Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/24148
Title: Novel Free-Carrier Pump/Probe Techniques for the Characterization of Silicon
Authors: Boyd, Kevin
Advisor: Kleiman, Rafael
Department: Engineering Physics
Keywords: lifetime spectroscopy;recombination lifetime;pump/probe;silicon
Publication Date: 2018
Abstract: Two novel pump/probe techniques have been developed for measuring the recombination lifetime in crystalline silicon wafers. The first technique, single-beam pump/probe, uses one laser as both pump and probe. The second technique, quasi-steady state free-carrier absorption, measures lifetime under quasi-steady state conditions. These techniques are supported by a general mathematical model that predicts the experimental signal accounting for the 3D charge-carrier transport and recombination within the semiconductor. The predictions of the model are validated experimentally, and quantitative agreement is found between the model and experimental results for both techniques. The recombination lifetime measured by these techniques is verified independently using a standard pump/probe method, and the results are in agreement with this work. Single-beam pump/probe is a first-time demonstration of a technique capable of measuring lifetime in silicon using a single laser beam. It dramatically simplifies traditional pump/probe measurements by completely eliminating the second laser beam. QSS-FCA is the first quasi-steady state technique that can be calibrated in situ without the requirement of a calibrated reference wafer. The calibration constant is the free-carrier absorption cross section of silicon, which is a material constant. QSS-FCA is able to measure this cross section to a higher precision than what has been reported in the literature. Precise measurement of this constant opens up the possibility of studying more fundamental physics of silicon using QSS-FCA.
URI: http://hdl.handle.net/11375/24148
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Boyd_Kevin_MW_2018September_PhD.pdf
Access is allowed from: 2019-05-01
5.11 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue