 ms
with a fall and rise time of 2.5 ms. Reprinted with permission of Acoustic Society of
America, from Zhang et al. (2001) c©2001.
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curves can be achieved while keeping the saturation potential at the same value to

retain maximum discharge rate.

Figure 2.6: Bruce et al. (2003) auditory periphery model. Reprinted with permission
of Acoustic Society of America, from Bruce et al. (2003) c©2003.

In Zilany and Bruce (2006) model, the signal path is divided into two main path-

ways (Fig. 2.8) to capture the nonmonotonic behaviour of AN fibers such as com-

ponent 1 - component 2 (C1/C2) transition, peak splitting and BF shift. When AN

fibers are subjected to high level stimuli there is a sharp transition in the phase-level

function. C1 is defined as the low level response that occurs before the phase shift

and C2 is the high level response occuring after the phase shift. According to the
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Figure 2.7: OHC impairment effects on AN tuning curve. As the impairment gets
worse, the tuning curve gets more broader and the threshold gets higher. Also there
is a slight shift in the best frequency (BF) of the AN fiber. Reprinted with permission
of Acoustic Society of America, from Bruce et al. (2003) c©2003.

C1/C2 transition hypothesis, the C1 component is narrowly tuned and dominates the

low level response while the C2 component is broadly tuned and is more prominent

at a high level response. The C2 component has a 180 phase difference with respect

to C1, so when both of them are the same amplitude, they cancel each other. This

creates the C1/C2 transition phenomenon. In the model this is implemented as a

narrowband chirp filter (C1) and a broadly tuned linear filter (C2) instead of using

one narrowband filter after middle ear stage as in Bruce et al. (2003). The C1 filter

is characterizes low and medium level stimuli responses. The bandwith and the gain

of the C1 filter is regulated by the control band. The C2 filter, followed by an invert-

ing nonlinearity, characterizes high level stimuli responses. The control path and the

remaining stages in the model are almost the same with some minor changes on the

parameters.
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Figure 2.8: Zilany and Bruce (2006) auditory periphery model. Reprinted with per-
mission of Acoustic Society of America, from Zilany and Bruce (2006) c©2006.

Zilany et al. (2009) introduces the power law and exponential adaptation (Fig.

2.9). In biological systems, even though the short term behaviour can be exponential,

the long term behaviour can be better explained by power law dynamics. When

ANFs are subjected to a constant stimulus, adaptation occurs in the firing rate that

is understood to be caused by the IHC-AN synapse mechanism. This adaptation

behaviour is dependent on many parameters such as stimulus intensity and duration,

firing history, spontaneous rate of the fiber etc. Several attempts have been made

to model this adaptation behaviour, but these studies used the same exponential

adaptation in both the onset and offset responses. However, physiological data shows

there is a considerable difference between the onset and offset behaviour. For instance,

the offset firing rate might drop below the spontaneous firing rate and slowly recover

to the spontaneous rate.

Zilany et al. (2009) implements the onset and offset behaviours by adding a new

stage to the model. The rest of the model kept the same with a small change in the

cut-off frequency of the IHC filter from 3.8 kHz to 3 kHz. The IHC response is feed

to an exponential adaptation component with a rapid and short-term time constant.

This component is responsible for shaping the onset response of the system. The
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exponential adaptation component is followed by a slow and fast power law adaptation

element. Slow power law adaptation (PLA) is responsible for the improvement of the

offset response and recovery after the stimulus offset. The fast PLA contributes to an

unsaturated onset response and an additivity property seen in AN fibers behaviour.

The additivity behaviour of ANF responses can be explained as the change in the

firing rate in response to the change in the sound level of the sound, but does not

depend on the onset timing or subsequent change in the sound level. The adaptation

effects on the onset and offset of the response can be seen in Fig. 2.10.

Figure 2.9: Zilany et al. (2009) auditory periphery model. Reprinted with permission
of Acoustic Society of America, from Zilany et al. (2009) c©2009.

The model also introduces Fractional Gaussian Noise (fGn), which is a modified

version of white gaussian noise, to implement different SR classes. The fluctuating
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Figure 2.10: The Zilany et al. (2009) implementation of adaptation effects on the
output PSTH. There is a sharp drop at the end of the stimulus in previous model.
But the drop is down to spontaneous firing rate level which is not realistic as it can
be seen from the physiological data presented in panel (A). The new model exhibit
the notch at the end of the stimulus and the slow recovery to the spontaneous rate
firing. Reprinted with permission of Acoustic Society of America, from Zilany et al.
(2009) c©2009.
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fGn, placed before the slow PLA stage, prevent the SR rate from continuously adapt-

ing to zero. The fGn stage was placed before the slow PLA component since the

slow PLA stage does not change the dynamics of fGn significantly. If the fGn were

placed after the PLA components, the noise would have fill the notch after the offset

response so the recovery effect would be lost.

Three different parameter sets are used to implement three classes of SR: low (0.1

spikes/sec), medium (5 spikes/sec) and high (100 spikes/sec). This distribution of

SRs is in accordance with to physiological data from Liberman (1978) (Fig. 2.11).

Figure 2.11: Histogram of SR distribution comparison between Liberman (1978) and
Zilany et al. (2009). The fGn is arranged such that the SR distribution fits the data
from Liberman (1978). Reprinted with permission of Acoustic Society of America,
from Zilany et al. (2009) c©2009.

Studies show that the firing of ANFs is actually dependant on the history of firing

and the probability of the firing fluctuates over time. This aspect was added to the

model by implementing the fGn in the presynaptic adaptation section. The spike

generation was still modeled as a renewal process in Zilany et al. (2009) as a Poisson

spike generator.
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AN fiber excitation is achieved via a special kind of synapse between IHC and AN.

This synapse is able to fire at high rates and preserves temporal precision. In Bruce

et al. (2018) model, a new IHC - AN synapse model is introduced (Fig. 2.12). The

implementation of this synapse model into phenomenological AN model and changes

made in the previous synapse model used in Zilany et al. (2009) are shown in Fig.

2.12.

Figure 2.12: Illustration of Bruce et al. (2018) synapse model between ANF and IHC.
Reprinted from Bruce et al. (2018) c©2018, with permission of Elsevier.

According to Peterson et al. (2014) the spontaneous firing of the AN model can

be explained by 4 vesicle docking sites with redocking times (a new vesicle reaching

to an empty docking site) of 13.5 - 17 ms. Even though this approach can implement

the rapid exponential adaptation, it fails to implement the short term adaptation

component. The longer component of the double exponential refractory recovery is

suggested to be caused by a small number of vesicles with small release probability

(Peterson et al., 2014) and is modelled according to this. Later, they updated their

deterministic model with a probabilistic model. But this study was only focusing on
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Figure 2.13: Bruce et al. (2018) auditory periphery model. Panel B and C compares
the old model with the new one. The new model has updated synapse and spike
generator. Abbreviations: outer hair cell (OHC), inner hair cell (IHC), low-pass
(LP) filter, static nonlinearity (NL), characteristic frequency (CF), and inverting
nonlinearity (INV). Reprinted from Bruce et al. (2018) c©2018, with permission of
Elsevier.
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the spontaneous rate of ANFs. Bruce et al. (2018) expanded this model to be able

to produce sound driven AN fiber responses.

In the new model the spontaneous rate of AN fibers are sampled from a Gaussian

distribution with mean, standart deviation and limits given in Table 2.1. Reducing

the standard deviation of fGn and having a distribution of SR parameters provides

a whole range of SR rates. In the previous model, even though 3 distinct SR classes

were implemented, they were clustered into three groups (Fig. 2.14).

Table 2.1: SR distribution of different classes

SR class Mean Standart Deviation Limits

low 0.1 0.1 [10−3, 0.2]
medium 4 4 [0.2, 18]

high 70 30 [18, 180]

Even though the main focus of the thesis is VCN, the AN modelling part is also

important in terms of forming one of the basis of the neural encoding of sound signals.

Therefore the Bruce et al. (2018) model of ANFs used in this study is a powerful step

to create a detailed model for VCN microcircuits.

2.2 Rothman and Manis Cell Models of Ventral

Cochlear Nucleus

Rothman and Manis (2003c) created HH type neuron models for ventral cochlear

nucleus neurons by investigating the potassium (K+) channels. These currents reg-

ulate the cells behaviour to extract different features from the AN input such as

phase of the stimulus, fine temporal information, envelope modulation and stimulus
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Figure 2.14: Bruce et al. (2018) distribution of SR rates effect on rate level curves.
It can be seen from (A) and (B) that the new model has more ability to implement a
range of SR rates. When compared with physiological data, the model shows a similar
trend to real world data (Liberman, 1978). Reprinted from Bruce et al. (2018) c©2018,
with permission of Elsevier.
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intensity. Cells in VCN are able to do this because they have specialised mecha-

nisms like rapid synaptic receptor kinetics, dentritic filtering, coincidence detection

and specialized membrane currents. According to whole cell recordings taken from

the individually isolated VCN neurons, three main distinct K+ channels were identi-

fied: a high-threshold-delayed-rectifier-like current IHT, a fast inactivating current IA

and a slow-inactivating low-threshold current ILT. These channels regulate the spike

timing, the shape of the spikes, regularity and the adaptation properties. Depending

on how active the different channels are, individually or together, VCN cells show

different discharge behaviour. In Rothman and Manis (2003a) cells are classified as

Type I-c, Type I-i, Type I-t and Type II. Type I-c and Type II cells are the two main

response types. Type I-t (transient) is a Type I-c (classic) cell with an IA current.

Type I-i (intermediate) shows an intermediate character between Type I and Type

II. The typical responses of these distinctive cells are shown in Fig. 2.15.

K+ currents in Type I-c cells only consist of IHT currents. The arrow in Fig. 2.15

B1 indicates that Type I-t cell responses also involves IA. Isolated recordings show

that IA activates 15 mV below IHT and shows fast inactivation compared with other

current types. The arrowhead in Fig. 2.15 B1 indicates that Type I-t cells have

hyperpolarization-activated inward current (Ih). Fig. 2.15 C1 shows a typical Type

II current clamp response. Unlike Type I-c cells, these cells have a strong presence

of ILT besides IHT. The effects of ILT on the voltage clamp recordings are indicated

by arrowheads. Fig. 2.15 D1 shows a typical Type I-i cell response, which is close to

Type II cell response, but ILT current effects are not as prominent as in Type II cell.

Each channel has a different type of effect on the firing behaviour and this con-

tributes to create different characteristics in cells. By blocking the other channels
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Figure 2.15: Four main types of voltage clamp responses observed in VCN neurons.
A1 - B1 - C1 and D1 shows whole cell recordings. Bottom figures shows the I-V
characteristics of cells. Reprinted with permission of The American Physiological
Society, from Rothman and Manis (2003a) c©2003.
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with receptor antagonists, Rothman and Manis (2003a) isolated individual channels

to inspect their effect on firing behaviour. According to the physiological data, ILT

is responsible for the hyper-conductance state after the initial firing in bushy cells

when it is excited with an external steady current injection. ILT contributes to the

cell’s ability to phase lock and act as a coincidence detector. IHT is detected in bushy

and stellate cells of the VCN. This channel allows cells to fire at a high rate since it

improves the rapid repolarization of the membrane.

In Rothman and Manis (2003b), kinetic analyses of these currents are made and

a set of differential equations are created to model the behaviours of the individual

channels. According to this study, the behaviour of IA can be defined with fourth

order activation kinetics (a4), and inactivates with two time constants to implement

its recovery from inactivation (a4bc). ILT also has a fourth order activation (w4) but

shows a slower inactivation. IHT has two individual activation particles (n2 + p), and

activation of these particles lead to two distinct currents.

Rothman and Manis (2003c) inspects how three K+ currents affect the firing

behaviour of the cells by using the differential expressions obtained from their previous

study to build a single compartment HH type model. This model also includes a fast

inactivating Na+ current (INa+), a hyperpolarization activated cation current (Ih), a

leakage current (Ileak), a synaptic current channel to include dentritic inputs coming

from other cells (Ie), and Iext to simulate the injected current mechanism. The change

in the membrane voltage is calculated as:

Cm
dV

dt
= −(IHT + ILT + IA + Ih + Ilk + Ie − Iext) (2.1)

where Cm is the membrane capacitance.
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The differential expressions govern the behaviour of the fast inactivating IA current

are given as:

IA = gAa
4bc(V − Vk) (2.2)

where gA is the maximum conductance and Vk is the reversal potential of K+ ions.

The activating and inactivating particles are changing according to:

a∞ = [1 + exp(−(V + 31)/6)]−1/4 (2.3)

b∞ = [1 + exp((V + 66)/7)]−1/2 (2.4)

c∞ = b∞ (2.5)

And the time constants for these particles are calculated as:

τa = 100[7exp((V + 60)/14) + 29exp(−(V + 60)/24)]−1 + 0.1 (2.6)

τb = 1000[14exp((V + 60)/27) + 29exp(−(V + 60)/24)]−1 + 1 (2.7)

τc = 90[1 + exp(−(V + 66)/17)]−1 + 10 (2.8)
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From the simulations, it is found that IA is responsible for the regulation of rate

of repetitive firing in Type-I cells.

The low-threshold K+ current ILT can be modelled as:

ILT = gLTw
4z(V − Vk) (2.9)

While the activation and inactivation particles are modelled such as:

w∞ = [1 + exp(−(V + 48)/6)]−1/4 (2.10)

z∞ = (1 − ζ)[1 + exp((V + 71)/10)]−1 + ζ (ζ = 0.5) (2.11)

The time constants for these particles are calculated as:

τw = 100[6exp((V + 60)/6) + 16exp(−(V + 60)/45)]−1 + 1.5 (2.12)

τz = 1000[exp((V + 60)/20) + exp(−(V + 60)/8)]−1 + 50 (2.13)

From simulations ILT is found to be responsible for the phasic response of Type-II

cells, which is in agreement with the physiological recordings.

IHT is mainly responsible for the repolarization of the membrane during the firing.
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The I-V relation of high - threshold K+ current IHT is:

IHT = gHT[ϕn2 + (1− ϕ)p](V − Vk)(ϕ = 0.85) (2.14)

The activating and inactivating particle behaviours are represented as:

n∞ = [1 + exp(−(V + 15)/5)]−1/2 (2.15)

p∞ = [1 + exp((V + 23)/6)]−1 (2.16)

The time constants for these particles are calculated as:

τn = 100[11exp((V + 60)/24) + 21exp(−(V + 60)/23)]−1 + 0.7 (2.17)

τp = 100[4exp((V + 60)/32) + 5exp(−(V + 60)/22)]−1 + 5 (2.18)

The fast Na+ current INa used in this model is obtained from other voltage clamp

recordings done in other studies. The I-V relation of this current is:

INa = gNam
3h(V − VNa) (2.19)

The activating and inactivating particle behaviours can be modelled as;

m∞ = [1 + exp(−(V + 38)/7)]−1 (2.20)
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h∞ = [1 + exp((V + 65)/6)]−1 (2.21)

And the time constants used in above equations are;

τm = 10[5exp((V + 60)/18) + 36exp(−(V + 60)/25)]−1 + 0.04 (2.22)

τh = 100[7exp((V + 60)/11) + 10exp(−(V + 60)/25)]−1 + 0.6 (2.23)

Like INa, the hyperpolarization-activated cation current Ih is modeled based on

other studies. The I-V relationship for this current is:

Ih = ghr(V − Vh) (2.24)

The activating particle r is modelled as:

r∞ = [1 + exp(−(V + 76)/7)]−1 (2.25)

The time constant for this particle is calculated as:

τr = 105[237exp((V + 60)/12) + 17exp(−(V + 60)/14)]−1 + 25 (2.26)

The leakage current used in this model is;

Ilk = glk(V − Vlk) (2.27)
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Table 2.2 shows parameters that are used to simulate the behaviour of different

type of neurons in VCN. Reversal potentials for the channels are; VK = −70 mV ,

VNa = +55 mV, Vh = −43 mV, Vlk = −65 mV.

Table 2.2: Model Parameters and Properties

Model Type
I-c I-t I-II II-I II

gNa, nS 1000 1000 1000 1000 1000
gHT, nS 150 80 150 150 150
gLT, nS 0 0 20 35 200
gA, nS 0 65 0 0 0
gh, nS 0.5 0.5 2 3.5 20
glk, nS 2 2 2 2 2
Vrest, mV −63.9 −64.2 −64.1 −63.8 −63.6
Rrest, MΩ 473 453 312 244 71
τm, ms 7.0 4.0 3.7 2.9 0.9
Vth, mV −38.3 −34.9 −51.2 −58.0 −62.2

S−50/−70, nS 0.3 0.3 5.0 12.6 49.5
gEθ @ 22◦, nS 2.0 2.2 2.8 3.2 8.6
gEθ @ 38◦ , nS 11 12 15 17 34

The model responses to a steady current injection applied using similar protocols

with in vitro studies are shown in Fig. 2.16.

Type I cells respond to a depolarizing current pulse with a regular firing. The IA

effect on the firing behaviour of Type I cells can be seen in Fig. 2.16 A and Fig. 2.16

B. The change in the firing rate of Type I cells are a strong indicator of IA presence.

Type II cells show a precise timed spike on the onset of the depolarizing input. The

membrane voltage stays in a depolarized state after the spike. The anodal break

spike seen at the end of the hyperpolarizing input is another characteristic indicator

of Type II model response.

Physiological recordings show that ILT is responsible for the Type II responses
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Figure 2.16: Rothman and Manis (2003c) type models of VCN neurons’ current clamp
responses to positive and negative current injections. Reprinted with permission of
The American Physiological Society, from Rothman and Manis (2003c) c©2003.
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(Rothman and Manis, 2003b). When ILT is blocked in the model, Type II cells begin

to show Type I responses (Fig. 2.17). The effect of ILT is also supported by the results

that the absence of other currents does not make a difference in the firing behaviour

of the cell to depolarizing current inputs.

Figure 2.17: Individual current effects on RM’03 Type II cells response. ILT is re-
sponsible for the firing behaviour of the Type II cells. Reprinted with permission of
The American Physiological Society, from Rothman and Manis (2003c) c©2003.

The membrane resistance (Rrest) is the inverse of membrane conductance which
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is calculated by summing all of the individual conductances when the membrane

is at rest. Type I cells have larger membrane resistances than Type II cells. The

membrane time constant τm is defined as the product of the membrane capacitance

and the membrane resistance. Higher membrane resistance leads to higher τm values

for Type I cells since the membrane capacitance is the same for all cell types. This is

important in terms of defining the cell’s behaviour on synaptic input trains. Rothman

and Manis (2003c) show effects of τm on the behaviour of Type I-c. Since Type I cells

have higher τm, they act as an integrator, while Type II cells shows a coincidence

detector behaviour (Fig. 2.18) when subjected to a subthreshold (gE = 0.5 gE) input

spike train.

Rothman and Manis (2003c) identified Type II cells as bushy cells and Type I cells

as stellate cells. Comparing the physiological data presented in the previous chapter,

PSTH responses, and regularity analysis of the modelled cells (Fig. 2.19), it can be

said that this classification is consistent.

2.3 Bushy Cell Responses to Vowel Stimuli

Blackburn and Sachs (1990) inspected representation of the vowel /ε/ in cat an-

teroventral cochlear nucleus neurons. They examined bushy and T stellate microcir-

cuit responses by creating rate-place and temporal-place representations. Rate-place

representations are created by plotting average discharge rate versus the best fre-

quency (BF) of units. Vowel formants can be seen as peaks in relevant BF locations

in these plots. Temporal-place representations quantify the phaselocking of ANFs to

vowel components. The frequency spectrum representation of the vowel /ε/ can be

seen in Fig. 2.20.
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Figure 2.18: RM’03 type cell models response to subthreshold synaptic inputs. (A)
shows the individual excitatory-post-synaptic-potential (EPSP) traces of Type I-c
and Type II cells to a single spike input. Type II cell’s EPSP decays faster and has
an afterhyperpolarization (AHP) component after the EPSP which is shown by the
arrowhead. (B) Two subthreshold synaptic inputs (one is moving and the other is
static) to show the EPSP summation responses of the cells. Type I-c cells show a much
longer summation interval than Type II cell. Type II cells show a significant drop
after the summation which is useful in terms of enhancing the coincidence detection
information. (C) shows the integration behaviour of the Type I-c model. Since the
Type II model has a small τm it is able to follow the input and preserve the timing
information of the spikes. Reprinted with permission of The American Physiological
Society, from Rothman and Manis (2003c) c©2003.75
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Figure 2.19: PSTH of RM’03 type cell models responses to subthreshold (gE = 0.5
gE) and suprathreshold (gE = 3 gE) AN like inputs. Type I cell shows a chopper like
response with regular firing. Type II cells show an onset response for subthreshold in-
puts and primary-like response for suprathreshold inputs. Reprinted with permission
of The American Physiological Society, from Rothman and Manis (2003c) c©2003.

Figure 2.20: Frequency spectrum representation of vowel /ε/. The arrows show the
formant frequencies: F1 = 512 Hz, F2 = 1.792 kHz, F3 = 2.432 kHz. Reprinted with
permission of The American Physiological Society, from Blackburn and Sachs (1990)
c©1990.
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Rate saturation causes a big problem for mean-rate representations of high SPL

sound stimuli. High SR fibers provide good mean-rate representation of vowel for-

mants in low SPL inputs. However, high SR fibers saturate at lower SPLs than low

SR fibers. Therefore, to create an accurate mean-rate representation of a broadband

complex stimulus, a selective listening process has been suggested (Delgutte, 1982;

Winslow and Sachs, 1987). According to this hypothesis, the rate processor would

need to listen to low SR inputs at high levels and high SR inputs at low levels.

Temporal-place representations of vowels are not affected by rate saturation. For

this information to be useful in the central auditory system it has to be protected or

coded in firing rates of CN neurons. Temporal-place representations are well preserved

in the bushy cell populations since they have primary-like responses. They have a

strong phase-locking characteristic which helps preserving this type of information.

To reflect the representation of sound signals among the population of cells, av-

erage localized synchronized rate (ALSR) is used. ALSR is computed as the average

firing rate of units which have their BF within one-quarter octave of the harmonic

frequency of stimuli (Blackburn and Sachs, 1990).

Another useful tool to investigate the population of cell responses to stimuli is

boxplots. Boxplots show the population distribution of average synchronized rates

to stimuli. An example boxplot created from ANF population response to vowel /ε/

can be seen in Fig. 2.22.

2.4 VCN Microcircuit Models

Two recent VCN microcircuit models are taken as a basis for this thesis. Eager (2013)

and Manis and Campagnola (2018) used modified neuron models of Rothman and
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Figure 2.21: Recorded ALSR responses of Pri and PriN units to vowel /ε/. Reprinted
with permission of The American Physiological Society, from Blackburn and Sachs
(1990) c©1990.

Manis (2003c) to create microcircuits that reside in the VCN. Eager (2013) focused

more on creating stellate microcircuits. The parameters used in this model are a

mix of physiological parameters obtained from in vitro studies and parameters which

are fitted to physiological recordings using optimization techniques. The stellate

microcircuit model used in this study is shown in Fig. 2.23.

Eager (2013) used the Zilany et al. (2009) model but took out the fGn to obtain a

fixed distribution of SR. The validity of the model responses are checked by inspecting

PSTHs, rate level curves and response maps. In his study, genetic algorithms were

used to fit the parameters by creating a cost function comparing the model responses

of cells to tones, noise and click stimuli to physiological data.

Manis and Campagnola (2018) used modified Rothman and Manis (2003c) cell

models according to their recent works (Xie and Manis, 2013, 2017; Campagnola and

Manis, 2014). The auditory periphery model used in this system is Zilany et al. (2009,
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Figure 2.22: Boxplot of ANF population response to vowel /ε/. horizontal axis
represents the CF of ANFs. The size of each box shows how strong the response of
ANFs within a bin of 0.133 octave to corresponding stimulus component frequency.
Formant frequencies of stimuli are indicated by horizontal arrows at the right side of
the figure. BF responses to the formant frequencies are indicated by vertical arrows
at the bottom of the figure. Reprinted with permission of Springer Nature, from
Sachs et al. (2002) c©2002.
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Figure 2.23: Eager (2013) model of stellate microcircuit in VCN. Unfilled triangles
indicate excitation, filled rectangle and circles indicate inhibition. From Eager (2013).
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2014). The network structure suggested by Manis and Campagnola (2018) can be

seen in Fig. 2.24.

Individual cell models are tested with current injections (Fig. 2.25) and a bushy

cell microcircuit (Fig. 2.26) is tested to see if the model responses are in agreement

with recorded data. Fig. 2.26 shows that DS cells provide broadly tuned and TV cells

provide sharply tuned inhibitory input to bushy cells. The third column shows that

bushy cells produce a strong AP to the onset of the stimulus. TV cells respond to the

tone burst with regular firing patterns. These results are consistent with physiological

data. The parameters used in Manis and Campagnola (2018) to create individual cell

models are based on Xie and Manis (2013) and given in Table 2.3. Reversal potentials

for channels are: VK = −84 mV, VNa = +50 mV, Vh = −43 mV, Vlk = −65 mV the

membrane capacitance Cm = 26 pF. Parameters used for TV cells are based on TS

model responses fit to physiological data from Kuo et al. (2012). Resulting reversal

potentials for TV cell’s channels are: VK = −81.5 mV, VNa = +50 mV, Vh = −43

mV, Vlk = −72 mV and the membrane capacitance Cm = 35 pF.

Table 2.3: Model Parameters and Properties

Model Type
bushy-II bushy-II-I tstellate bushy-I-II tuberculoventral

gNa, nS 1000 1000 3000 1000 5800
gHT, nS 58 58 500 150 400
gLT, nS 80 14 0 20 0
gA, nS 0 0 0 0 0
gh, nS 30 30 18 2 2.5
glk, nS 2 2 8 2 2
Vrest, mV -63.9 -64.2 -64.1 -63.8 -63.6
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Figure 2.24: Manis and Campagnola (2018) model of the VCN. Solid lines indicate
excitatory connections while dashed lines are inhibitory. The model takes channel
equations from NEURON and create cells in a Python environment. Parameters
used in this system to create cells and specific connectivity parameters can be found
in the repository; http://www.github.com/cnmodel. From Manis and Campagnola
(2018).
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Figure 2.25: Individual cell responses of Manis and Campagnola (2018); Xie and
Manis (2013); Rothman and Manis (2003c) to current injections. The numbers on
the bottom right of each figure indicates the temperature and the range of current
injection in nA. From Manis and Campagnola (2018).
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Figure 2.26: A microcircuit created with Manis and Campagnola (2018) modelling
platform. The first layer consists of 7 DS cells take input from 35 AN fibers with
various SR. The second layer has 6 TV cells taking excitatory inputs from 24 AN
fibers with low and medium SR. The inhibitory input from DS to TV is disregarded
for this simulation. The output bushy cell receives 3 excitatory AN inputs and receives
inhibitory inputs from TV and DS cells. The middle column shows the response maps
of cells to different frequency and amplitude tone stimuli. Third column shows a 76
dB 15kHz instance of the response map. From Manis and Campagnola (2018).
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The connection parameters between the cells are given in Table 2.4. and Table 2.5.

Rows indicate postsynaptic cell types while the columns represents the presynaptic

cells. Table 2.4 shows the number of presynaptic cells (rows) to connect to the single

postsynaptic cell (columns). Table 2.5 shows the variance of presynaptic cell frequency

range. The values indicates the sigma of lognormal distribution in units of octaves.

Table 2.4: Synaptic Convergence Parameters (number of cells)

Model Type
bushy tstellate dstellate octopus pyramidal tuberculoventral

ANF 3.3 6.5 35 60 48 24
dstellate 7 20 3 0 15 15
tstellate 0 0 0 0 0 0

tuberculoventral 6 6 0 0 21 0
pyramidal 0 0 0 0 0 0

Table 2.5: Synaptic Convergence Range Parameters (octaves)

Model Type
bushy tstellate dstellate octopus pyramidal tuberculoventral

ANF 0.05 0.1 0.4 0.5 0.1 0.1
dstellate 0.208 0.347 0.5 0 0.2 0.2
tstellate 0.1 0.1 0 0 0 0

tuberculoventral 0.069 0.111 0 0 0.15 0
pyramidal 0 0 0 0 0 0

Eager et al. (2004) created a TS microcircuit model to check the representation of

the vowel /ε/ in firing patterns of TS cells. They used the Heinz et al. (2001) ARLO

model as auditory nerve inputs and the Rothman and Manis (2003c) model as VCN

cell models. In their microcircuit, TS cells receive excitatory input from ANFs while

receiving inhibitory inputs from DS and TV cells. The inhibition recevied from DS

cells is wide-band and from TV cells is narrow-band. TV cells are modelled as Type

I-c, and excited by ANFs while receiving strong inhibition from DS cells. DS cells
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are modelled as Type I-II and receive wide-band inputs from ANFs. DS cells show

On-C response to tone stimuli. TS cells modelled as Type I-t.

They found that when TS cells are stimulated with only high SR ANFs, they

show chopper type responses. When inhibition from TV and DS cells are included,

the response turns into onset type. If low SR inputs are also added, the response

type becomes a transient chopper (Fig. 2.27). Using this configuration, their network

succesfully captured formant frequencies in its firing pattern (Fig. 2.28).

Figure 2.27: TS microcircuit response for different excitatory-inhibitory input con-
figurations. (A) High SR excitatory ANF input only. Chopper response is observed.
(B) Inhibition from TV and DS cells added to the configuration. Onset response is
obtained instead of chopper. (C) High SPL low SR ANF input only. (D) PSTH of
TS cells receive high and low SR ANF input and inhibition from DS and TV cells.
Transient chopper response is observed. From Eager et al. (2004).

One of the biggest challenges in network modelling research is the reproducibility
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Figure 2.28: (A) FFT spectrum of vowel /ε/. (B) Representation of vowel /ε/ in
Eager et al. (2004) in the firing profile of TS microcircuit. Arrows indicate formant
frequencies. From Eager et al. (2004).

of the network by other researchers. Eager (2013) used the Nordlie et al. (2009) model

summary table framework to represent parameters and protocols used in the model to

create VCN microcircuits. Manis and Campagnola (2018) stores parameters in table

format on their code repository so that researchers can easily access, see, or make

changes in the parameters. The problem faced while creating the network model

in this thesis was the modelling platform issue. In this thesis all of the synaptic

and channel mechanisms are built by the writer in MATLAB while the base studies

are using Python and NEURON. This makes some of the mechanisms used in other

models ambiguous and makes it difficult to reproduce the same results.
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Chapter 3

Methods and Results

In this thesis, a bottom-up approach is used to model microcircuits of the VCN.

First, individual cell models are tested by applying current injection. Then the

synapse model is tested by connecting ANFs with a bushy cell model to check if

correct membrane voltage changes are obtained. By using this synapse model, cells

are connected so that AN-like inputs can be presented to cell models to create and

compare PSTHs. After the cell model behaviour is confirmed by checking PSTHs and

regularity of firing, a small microcircuit is created to reproduce results presented in

Manis and Campagnola (2018). Each step is tested and compared with physiological

and simulation data presented in previous sections.
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3.1 Individual Cell Model Simulations

Cell models presented in Rothman and Manis (2003c) and Manis and Campagnola

(2018) are implemented using MATLAB 2016a on a computer with Intel R© CoreTMi7-

7700HQ CPU @ 2.80GHz with 16GB DDR4 RAM. Differential expressions that rep-

resent cells behaviour are written in a function called mainODE to be later solved by

a built-in ordinary differential equation (ODE) solver, ODE45, in MATLAB. In sim-

ulations, cells are kept in a resting state prior to applying the input stimuli. To find

values of resting state variables (membrane voltage and activating/inactivating gating

particles) the cell is simulated using random parameter set and without presenting

any input stimuli so that the system comes to the resting state. After a sufficient

simulation time has passed, final steady state values are stored in vector form to be

used in later simulations as initial values of variables.

Each cell model was tested by applying an external current (Iext) to simulate the

direct current injection procedure. In Chapter 2, Fig. 2.25 shows individual cell

models responses. Fig. 3.1 shows some cell types current injection simulation results.

The results are in line with those presented in Fig. 2.25.

3.2 Synaptic Process Simulations

After individual cell models are validated, synapse mechanisms are tested. The synap-

tic model used in this thesis is a simple exponential model. EPSPs caused by a single

synaptic input spike are modelled as an exponential decay with a time constant of 0.4

msec. Inhibitory-post-synaptic-potentials (IPSPs) are modeled as double exponential

functions with a rise time of 0.4 msec and a fall time of 2.5 msec. In the Manis and
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Figure 3.1: Current injection simulation results and comparison with results presented
in Manis and Campagnola (2018).
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Campagnola (2018) modelling environment, some built-in NEURON functions are

used. In their modelling platform, there are two types of synaptic models: a basic

synapse model which uses NEURON’s ‘exp2syn’ function and a more detailed synapse

model based on the synaptic model of Graham et al. (2001). The exp2syn function

created for this research is based on Carnevale and Hines (2006) exp2syn function from

NEURON. In NEURON, the ‘weight’ parameter is used to model individual spike’s

contribution to EPSPs/IPSPs. In this study ge is used for this purpose in mainODE.

The weight parameters used in Manis and Campagnola (2018) are provided in a table

format in their source code. But when weight parameters were directly implemented

in the code used in this thesis, the same results could not be obtained since the mod-

elling platforms are different and intrinsic mechanisms are working in different ways.

Therefore test code was written in Python so that the magnitude of each cell model

EPSPs can be recorded then the parameters in mainODE were tuned to get same

results in MATLAB.

To create a network out of individual cells, a synaptic model that is able to connect

multiple presynaptic cells to one postsynaptic cell (synaptic convergence) and connect

one presynaptic cell to multiple post synaptic cells (synaptic divergence) is needed.

The signal is propagated through the network in the form of spike trains. Presynaptic

neurons’ voltage outputs are turned into spike trains according to a threshold value.

The threshold value for the membrane voltage to be considered as a spike is −20

mV for all simulations. The exp2syn function takes spike train and connection type

(whether the connection is excitatory or inhibitory) as inputs and produces a signal

that represents the relevant conductance change in the postsynaptic neuron. The

function uses MATLAB’s built-in ‘filter’ function to convolve the spike train with the
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exponential function. This conductance change is modelled in the membrane voltage

Eq. 1.22 as Ie. An example of how exp2syn connects cells can be seen in Fig. 3.2.

Figure 3.2: Bushy cell membrane voltage change over time to 10 low SR AN inputs.

3.3 PSTH Responses of Cells

In Chapter 2 different cell types’ PSTH responses to tone bursts are presented. The

procedures used in Rothman and Manis (2003c) and Eager (2013) are followed to

recreate PSTH responses.

Type I-c cells show chopper response while Type II cells show primary-like re-

sponses. To see if the model mechanisms are working properly, PSTH responses of

Type I-c and Type II cells stimulated with 10 or 50 (Figures 3.4, 3.5, 3.8 and 3.9)

subthreshold AN inputs and 1 or 3 (Figures 3.6, 3.7, 3.10 and 3.11) suprathreshold
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AN inputs are checked. The model is presented with a 100 ms tone burst with rise/-

fall time of 2.5 ms. The stimulus has a frequency of 5 kHz with 30 to 60 dB SPL.

The CF of AN fibers are 5 kHz for all simulations. The ANF model parameters are

arranged in a way to not to have any IHC or OHC damage. The PSTH bin width

is 0.1 ms. The bin width used for calculating CV is 1 ms. PSTHs are created by

combining 500 trials.

The regular firing behaviour of Type I-c cells can be clearly seen in Fig. 3.3. Each

dot in the raster plot represent a spike in that particular time bin. The regularity

decreases with time and the firing becomes random close to the end of the stimulus.

Low CV values of Type I-c cells also indicates the firing is regular. The chopping

behaviour gets more prominent as the number of inputs increase.

Figure 3.3: Raster plot of Type I-c cell response to AN like inputs.

For subthreshold inputs, Type II cells show onset type response while for suprathresh-

old inputs, cells perform better at following the input response (primary-like re-

sponse). Higher CV values indicate the firing is not as regular as Type I-c cells.
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Figure 3.4: PSTH of Rothman and Manis (2003c) Type I-c cell response to 10 sub-
threshold AN inputs. Top figure shows the histogram of AN fibers.
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Figure 3.5: PSTH of Rothman and Manis (2003c) Type I-c cell response to 50 sub-
threshold AN inputs. Top figure shows the histogram of AN fibers.
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Figure 3.6: PSTH of Rothman and Manis (2003c) Type I-c cell response to 1
suprathreshold AN input. Top figure shows the histogram of AN fibers.
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Figure 3.7: PSTH of Rothman and Manis (2003c) Type I-c cell response to 3
suprathreshold AN inputs. Top figure shows the histogram of AN fibers.

97



M.A.Sc. Thesis - Melih YAYLI McMaster - Electrical Engineering

Figure 3.8: PSTH of Rothman and Manis (2003c) Type II cell response to 10 sub-
threshold AN inputs. Top figure shows the histogram of AN fibers.
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Figure 3.9: PSTH of Rothman and Manis (2003c) Type II cell response to 50 sub-
threshold AN inputs. Top figure shows the histogram of AN fibers.
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Figure 3.10: PSTH of Rothman and Manis (2003c) Type II cell response to 1
suprathreshold AN input. Top figure shows the histogram of AN fibers.
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Figure 3.11: PSTH of Rothman and Manis (2003c) Type II cell response to 3
suprathreshold AN inputs. Top figure shows the histogram of AN fibers.
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These results are in agreement with the results presented in Rothman and Manis

(2003c). This indicates that the mechanisms used in this thesis are working correctly.

The same procedures are used for testing updated Manis and Campagnola (2018) cell

types. Bushy cells show onset and primary-like responses to sub and suprathreshold

tone burst inputs like Type II cells do. TV cells show chopper responses similar to

classic Type I-c cell responses. Updated DS cell models show unexpected results in

these simulations. The cause of this should be inspected further.

3.4 Inhibition Effect on PSTH Responses

T stellate cells are one of the main cell types that propagates information to the upper

levels of the ascending auditory pathway. They take excitatory inputs from ANFs

and inhibitory inputs from DS and TV cells. In the previous section, PSTHs of Type

I-c cells are examined. However, these simulations only include the excitatory inputs

from ANFs. When an inhibitory input is presented to the cell along with excitatory

inputs, the cell response drastically changes (Fig. 3.14). When a Type I-c cell is

subjected to low SR ANF inputs with the same CF, it shows a chopping response,

but when an inhibitory input is also presented to the system, the cell exhibits an onset

type response. When both low SR and high SR inputs are presented with inhibition,

the response becomes an transient chopper since the firing is highly irregular (CV =

0.63175). Inhibitory input used in these simulations is a spike train with uniformly

distributed spike times.
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Figure 3.12: PSTH responses and CV of Manis and Campagnola (2018) bushy
cell model to (a) 10 subthreshold (b) 50 subthreshold (c) 1 suprathreshold (d) 3
suprathreshold medium SR ANF inputs.
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Figure 3.13: PSTH responses and CV of Manis and Campagnola (2018) TV cell model
to (a) 10 subthreshold (b) 50 subthreshold (c) 1 suprathreshold (d) 3 suprathreshold
medium SR ANF inputs.
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Figure 3.14: Type I-c cells PSTH response to different excitatory - inhibitory input
configurations. (A) Type I-c cell PSTH with 50 excitatory subthreshold low SR ANF
inputs. (B) PSTH with 50 low SR ANF excitatory and arbitrary inhibitory input.
(C) PSTH with 50 low SR and 50 high SR ANF excitatory and arbitrary inhibitory
input. (D) CV of the latest configuration.
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3.5 Response Maps of Manis and Campagnola (2018)

Type Cells

Manis and Campagnola (2018) type cell models are also tested by creating response

maps and comparing them with results presented in their paper. Response maps

are created by applying tone bursts with different frequencies and SPLs to cells with

a range of CFs. The connection parameters are based on Table 2.4. Manis and

Campagnola (2018) made a demonstration by creating a small microcircuti model

shown in Fig. 2.26. In this thesis, the same network structure is created. DS cells

receive 36 inputs from low, medium and high SR ANFs. TV cells receive 24 inputs

from low and medium SR ANFs. DS cells receive wideband excitation (σ = 0.4),

TV cells receive more narrowband excitation (σ = 0.1). This can be seen in response

maps. When compared with the response of TV cells, DS cell response map shows

the cell responds to a wider range of inputs. This behaviour is propagated to bushy

cells as a wideband inhibition and TV cells provide a more narrow band inhibition.

When presented with only 3 excitatory inputs from medium SR ANFs, bushy cell

demonstrates a sharply tuned response map characteristic. As inhibition coming from

DS and TV cells increased, the response map of bushy cell sharpens but eventually

the response becomes more sparse (Fig. 3.16). TV cells are modelled as Type I-c

cells for this simulations since the response map of Type I-c cell is sharper than what

is obtained in TV cell simulation.
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Figure 3.15: Manis and Campagnola (2018) type DS and TV cell response maps.
Right column shows an iteration of the simulation when the stimulus intensity is 75
dB and the frequency is 14.672 kHz. Top plot shows the membrane voltage of cells
and spike trains created from them. Middle panel shows the raster plot of AN inputs.
Bottom panel shows the input tone burst.
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Figure 3.16: Manis and Campagnola (2018) type bushy cell response map for different
inhibitory input configurations. (A) No inhibition, 3 suprathreshold AN inputs are
applied. (B) With inhibition from DS and TV cells multiplied by 0.1. (C) The
inhibitory multiplier raised to 0.25. (D) The inhibitory multiplier raised to 0.5.
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3.6 Simulation Results of Pri and PriN Cells Re-

sponse to Vowels

Blackburn and Sachs (1990) took recordings from Pri and PriN cell populations and

created ALSR response plots to 35 dB, 55 dB and 75 dB input stimuli. Earlier this

chapter, simulated Type II cell’s response is obtained as Pri for 1 suprathreshold ANF

input and PriN for 3 suprathreshold ANF inputs. Considering this, to investigate cell

types’ ALSR responses, either 1 or 3 suprathreshold ANF inputs are presented to

Type II cells. ANFs were stimulated with the vowel /ε/ at different SPLs. The

model’s ALSR responses are presented in Fig. 3.17. Blackburn and Sachs (1990)

presented that Pri cells are following the vowel representation in AN firing patterns

better than PriN cells. Our simulation results are in agreement with their recordings

in terms of Pri cells following ANF firing patterns to vowels better than PriN cells.

Type II cells in PriN configuration (3 suprathreshold inputs) are tested to see

the inhibition effects. An arbitrary inhibitory input is presented. From 3.18 it can

be seen that the inhibitory inputs reduction of the response is more prominent on

high frequency harmonics. For lower stimulus SPL, the strength of the population

response is weaker than higher ones as expected. This can be derived from the size

of the boxes getting smaller.
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Figure 3.17: Comparison of ALSR simulation results for Pri and PriN cells. Blue lines
indicate ANF ALSR response while red lines indicate Pri or PriN ALSR response.
Vertical lines show first, second and third formant frequencies. (A) ALSR responses
of Pri and PriN cells to 35 dB input stimuli. (B) ALSR responses of Pri and PriN
cells to 55 dB input stimuli. (C) ALSR responses of Pri and PriN cells to 75 dB input
stimuli.
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Figure 3.18: Comparison of ALSR and boxplot simulation results for PriN and PriN
with inhibition. Left column presents boxplots of Type II cells (PriN response) to 3
suprathreshold inputs taken from (A) ANF response to 75 dB vowel /ε/, (B) ANF
response to 55 dB vowel /ε/, (C) ANF response 35 dB vowel /ε/. Middle column
shows the boxplot responses of PriN cells with excitatory and inhibitory inputs. Right
column shows the ALSR responses to vowel stimuli of PriN cells with (red) and
without (blue) inhibition.
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Chapter 4

Conclusions and Future Work

4.1 Conclusion

In this thesis, model responses of principal cell types and microcircuit responses

of the VCN to current injections, tone bursts and the phoneme /ε/ are inspected.

Individual cell models and microcircuit structures were stimulated with outputs of

the latest phenomenological Bruce et al. (2018) AN model. PSTHs and response

maps were created to validate model mechanisms. Rothman and Manis (2003c) type

models of the VCN cells are well established and tested throughout various research

and extensively used in VCN modelling studies. Recently, Manis and Campagnola

(2018) came up with updated versions of Rothman and Manis (2003c) cell models

and provided a modelling platform for simulating microcircuits of the VCN.

Manis and Campagnola (2018) cell models are also tested through the same pro-

cedures as Rothman and Manis (2003c). Unfortunately, since the modelling platform

is new, updated cell models provided in their work are not extensively tested yet.

Therefore the results obtained in this thesis could not be compared with simulation
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results from other research. However, by taking physiological data and Rothman and

Manis (2003c) cell model responses into consideration, the updated Manis and Cam-

pagnola (2018) cell models developed in this thesis are seen to have close resemblence

to the real world data.

In this thesis, inhibition effects on firing behaviour of cells were inspected by

introducing arbitrary inhibitory input to Type I-c cell and creating a bushy cell mi-

crocircuit. In this microcircuit inhibition were presented by DS and TV cells. The

results show that inhibitory inputs have a huge effect on regulating the firing be-

haviour of main cell types of VCN. As the inhibitory input’s effect get stronger, the

tuning of bushy cell responses to excitatory ANF inputs becomes sharper.

Inhibition’s effect on bushy cells response to vowel /ε/ was also inspected by cre-

ating boxplots and ALSR plots. When inhibition was not presented, Pri cells follows

the ANF firing pattern closer than PriN cells. This result was in agreement with what

is presented in Blackburn and Sachs (1990). When an arbitrary inhibitory input was

also included to PriN configuration, responses to high frequency components of the

input decreases.

4.2 Suggestions for Future Work

The PSTH and ALSR responses presented in this thesis include arbitrary inhibitory

inputs. Only bushy cell microcircuit model receives inhibition coming from bottom

layers. Therefore PSTH and ALSR codes should be updated to include whole micro-

circuit model instead of just receiving excitatory ANF inputs and arbitrary inhibitory

inputs. The network implementation to PSTH and ALSR results could not presented

in this thesis due to time constraints. To create PSTH plots, 500 iterations are used.
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ALSR plots use a whole range of CF of ANFs that receives a range of inputs with dif-

ferent frequencies and SPL levels. Therefore, simulations to create these plots need a

huge amount of time and computational power. One possible solution is parallelizing

the code and using SHARCNET system for submitting jobs with different parameter

sets. This will allow us to explore the effects of different configurations of inhibitory

inputs on microcircuit responses. When the parallelization achieved, the microcircuit

structures will be implemented in the ALSR code. In this thesis, only bushy cell

microcircuit responses are inspected to be able to have a comparison with results pre-

sented in Manis and Campagnola (2018). The code will be expanded to investigate

the tone and vowel responses of TS microcircuits.

One of the powerful aspect of Bruce et al. (2018) AN model is to be able to

succesfully capture IHC and OHC impairments. In this thesis, only non-imparied

ANF inputs are used. After microcircuit structures are implemented and tested in

various ways, AN impairment’s effect on the firing patterns of primary cell types of

the VCN can be explored.

Another future direction for this work will be exploring the responses of TS and

bushy cell microcircuits to speech stimuli and compare it with results presented in

Delgutte (1997); Delgutte et al. (1998).

Our main reason to create microcircuits of the VCN is to implement these models

in the phsyiological based speech intelligibitily metrics.
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Appendix

1 % main_ODE_v2.m

2
3 function [d_out] = main_ODE_v2(t,init_cond)

4
5 global I_A

6 global I_lt

7 global I_ht

8 global I_h

9 global I_lk

10 global I_na

11 global type

12 global response_type

13 global I_ext_val

14 global g_e

15 global freq_e

16 global freq

17 global start_epsc

18 global spike_train

19 global step_size

20 global step_size_syn

21 global epsp_const

22 global g_syn_exct

23 global g_syn_inh

24 global ext_stim_time

25 global step_intrp

26 global input_level

27 global input_onset

28 global input_length

29
30
31 if strcmp(type ,’sgc’)

32
33 %type sgc

34 C_m = 12;

35 g_na = 350;

36 g_ht = 58;

37 g_lt = 80;
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38 g_A = 0;

39 g_h = 3;

40 g_lk = 2;

41 weight = 2;

42 V_K = -84;

43 V_na = 50;

44 V_h = -41;

45 V_lk = -65;

46
47
48 elseif strcmp(type ,’bs2’)

49 %bushy -II

50 C_m = 26;

51 g_na = 1000;

52 g_ht = 58;

53 g_lt = 80;

54 g_A = 0;

55 g_h = 30;

56 g_lk = 2;

57 %weight = 0.027;

58 weight_exct = 44.50;

59 weight_inh = 44.50;

60 %weight = 30;

61 V_K = -84;

62 V_na = 50;

63 V_h = -43;

64 V_lk = -65;

65
66 elseif strcmp(type ,’bs21’)

67 % bushy -II-I

68 C_m = 26;

69 g_na = 1000;

70 g_ht = 58;

71 g_lt = 14;

72 g_A = 0;

73 g_h = 30;

74 g_lk = 2;

75 weight = 0.027;

76 V_K = -84;

77 V_na = 50;

78 V_h = -43;

79 V_lk = -65;

80
81 elseif strcmp(type ,’bs12’)

82 % bushy -I-II

83 C_m = 26;

84 g_na = 1000;
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85 g_ht = 150;

86 g_lt = 20;

87 g_A = 0;

88 g_h = 2;

89 g_lk = 2;

90 weight = 0.027;

91 V_K = -84;

92 V_na = 50;

93 V_h = -43;

94 V_lk = -65;

95
96 elseif strcmp(type ,’ts’)

97 % t stellate

98 C_m = 25;

99 g_na = 3000;

100 g_ht = 500;

101 g_lt = 0;

102 g_A = 0;

103 g_h = 18;

104 g_lk = 8;

105 %weight = 0.006;

106 %weight = 5.85;

107 weight = 5;

108 V_K = -84;

109 V_na = 50;

110 V_h = -43;

111 V_lk = -65;

112
113
114 elseif strcmp(type ,’tv’)

115 % tuberculoventral

116 C_m = 35;

117 g_na = 5800;

118 g_ht = 400;

119 g_lt = 0;

120 g_A = 65;

121 g_h = 2.5;

122 g_lk = 4.5;

123 %weight = 0.0029;

124 weight_exct = 3.5;

125 weight_inh = 3.5;

126 V_K = -81.5;

127 V_na = 50;

128 V_h = -43;

129 V_lk = -72;

130
131
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132 elseif strcmp(type ,’ds’)

133 %d stellate

134 C_m = 12;

135 g_na = 1000;

136 g_ht = 150;

137 g_lt = 20;

138 g_A = 0;

139 g_h = 2;

140 g_lk = 2;

141 %weight = 0.00064;

142 weight_exct = 0.75;

143 weight_inh = 0.75;

144 V_K = -70;

145 V_na = 55;

146 V_h = -43;

147 V_lk = -65;

148
149
150
151 elseif strcmp(type ,’type1c ’)

152
153 %type I-c

154 C_m = 12;

155 g_na = 1000;

156 g_ht = 150;

157 g_lt = 0;

158 g_A = 0;

159 g_h = 0.5;

160 g_lk = 2;

161 weight_exct = 11;

162 weight_inh = 11;

163 V_K = -70;

164 V_na = 55;

165 V_h = -43;

166 V_lk = -65;

167
168 elseif strcmp(type ,’type2’)

169 %type II

170 C_m = 12;

171 g_na = 1000;

172 g_ht = 150;

173 g_lt = 200;

174 g_A = 0;

175 g_h = 20;

176 g_lk = 2;

177 weight_exct = 34;

178 weight_inh = 34;
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179 V_K = -70;

180 V_na = 55;

181 V_h = -43;

182 V_lk = -65;

183
184 elseif strcmp(type ,’type12 ’)

185 C_m = 12;

186 g_na = 1000;

187 g_ht = 150;

188 g_lt = 20;

189 g_A = 0;

190 g_h = 2;

191 g_lk = 2;

192 weight_exct = 15;

193 weight_inh = 15;

194 V_K = -70;

195 V_na = 55;

196 V_h = -43;

197 V_lk = -65;

198
199
200 elseif strcmp(type ,’type1t ’)

201 C_m = 12;

202 g_na = 1000;

203 g_ht = 80;

204 g_lt = 0;

205 g_A = 65;

206 g_h = 0.5;

207 g_lk = 2;

208 weight_exct = 12;

209 weight_inh = 12;

210 V_K = -70;

211 V_na = 55;

212 V_h = -43;

213 V_lk = -65;

214
215 end

216
217
218 d_out = zeros (11,1); % a column vector

219
220 V = init_cond (1);

221 a = init_cond (2);

222 b = init_cond (3);

223 c = init_cond (4);

224 w = init_cond (5);

225 z = init_cond (6);
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226 n = init_cond (7);

227 p = init_cond (8);

228 m = init_cond (9);

229 h = init_cond (10);

230 r = init_cond (11);

231
232 % fast transient K+ current

233 tao_a = 100*(7* exp((V+60) /14) + 29*exp(-(V+60) /24))^(-1) + 0.1;

234 tao_b = 1000*(14* exp((V+60) /27) + 29*exp(-(V+60) /24))^(-1) + 1;

235 tao_c = 90*(1 + exp(-(V+66) /17))^(-1) + 10;

236
237 a_inf = (1 + exp(-(V+31) /6))^( -1/4);

238 b_inf = (1 + exp((V+66) /7))^( -1/2);

239 c_inf = b_inf;

240
241 da = (a_inf - a)/tao_a;

242 db = (b_inf - b)/tao_b;

243 dc = (c_inf - c)/tao_c;

244
245
246 % low threshold K+ current

247 w_inf = (1 + exp(-(V+48) /6))^( -1/4);

248 zeta = 0.5;

249 z_inf = (1-zeta) * ((1 + exp((V+71) /10))^(-1)) + zeta;

250
251 tao_w = 100*(6* exp((V+60) /6) + 16*exp(-(V+60) /45))^(-1) + 1.5;

252 tao_z = 1000*( exp((V+60) /20) + exp(-(V+60) /8))^(-1) + 50;

253
254 dw = (w_inf - w)/tao_w;

255 dz = (z_inf - z)/tao_z;

256
257
258 % high threshold K+ current

259 sgm = 0.85;

260 n_inf = (1 + exp(-(V+15) /5))^( -1/2);

261 p_inf = (1 + exp(-(V+23) /6))^(-1);

262
263 tao_n = 100*(11* exp((V+60) /24) + 21*exp(-(V+60) /23))^(-1) + 0.7;

264 tao_p = 100*(4* exp((V+60) /32) + 5*exp(-(V+60) /22))^(-1) + 5;

265
266 dn = (n_inf - n)/tao_n;

267 dp = (p_inf - p)/tao_p;

268
269
270 % Fast Na+ Current

271 m_inf = (1 + exp(-(V+38) /7))^(-1);

272 h_inf = (1 + exp((V+65) /6))^(-1) ;
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273
274 tao_m = 10*(5* exp((V+60) /18) + 36*exp(-(V+60) /25))^(-1) + 0.04;

275 tao_h = 100*(7* exp((V+60) /11) + 10*exp(-(V+60) /25))^(-1) + 0.6;

276
277 dm = (m_inf - m)/tao_m;

278 dh = (h_inf - h)/tao_h;

279
280 % Hyperpolarization activated cation current

281 r_inf = (1 + exp((V+76) /7))^(-1);

282 tao_r = (10^5) *(237* exp((V+60) /12) + 17*exp(-(V+60) /14))^(-1) + ←↩
25;

283 dr = (r_inf - r)/tao_r;

284
285 I_A = g_A * (a^4) * b * c *(V-V_K) ;

286 I_lt = g_lt * (w^4) * z * (V-V_K);

287 I_ht = g_ht * ((sgm * (n^2)) + (1-sgm)*p )* (V-V_K);

288 I_na = g_na * (m^3) * h * (V-V_na);

289 I_h = g_h * r * (V-V_h) ;

290 I_lk = g_lk * (V-V_lk);

291
292 if strcmp(response_type ,’epsp’)

293
294 g_e = epsp_const*g_e; % comment this part when you ’re ←↩

simulating current clamp responses

295 freq = 1000/ freq_e;

296 tao_e = 0.4;

297
298 I_ext = 0;

299 I_e = 0;

300 if t > start_epsc && t<( start_epsc +200)

301 I_e = g_e * ((mod(t,freq))/tao_e) .* exp(1-((mod(t,freq))/←↩
tao_e))*(V-V_exct);

302 %I_e = g_e * ((t-start_epsc)/tao_e) .* exp(1-((t-←↩
start_epsc)/tao_e))*(V-V_E);

303
304 %I_e_n = g_e * ((t-5)/tao_e) .* exp(1-((t-5)/tao_e))*(V-←↩

V_E);

305 %I_e = I_e + I_e_n;

306
307 else

308 I_e = 0;

309 end

310
311 % if start_epsc == 5;

312 % I_e = g_e * ((t-start_epsc)/tao_e) .* exp(1-((t-←↩
start_epsc)/tao_e))*(V-V_E);
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313 % I_e_n = g_e * ((t-start_epsc +1)/tao_e) .* exp(1-((t-←↩
start_epsc +1)/tao_e))*(V-V_E);

314 % I_e = I_e + I_e_n;

315 % end

316
317 elseif strcmp(response_type ,’synaptic ’)

318
319 if strcmp(input_level ,’sub’)

320 g_reg = 0.5;

321 else

322 g_reg = 3;

323 end

324
325 V_exct = 0; %0

326 V_inh = -75; %potassium equilib

327 I_ext = 0;

328 I_e_exct = g_reg * weight_exct * g_syn_exct(floor(t/←↩
step_size_syn)+1) * (V-V_exct);

329 I_e_inh = g_reg * weight_inh * g_syn_inh(floor(t/step_size_syn←↩
)+1) * (V-V_inh);

330 I_e = I_e_exct + I_e_inh;

331
332
333 elseif strcmp(response_type ,’synaptic_test ’)

334
335 V_exct = 0; %0

336 %V_inh = -75; %potassium equilib

337 I_ext = 0;

338 I_e_exct = g_syn_exct(floor(t/step_size_syn)+1);% * (V-V_exct)←↩
;

339 %I_e_inh = weight * g_syn_inh(floor(t/step_intrp)+1) * (V-←↩
V_inh);

340 I_e = -I_e_exct;

341
342
343 elseif strcmp(response_type ,’synaptic_exct ’)

344
345 if strcmp(input_level ,’sub’)

346 g_reg = 0.5;

347 else

348 g_reg = 3;

349 end

350
351 V_exct = 0; %0

352 V_inh = -75; %potassium equilib

353 I_ext = 0;
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354 I_e_exct = g_reg * weight_exct * g_syn_exct(floor(t/←↩
step_size_syn)+1) * (V-V_exct);

355 I_e = I_e_exct;

356
357 elseif strcmp(response_type ,’ext’)

358
359 I_ext = 0;

360 if (t> input_onset) && (t<input_length + input_onset)

361 I_ext = I_ext_val;

362 else

363 I_ext = 0;

364 end

365 I_e = 0;

366
367
368
369 elseif strcmp(response_type ,’spike’)

370
371
372 I_ext = 0;

373 I_e = spike_train(floor(t/step_size) + 1);%-init_cond (1);

374
375 end

376
377
378
379 d_out (1) = (1/C_m) * (-I_A - I_lt - I_ht - I_na - I_h - I_lk - I_e←↩

+ I_ext);

380 d_out (2) = da;

381 d_out (3) = db;

382 d_out (4) = dc;

383 d_out (5) = dw;

384 d_out (6) = dz;

385 d_out (7) = dn;

386 d_out (8) = dp;

387 d_out (9) = dm;

388 d_out (10) = dh;

389 d_out (11) = dr;

390 % d_out (12) = I_A;

391 % d_out (13) = I_lt;

392 % d_out (14) = I_ht;

393 % d_out (15) = I_h;

394 end

1 % exp2syn.m

2
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3 function [syn_out] = exp2syn(syn_in ,connection_type)

4 % synapse model

5 global step_size_syn

6 t_syn = 0: step_size_syn :100- step_size_syn;

7
8 if strcmp(connection_type , ’exct’)

9 tao_exc = 0.4; %in msec

10 g_exc = exp(-t_syn/tao_exc);

11 syn_out = filter(g_exc ,1,syn_in);

12
13 elseif strcmp(connection_type , ’inh’)

14 tao_inh1 = 0.4;

15 tao_inh2 = 2.5;

16
17 t_norm = log(tao_inh2/tao_inh1)*( tao_inh1*tao_inh2)/(tao_inh2 -←↩

tao_inh1);

18 norm_const = 1/(exp(-t_norm/tao_inh2)-exp(-t_norm/tao_inh1));

19 g_inh = norm_const * (exp(-t_syn/tao_inh2) - exp(-t_syn/tao_inh1))←↩
;

20 syn_out = filter(g_inh ,1,syn_in);

21 end

22
23 end

1 % resting_state_values.m

2
3 clear all ,

4 global start_epsc

5 global type

6 global I_ext_val

7 global response_type

8 global step_size

9 global ext_stim_time

10
11 dbstop if error % if there is an error , this stops the function , ←↩

goes into debug mode

12 % and show you the parameters

13
14 step_size = 0.005; % or 2500/ Fs if you want to use ANModel and ←↩

this together

15 response_type = ’ext’; % response type; epsp -->synaptic , ext -->←↩
external ,

16 % neural --> from other types ,

17 % spike --> spike train

18
19 I_ext_val = 0; % external current input value (in pA)
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20
21 type = ’ds’; % cell type

22 % load([’rest_val_ ’ type]);

23 t = 0: step_size :5000 - step_size;

24 start_epsc = 30;

25 ext_stim_time = 200;

26 %init_cond = rest_val;

27 init_cond = [ -63.9 0.10 0.2 0.3 0.2 0.1 0.2 0.2 0.4 0.2 0.2] % ←↩
some dummy values these will converge

28
29 %options = odeset(’MaxStep ’ ,0.005);

30 my_ODE = @main_ODE_v2;

31 [t_out ,d_out] = ode45(my_ODE ,t,init_cond);

32
33
34 plot(d_out (:,11),’r’),title(type) ,%ylim ([-75 0])

35
36 rest_val = d_out(length(d_out) ,:);

37 save_name = [ ’rest_val_ ’ type];

38 save ( save_name , ’rest_val ’)

1 % response_map_bushy.m

2
3 clear all , %close all

4
5 global type

6 global response_type

7 global step_size

8 global step_size_syn

9 global sim_time

10 global g_syn_exct

11 global g_syn_inh

12
13 load response_map_ds_thesis_3.mat ;

14 ds_out = new_cell_out_psth_cell;

15 load response_map_type1c_0_03_reduction.mat ;

16 tv_out = new_cell_out_psth_cell;

17
18 %

19 % load response_map_ds_last_try

20 % ds_out = new_cell_out_psth_cell;

21 % tv_out = new_cell_out_psth_cell;

22
23 %% setting up simulation environment

24 Fs = 1e5;

25 sim_time = 0.15;
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26 step_size = 1/Fs;

27 step_size_syn = step_size /1e-3;

28 t_sim = 0: step_size_syn :( sim_time *1e3)-step_size_syn;

29 threshold = -20;

30 psth_try = 5;

31 seed_number = 1000;

32 response_type = ’synaptic ’; % response type; epsp -->synaptic , ext←↩
-->external ,

33 % neural --> from other types ,

34 % spike --> spike train

35 input_level = ’supra ’

36
37 pip_sweep_start = 4000; % the characteristic freq of the ←↩

postsynaptic cell

38 pip_sweep_end = 32000;

39 pip_sweep_step = 1/8; % in octaves

40 pip_freq_range (1) = pip_sweep_start;

41 k = 2;

42 while pip_freq_range(k-1) < pip_sweep_end

43 pip_freq_range(k) = pip_freq_range(k-1) *(2^( pip_sweep_step));

44 k = k+1;

45 end

46 pip_count = length(pip_freq_range);

47 CF_post_syn = 16000;

48
49 fiber_type = [1]; % which type of fibers should be included

50 fiber_type_count = length(fiber_type);

51 AN_input_count = 3;

52 AN_input_sd = 0.05;

53 DS_input_count = 7;

54 DS_input_sd = 0.208;

55 TV_input_count = 6;

56 TV_input_sd = 0.069;

57
58 %entering AN model parameters

59 cohc = 1.0; % normal ohc function

60 cihc = 1.0; % normal ihc function

61 species = 1; % 1 for cat (2 for human with Shera et al. tuning;←↩
3 for human with Glasberg & Moore tuning)

62 noiseType = 1; % 1 for variable fGn (0 for fixed fGn)

63 implnt = 0; % "0" for approximate or "1" for actual ←↩
implementation of the power -law functions in the Synapse

64 % stimulus parameters

65 Fs = 100e3; % sampling rate in Hz (must be 100, 200 or 500 kHz)

66 T = 50e-3; % stimulus duration in seconds

67 rt = 2.5e-3; % rise/fall time in seconds

68 numsponts_healthy = [AN_input_count AN_input_count AN_input_count←↩
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];

69
70 % PSTH parameters

71 nrep = 1; % number of stimulus repetitions (e.g., ←↩
50);

72 psthbinwidth = 0.5e-3; % binwidth in seconds;

73
74 t = 0: step_size:T-step_size; % time vector

75 mxpts = length(t);

76 irpts = rt*Fs;

77 ondelay = 50e-3;

78 %ondelay = AN_counter *1e-3;

79 onbin = round(ondelay*Fs);

80
81 [sponts ,tabss ,trels] = generateANpopulation(pip_count ,←↩

numsponts_healthy);

82 sponts_lower_limit = [ones(1, AN_input_count)*0.1, ones(1,←↩
AN_input_count)*1,...

83 ones(1, AN_input_count)*10];

84 %disp(’Generating population of AN fibers , saved in ANpopulation.←↩
mat ’)

85 numsponts = round ([1 1 1].* numsponts_healthy); % Healthy AN

86
87 db_val_start = 20;

88 db_val_step = 5;

89 db_val_end = 100;

90
91 % creating the range of weight vectors

92 weight_range = 0:pip_count -1;

93
94 % arranging the ODE initial values

95 type = ’bs2’; % cell type

96 load([’rest_val_ ’ type]);

97 init_cond = rest_val;

98 my_ODE = @main_ODE_v2;

99
100 [~, CF_close_index] = min(abs(pip_freq_range - CF_post_syn));

101 seed_number = seed_number + CF_close_index;

102
103 weights_AN = lognpdf(weight_range ,log(CF_close_index),AN_input_sd)←↩

; % dummy mean and standart dev values

104 [s_AN] = RandStream.create(’mlfg6331_64 ’,’Seed’,seed_number); %for←↩
reproductibility

105 AN_freq_chosen = datasample(s_AN ,1: pip_count ,AN_input_count ,’←↩
Replace ’,false ,...

106 ’Weights ’,weights_AN); % draw unique samples according to ←↩
vaules
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107 % defined in the probability matrix of weights

108 AN_freq_chosen = sort(AN_freq_chosen);

109
110 [~, DS_close_index] = min(abs(pip_freq_range - CF_post_syn));

111 weights_DS = lognpdf(weight_range ,log(DS_close_index),DS_input_sd)←↩
; % dummy mean and standart dev values

112 [s_DS] = RandStream.create(’mlfg6331_64 ’,’Seed’,seed_number); %for←↩
reproductibility

113 DS_freq_chosen_indx = datasample(s_DS ,1: pip_count ,DS_input_count ,’←↩
Replace ’,false ,...

114 ’Weights ’,weights_DS); % draw unique samples according to ←↩
vaules

115 % defined in the probability matrix of weights

116 DS_freq_chosen_indx = sort(DS_freq_chosen_indx);

117 % for jk = 1: DS_input_count

118 % DS_comp = pip_freq_range(DS_freq_chosen_indx(jk));

119 % [~, DS_comp_out] = min(abs(pip_freq_range - DS_comp));

120 % DS_freq_chosen(jk) = DS_comp_out;

121 % end

122
123 [~, TV_close_index] = min(abs(pip_freq_range - CF_post_syn));

124 weights_TV = lognpdf(weight_range ,log(TV_close_index),TV_input_sd)←↩
; % dummy mean and standart dev values

125 [s_TV] = RandStream.create(’mlfg6331_64 ’,’Seed’,seed_number); %for←↩
reproductibility

126 TV_freq_chosen_indx = datasample(s_TV ,1: pip_count ,TV_input_count ,’←↩
Replace ’,false ,...

127 ’Weights ’,weights_TV); % draw unique samples according to ←↩
vaules

128 % defined in the probability matrix of weights

129 TV_freq_chosen_indx = sort(TV_freq_chosen_indx);

130 % for jk = 1: TV_input_count

131 % TV_comp = pip_freq_range(TV_freq_chosen_indx(jk));

132 % [~, TV_comp_out] = min(abs(pip_freq_range - TV_comp));

133 % TV_freq_chosen(jk) = TV_comp_out;

134 % end

135
136 a = 1;

137 for pip_indx = 1: length(pip_freq_range)

138 %[~, pip_close_index] = min(abs(freq_range - pip_freq_range(←↩
pip_indx)));

139 %pip_freq = freq_range(pip_close_index);

140 pip_freq = pip_freq_range(pip_indx);

141 for db_val = db_val_start:db_val_step:db_val_end

142 for m = 1: psth_try

143 stimdb = db_val; % stimulus intensity in dB SPL

144 spike_train_sum_AN = zeros(1,sim_time*Fs);
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145 % collecting the input data and add the spike trains

146 % together

147 for fiber_type_count = 1: length(fiber_type);

148 for AN_counter = 1: AN_input_count

149 F0 = pip_freq; % stimulus frequency in Hz

150 CF = pip_freq_range(AN_freq_chosen(AN_counter)←↩
);

151 pin = zeros(1,onbin+mxpts);

152 pin(onbin +1: onbin+mxpts) = sqrt (2)*20e -6*10^(←↩
stimdb /20)*sin (2*pi*F0*t); % unramped ←↩
stimulus

153 pin(onbin +1: onbin+irpts)= pin(onbin +1: onbin+←↩
irpts).*(0:( irpts -1))/irpts;

154 pin(onbin+(mxpts -irpts):onbin+mxpts)=pin(onbin←↩
+(mxpts -irpts):onbin+mxpts).*( irpts :-1:0)/←↩
irpts;

155
156 sponts_concat = [sponts.LS(pip_indx ,1:←↩

numsponts (1)) sponts.MS(pip_indx ,1:←↩
numsponts (2)) sponts.HS(pip_indx ,1:←↩
numsponts (3))];

157 tabss_concat = [tabss.LS(pip_indx ,1: numsponts←↩
(1)) tabss.MS(pip_indx ,1: numsponts (2)) ←↩
tabss.HS(pip_indx ,1: numsponts (3))];

158 trels_concat = [trels.LS(pip_indx ,1: numsponts←↩
(1)) trels.MS(pip_indx ,1: numsponts (2)) ←↩
trels.HS(pip_indx ,1: numsponts (3))];

159
160 %spont = sponts_concat (( fiber_type_count -1)*←↩

AN_input_count + AN_counter);

161 spont = sponts_lower_limit (( fiber_type(←↩
fiber_type_count) -1)*AN_input_count + ←↩
AN_counter);

162 tabs = tabss_concat (( fiber_type_count -1)*←↩
AN_input_count + AN_counter);

163 trel = trels_concat (( fiber_type_count -1)*←↩
AN_input_count + AN_counter);

164
165 vihc = model_IHC_BEZ2018(pin ,CF ,nrep ,1/Fs ,←↩

sim_time ,cohc ,cihc ,species);

166 psth = model_Synapse_BEZ2018(vihc ,CF ,nrep ,1/Fs←↩
,noiseType ,implnt ,spont ,tabs ,trel);

167
168 spike_train(AN_counter ,:) = psth;

169 spike_train_raster(AN_input_count *(←↩
fiber_type_count -1) + AN_counter ,:) = psth;

170
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171 end

172
173 spike_train_sum_AN = sum(spike_train ,1);

174
175 cell_out_fiber(fiber_type_count ,:) = ←↩

spike_train_sum_AN;

176 end

177
178 cell_out_AN (:,m) = sum(cell_out_fiber ,1);

179
180 g_syn_exct = exp2syn(cell_out_AN (:,m),’exct’);

181
182 for DS_counter = 1: DS_input_count

183 DS_spike_times = ds_out{DS_freq_chosen_indx(←↩
DS_counter) ,...

184 (( db_val - db_val_start)/db_val_step)+1,m};

185 DS_spike_train = zeros(length(t_sim) ,1);

186 DS_spike_train(DS_spike_times) = 1;

187 DS_spike_out(DS_counter ,:) = DS_spike_train;

188 end

189
190 cell_out_DS (:,m) = sum(DS_spike_out ,1);

191
192 for TV_counter = 1: TV_input_count

193 TV_spike_times = ds_out{TV_freq_chosen_indx(←↩
TV_counter) ,...

194 (( db_val - db_val_start)/db_val_step)+1,m};

195 TV_spike_train = zeros(length(t_sim) ,1);

196 TV_spike_train(TV_spike_times) = 1;

197 TV_spike_out(TV_counter ,:) = TV_spike_train;

198 end

199
200 cell_out_TV (:,m) = sum(TV_spike_out ,1);

201
202 g_syn_inh = exp2syn (( cell_out_TV (:,m) + cell_out_DS (:,←↩

m))*0.25 ,’inh’);

203 [t_out ,d_out] = ode45(my_ODE ,t_sim ,init_cond);

204
205 [~,l] = findpeaks(d_out (:,1),’MinPeakHeight ’,threshold←↩

);

206 % new_cell_out = zeros(1,length(d_out (:,1)←↩
));

207 % new_cell_out(l) = 1;

208 % new_cell_out = find(new_cell_out ==1);

209
210 new_cell_out_psth_cell{a,((db_val -db_val_start)/←↩

db_val_step +1),m} = l; %new_cell_out;
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211
212 % figure ,

213 %

214 % subplot (3,1,1), plot(d_out (:,1)),title(’bushy cell ←↩
membrane voltage ’),ylabel(’mV ’);

215 % subplot (3,1,2), plot(g_syn_exct),title(’excitatory ←↩
synaptic conductance change ’),ylabel(’nS ’);

216 % subplot (3,1,3), plot(g_syn_inh),title(’inhibitory ←↩
synaptic conductance change ’),ylabel(’nS ’);

217 %

218 %

219 % figure ,

220 %

221 % subplot (3,1,1), plot(d_out (:,1)),title(’bushy cell ←↩
membrane voltage ’),ylabel(’mV ’);

222 % subplot (3,1,2), plot(cell_out_AN (:,m)),title(’←↩
excitatory synaptic conductance change ’),ylabel(’nS ’);

223 % subplot (3,1,3), plot(g_syn_inh),title(’inhibitory ←↩
synaptic conductance change ’),ylabel(’nS ’);

224 %

225 %

226 disp([’trying ’ num2str(m) ’ psth for ’ num2str(db_val←↩
) ’ db for the pip freq of ’ num2str(pip_freq)])

227 end

228
229 end

230 %end

231 a = a+1;

232 end

233
234 % response_map = zeros (( pip_sweep_end -pip_sweep_start -←↩

pip_sweep_step)/pip_sweep_step + 1,...

235 % (db_val_end -db_val_start)/db_val_step + 1);

236 response_map = zeros(length(pip_freq_range),(db_val_end -←↩
db_val_start)/db_val_step + 1);

237 for db_resp = 1:(( db_val_end -db_val_start)/db_val_step + 1)

238 %for pip_resp = 1:(( pip_sweep_end -pip_sweep_start -←↩
pip_sweep_step)/pip_sweep_step + 1)

239 for pip_resp = 1: length(pip_freq_range)

240 for s_AN = 1: psth_try

241 response_map(pip_resp ,db_resp) = length(←↩
new_cell_out_psth_cell{pip_resp ,db_resp ,s_AN})+ ←↩
response_map(pip_resp ,db_resp);

242 end

243 % response_map(pip_resp ,db_resp) = response_map(pip_resp ,←↩
db_resp);%/ psth_try;

244 end
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245 end

246
247 response_map = response_map ./max(max(response_map));

248 response_map = flipud(response_map ’);

249
250 figure ,

251 ax = gca;

252 imagesc(response_map),colormap(flipud(gray))

253 set(gca , ’XScale ’)

254 ax.XTick = [1 9 17 25]

255 ax.XTickLabel = {4000 8000 16000 32000}

256 ax.YTick = [1 5 9 13 17]

257 ax.YTickLabel = {100 80 60 40 20}

258 xlabel(’Tone frequency (Hz)’)

259 ylabel(’Tone SPL (dB)’)

1 % an_boxplot_ALSR.m

2
3 global type

4 global response_type

5 global step_size

6 global sim_time

7 global g_syn_exct

8 global g_syn_inh

9 global step_size_syn

10
11 threshold = -20;

12 syn_response = ’exct’;

13 response_type = ’synaptic_exct ’; % response type; epsp -->synaptic ,←↩
ext -->external ,

14 % neural --> from other types ,

15 % spike --> spike train

16 input_level = ’supra ’; % sub --> subthreshold , supra --> ←↩
suprathreshold

17 type = ’bs2’; % cell type

18 load([’rest_val_ ’ type]);

19 init_cond = rest_val;

20 my_ODE = @main_ODE_v2;

21
22 alsr_octs = 1; % number of octaves around CF over which the ALSR ←↩

is computed

23
24 h1 = figure;

25 h3 = fill ([0.1 10 10 0.1] ,[0.1*2^(1/2) 10*2^(1/2) 10/2^(1/2) ←↩
0.1/2^(1/2) ],0.9* ones (1,3));

26 set(h3 ,’edgecolor ’,’none’)
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27 set(gca ,’xscale ’,’log’,’yscale ’,’log’,’fontsize ’ ,14)

28 xlabel(’CF (kHz)’,’fontsize ’ ,14)

29 ylabel(’Frequency (kHz)’,’fontsize ’ ,14)

30 axis ([0.1 10 0.095 4.5])

31 set(gca ,’xtick’ ,[0.1 1.0 10])

32 % set(gca ,’xticklabel ’ , ’0.1|1.0|10 ’)

33 set(gca ,’xticklabel ’,{’0.1’,’1.0’,’10’})

34 set(gca ,’ytick’ ,[0.1 0.4 1.0 4.0])

35 % set(gca ,’yticklabel ’ , ’0.1|0.4|1.0|4.0 ’)

36 set(gca ,’yticklabel ’,{’0.1’,’0.4’,’1.0’,’4.0’})

37 hold on

38 plot ([0.5 0.5] ,[0.095 4.5],’k--’)

39 plot ([1.7 1.7] ,[0.095 4.5],’k--’)

40 plot ([2.5 2.5] ,[0.095 4.5],’k--’)

41 plot ([0.1 10] ,[0.5 0.5],’k--’)

42 plot ([0.1 10] ,[1.7 1.7],’k--’)

43 plot ([0.1 10] ,[2.5 2.5],’k--’)

44 units=get(h1,’units ’);

45 set(h1 ,’units’,get(h1 ,’PaperUnits ’));

46 set(h1 ,’Position ’,get(h1 ,’PaperPosition ’));

47 set(h1 ,’Units’,units)

48 set(h1 ,’Position ’,get(h1 ,’Position ’) -[-250 0 0 0])

49
50 % model parameters

51 numcfs = 41;

52 cfs = logspace(log10 (125),log10(5e3),numcfs);

53 numcfs_bushy = 39;

54 AN_input_count = 3;

55 cohcs = ones(1,numcfs); % normal ohc function

56 cihcs = ones(1,numcfs); % normal ihc function

57
58 numsponts_healthy = [0 0 1]; % Number of low -spont , medium -spont , ←↩

and high -spont fibers at each CF in a healthy AN

59
60 % if exist(’ANpopulation.mat ’,’file ’)

61 % load(’ANpopulation.mat ’);

62 % disp(’Loading existing population of AN fibers saved in ←↩
ANpopulation.mat ’)

63 % if (size(sponts.LS ,2)<numsponts_healthy (1))||( size(sponts.MS←↩
,2)<numsponts_healthy (2))||( size(sponts.HS ,2)<numsponts_healthy←↩
(3))||( size(sponts.HS ,1)<numcfs ||~ exist(’tabss ’,’var ’))

64 % disp(’Saved population of AN fibers in ANpopulation.mat ←↩
is too small - generating a new population ’);

65 % [sponts ,tabss ,trels] = generateANpopulation(numcfs ,←↩
numsponts_healthy);

66 % end

67 % else

133



68 [sponts ,tabss ,trels] = generateANpopulation(numcfs ,←↩
numsponts_healthy);

69 % disp(’Generating population of AN fibers , saved in ←↩
ANpopulation.mat ’)

70 % end

71 sponts_lower_limit = ones(1,numcfs);

72 species = 1; % 1 for cat (2 for human)

73 noiseType = 1; % 0 for fixed fGn (1 for variable fGn)

74 implnt = 0; % "0" for approximate or "1" for actual ←↩
implementation of the power -law functions in the Synapse

75
76 % stimulus parameters

77 Fs = 100e3; % sampling rate = 100 kHz - THIS SAMPLING RATE IS ←↩
ESSENTIAL FOR THE MODEL

78 rt = 0.01; % rise time = 10 ms

79 stimdb = 55; % stimulus intensity in dB SPL; note - vowel portion ←↩
of besh is ~3 dB lower

80 % stimdb = 60; % stimulus intensity in dB SPL; note - vowel ←↩
portion of besh is ~3 dB lower

81
82 % PSTH parameters

83 nrep = 1; % number of stimulus repetitions = 50;

84 psthbinwidth = 0.1e-3; % binwidth = 0.1 ms;

85 psthbins = round(psthbinwidth*Fs); % number of psth100k bins per ←↩
psth bin

86 psth_try = 50;

87 % load eh_hrtf_calib_100k_0dB;

88 % stim = resample(eh_hrtf_calib_100k_0dB ,Fs,Fs_stim);

89 % stim = stim (1: round (0.1* Fs));

90
91 load besh100k_hrtf_calib

92 stim = besh100k_hrtf_calib;

93
94 T = round(length(stim))/Fs;

95
96 simdur = ceil(T*2/ psthbinwidth)*psthbinwidth;

97 step_size = 1/Fs;

98 step_size_syn = step_size /1e-3;

99 t = 0:1/Fs:T-1/Fs; % time vector

100 t_sim = 0: step_size_syn :( simdur *1e3)-step_size_syn;

101
102 pin = 10^( stimdb /20)*stim; % unramped stimulus

103
104 pin = pin(:).’;

105
106 % Ramp stimulus on and off

107 % mxpts = length(pin);
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108 % irpts = round(rt*Fs);

109 %

110 % pin(1: irpts) = pin(1: irpts).*(0:( irpts -1))/irpts;

111 % pin((mxpts -irpts):mxpts) = pin((mxpts -irpts):mxpts).*( irpts←↩
: -1:0)/irpts;

112
113 h = waitbar(0,’Computing ...’);

114 set(h,’name’,’anboxplot - 0%’)

115
116 maxcf = find(cfs <1/ psthbinwidth /2,1,’last’);

117 %g_syn_inh = zeros(1,length(t_sim));

118 numsponts = round ([1 1 1].* numsponts_healthy); % Healthy AN

119
120 % comment out this part if just excitatory input are going to be ←↩

presented

121 syn_in_inh = zeros(1,length(t_sim));

122 syn_in_inh ([(Fs/1e5)*randi(length(syn_in_inh)/(Fs/1e5) ,1,20)]) = ←↩
1;

123 g_syn_inh = exp2syn(syn_in_inh ,’inh’);

124
125
126 for cflp =1: numcfs_bushy

127 for spontlp = 1:sum(numsponts)

128 disp([’cflp = ’ int2str(cflp) ’/’ int2str(maxcf) ’; ←↩
spontlp = ’ int2str(spontlp) ’/’ int2str(sum(numsponts)←↩
)])

129
130 for m = 1: psth_try

131
132 for n = 0: AN_input_count -1

133 cf=cfs(cflp +n);

134 cohc=cohcs(cflp +n);

135 cihc=cihcs(cflp +n);

136
137 % disp([’CF = ’ num2str(cf) ’ (’ int2str(cflp)←↩

’/’ int2str(maxcf) ’) ’])

138
139 % numsponts = round ([0.5 0.5 0.5].*←↩

numsponts_healthy); % 50% fiber loss of all ←↩
types

140 % numsponts = round ([0 1 1].* numsponts_healthy←↩
); % Loss of all LS fibers

141 % numsponts = round([cihc 1 cihc ].*←↩
numsponts_healthy); % loss of LS and HS fibers ←↩
proportional to IHC impairment

142
143 sponts_concat = [sponts.LS(cflp +n,1: numsponts (1))←↩
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sponts.MS(cflp +n,1: numsponts (2)) sponts.HS(←↩
cflp +n,1: numsponts (3))];

144 tabss_concat = [tabss.LS(cflp +n,1: numsponts (1)) ←↩
tabss.MS(cflp +n,1: numsponts (2)) tabss.HS(cflp ←↩
+n,1: numsponts (3))];

145 trels_concat = [trels.LS(cflp +n,1: numsponts (1)) ←↩
trels.MS(cflp +n,1: numsponts (2)) trels.HS(cflp ←↩
+n,1: numsponts (3))];

146
147
148 spont = sponts_concat(spontlp);

149 tabs = tabss_concat(spontlp);

150 trel = trels_concat(spontlp);

151 vihc = model_IHC_BEZ2018(pin ,cf ,nrep ,1/Fs ,simdur ,←↩
cohc ,cihc ,species);

152
153
154 psth100k(n+1,:) = model_Synapse_BEZ2018(vihc ,cf,←↩

nrep ,1/Fs,noiseType ,implnt ,spont ,tabs ,trel);

155 end

156 psth_100k_sum = sum(psth100k ,1);

157
158 psth = zeros(1,length(vihc)/nrep/psthbins);

159
160 % flush the output for the display of the coutput in ←↩

Octave

161 if exist (’OCTAVE_VERSION ’, ’builtin ’) ~= 0

162 fflush(stdout);

163 end

164
165
166 g_syn_exct = exp2syn(psth_100k_sum ,syn_response);

167
168 [t_out ,d_out] = ode45(my_ODE ,t_sim ,init_cond);

169
170 [~,l] = findpeaks(d_out (:,1),’MinPeakHeight ’,threshold←↩

);

171 new_cell_out = zeros(1,length(d_out (:,1)));

172 new_cell_out(l) = 1;

173 psth_cell(m,:) = new_cell_out;

174
175 % figure ,

176 % subplot (4,1,1), plot(psth100k),title(’AN ←↩
fiber output ’);

177 % subplot (4,1,2), plot(g_syn_exct),title(’←↩
Synaptic output ’);

178 % subplot (4,1,3), plot(d_out (:,1)),title ([←↩
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type ’ cell output ’]);

179 % subplot (4,1,4), plot(psth_cell(m,:)), ←↩
title ([type ’ cell output spike train ’])

180 %

181
182 end

183
184 psth_cell_sum = sum(psth_cell ,1);

185 timeout = 0:1/Fs:( length(psth100k) -1)/Fs;

186
187 psthtime = timeout (1: psthbins:end); % time vector for psth

188 pr = sum(reshape(psth_cell_sum ,psthbins ,length(←↩
psth_cell_sum)/psthbins))/psth_try; % pr of spike in ←↩
each bin

189 psth = psth+pr/psthbinwidth; % psth in units of spikes/s

190
191 end

192
193 psth = psth/sum(numsponts);

194
195 [dummyy , tonset] =min(abs(psthtime -90e-3));

196 [dummyy , toffset ]=min(abs(psthtime -170e-3));

197
198 toffset = toffset -1;

199
200 % 80ms Hamming window starting 20ms after stimulus onset

201 p = psth(tonset:toffset);

202 w = hamming(length(p),’periodic ’) ’;

203 [MX , f] = fouriercoeffs(w.*p,1/ psthbinwidth);

204 ft(cflp ,:)=MX/sqrt(sum(w.^2)/length(w));

205
206 f_ind = find(f==100):find(f==100) -1:find(f==4e3);

207
208 % creating the boxplot

209 figure(h1)

210 h2 = loglog(cf/1e3 ,f(f_ind)/1e3 ,’ks’,’markerfacecolor ’,’k’);

211 for lp=1: length(h2)

212 if ft(cflp ,f_ind(lp)) <15

213 set(h2(lp),’marker ’,’none’)

214 elseif ft(cflp ,f_ind(lp)) <30

215 set(h2(lp),’markersize ’ ,2)

216 elseif ft(cflp ,f_ind(lp)) <45

217 set(h2(lp),’markersize ’ ,4)

218 elseif ft(cflp ,f_ind(lp)) <60

219 set(h2(lp),’markersize ’ ,6)

220 elseif ft(cflp ,f_ind(lp)) <75

221 set(h2(lp),’markersize ’ ,8)
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222 elseif ft(cflp ,f_ind(lp)) <90

223 set(h2(lp),’markersize ’ ,10)

224 elseif ft(cflp ,f_ind(lp)) <105

225 set(h2(lp),’markersize ’ ,12)

226 elseif ft(cflp ,f_ind(lp)) <120

227 set(h2(lp),’markersize ’ ,14)

228 else

229 set(h2(lp),’markersize ’ ,16)

230 end

231 end

232
233 waitbar(cflp/maxcf ,h)

234 set(h,’name’,[’anboxplot - ’ num2str(cflp/maxcf *100,’%3.0f’) ’←↩
%’])

235
236 end

237
238
239 close(h)

240
241 fnums = length(f);

242
243 ALSR = zeros(1,fnums);

244
245
246 for flp = 2: fnums

247
248 cf_low = find(cfs >(f(flp)/2^( alsr_octs /2)),1,’first’);

249 cf_high = find(cfs <(f(flp)*2^( alsr_octs /2)),1,’last’);

250 ALSR(flp) = mean(ft(cf_low:cf_high ,flp));

251
252 end

253
254 % plotting the ALSR

255 figure

256 subplot (2,1,1)

257 loglog(f/1e3 ,ALSR)

258 xlim ([0.1 5])

259 hold on

260 plot ([0.5 0.5],ylim ,’k--’)

261 plot ([1.7 1.7],ylim ,’k--’)

262 plot ([2.5 2.5],ylim ,’k--’)

263 ylabel(’ALSR (spikes/s)’)

264 title(’ALSR at all frequencies ’)

265 subplot (2,1,2)

266 loglog(f(f_ind)/1e3 ,ALSR(f_ind))

267 xlim ([0.1 5])
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268 hold on

269 plot ([0.5 0.5],ylim ,’k--’)

270 plot ([1.7 1.7],ylim ,’k--’)

271 plot ([2.5 2.5],ylim ,’k--’)

272 ylabel(’ALSR (spikes/s)’)

273 title(’ALSR at vowel harmonics ’)

274 xlabel(’Frequency (kHz)’)

275 xlim ([0.1 5])
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