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Abstract 

Two novel pump/probe techniques have been developed for measuring the recombination lifetime 

in crystalline silicon wafers. The first technique, single-beam pump/probe, uses one laser as both 

pump and probe. The second technique, quasi-steady state free-carrier absorption, measures 

lifetime under quasi-steady state conditions. These techniques are supported by a general 

mathematical model that predicts the experimental signal accounting for the 3D charge-carrier 

transport and recombination within the semiconductor. The predictions of the model are validated 

experimentally, and quantitative agreement is found between the model and experimental results 

for both techniques. The recombination lifetime measured by these techniques is verified 

independently using a standard pump/probe method, and the results are in agreement with this 

work. Single-beam pump/probe is a first-time demonstration of a technique capable of measuring 

lifetime in silicon using a single laser beam. It dramatically simplifies traditional pump/probe 

measurements by completely eliminating the second laser beam. QSS-FCA is the first quasi-steady 

state technique that can be calibrated in situ without the requirement of a calibrated reference 

wafer. The calibration constant is the free-carrier absorption cross section of silicon, which is a 

material constant. QSS-FCA is able to measure this cross section to a higher precision than what 

has been reported in the literature. Precise measurement of this constant opens up the possibility 

of studying more fundamental physics of silicon using QSS-FCA. 
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1 Introduction 

In this dissertation I develop two novel experimental techniques for measuring the recombination 

lifetime in crystalline silicon wafers using free-carrier pump/probe spectroscopy. The 

recombination lifetime of a semiconductor provides valuable information about its electronic 

properties [1]. In silicon, where recombination is typically dominated by an impurity-assisted 

process, lifetime measurements can be used to assay the semiconductor. This information is 

extremely important to the field of photovoltaics, where high material purity and long 

recombination lifetimes are necessary for achieving high conversion efficiency between sunlight 

and electric current [2]. In a generic pump/probe lifetime measurement in silicon, free1 

electron/hole pairs (free-carriers) are pumped by a laser source with energy greater than the 

semiconductor’s bandgap. The free-carrier density is probed by measuring the free-carrier induced 

absorption of a second laser beam. When the pump is modulated harmonically and the modulation 

frequency is varied, the probe signal traces out a Lorentzian response function which can be fitted 

to extract the recombination lifetime. This is the principle behind Modulated Free-Carrier 

Absorption (MFCA), which is a standard pump/probe lifetime measurement technique in silicon. 

The techniques that I develop in this dissertation improve upon MFCA. The first technique, single-

beam pump/probe, uses the same laser beam for both pump and probe, eliminating the second laser 

beam from the MFCA apparatus. The second technique, quasi-steady state free-carrier absorption 

(QSS-FCA), measures the lifetime using a single datapoint collected at low-frequency, eliminating 

the requirement of sweeping the modulation frequency and alleviating the bandwidth requirements 

of the instrument. 

                                                 

1 An electron or hole is “free” when it is not bound to a single atom and can move freely about the semiconductor 

lattice. Electrons in the conduction band and holes in the valence band are free. The term free-carriers is used to refer 

these carriers throughout this work. 
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The single-beam pump/probe technique I have developed is a dramatic simplification of the dual-

beam configuration that is used in traditional laser-based pump/probe measurements. The main 

challenge in the implementation of any pump/probe study is the alignment of the pump and probe 

beams on the sample under study. High-precision alignment is necessary when the beam diameters 

are small, which is the case for pump/probe measurements on silicon2 [3]. Alignment challenges 

can be surmounted on a laboratory bench where the experimenter has direct access to the sample 

stage and visual feedback on the positions of the pump and probe beams. However, for pump/probe 

systems designed to monitor semiconductor processing in situ, the alignment of the pump and 

probe beams could be considerably more complicated. Consider for example a pump/probe study 

designed to monitor a semiconductor undergoing chemical vapor deposition (CVD) of a dielectric 

film in situ. Both pump and probe beams have to be coupled through a window on the CVD 

reaction chamber and aligned to precisely the same spot on the sample, and then the probe has to 

be coupled out of the system and into a detector. If the beams are propagated over a long distance, 

high-stability optics are required to maintain alignment precision. Temperature changes and gases 

inside the CVD apparatus can potentially cause misalignment via refraction of the pump and probe 

beams. Reducing a pump/probe experiment to a single beam provides an extraordinary amount of 

flexibility in the implementation of the pump/probe measurement since simultaneous alignment of 

the pump and probe beams is automatic. The combined pump/probe beam simply has to strike the 

sample under study, and be collected by a detector. Even in the simplest cases, it will always be 

easier to align a single beam on a sample than two simultaneously.  

QSS-FCA is a dual-beam pump/probe technique that directly simplifies MFCA by reducing the 

MFCA measurement to a single datapoint collected at low frequency. Traditional MFCA measures 

the lifetime via the frequency dependence of the MFCA signal, as will be discussed in Chapters 2 

& 3. Alternatively, since the amplitude of the free-carrier population is directly proportional to the 

                                                 

2 In the case of semiconductor pump/probe measurements, the beam diameters are on the order of millimeters or less 
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lifetime at low-frequency, the lifetime may be deduced from the amplitude of the MFCA signal 

collected at low-frequency. This reduces the MFCA technique to a single datapoint measurement. 

Measurement of the free-carrier amplitude is the basis for steady-state and quasi-steady state3 

(QSS) lifetime measurement techniques, which will be reviewed in Chapter 2. The advantage of 

QSS lifetime techniques is that they operate at low frequency so the bandwidth requirements of 

the experimental apparatus are modest. The disadvantage is that they require calibration in order 

to map the amplitude signal that is measured experimentally to the lifetime. The typical approach 

to calibration is to use a reference wafer of known doping type and density to create a mapping 

between free-carrier density and the signal measured from the apparatus. The free-carrier density 

is proportional to the recombination lifetime, so if the apparatus can measure the free-carrier 

density it can measure lifetime. As will be discussed later in this work, there are several issues 

associated with the use of a reference sample for calibration, and the accuracy of the free-carrier 

density measurement after calibration is not guaranteed. I demonstrate a superior calibration 

method whereby the amplitude of the signal is measured simultaneously with the lifetime 

measured via MFCA. This creates a direct mapping between the signal amplitude and lifetime of 

the semiconductor, instead of an indirect mapping to carrier density. It turns out the unknown 

factor that is deduced is the free-carrier absorption cross section 𝜎𝐹𝐶𝐴 of the semiconductor, which 

is a material constant. Since the calibration factor is a material constant, it is independent of the 

experimental geometry. This is in contrast to the most prominent QSS technique, quasi-steady 

state photoconductance (QSSPC), where the calibration factor includes geometrical factors that 

are not readily modelled. The consequence of this is that semiconductor wafers under test must be 

located in precisely the same position as the reference wafer was during calibration; this restriction 

does not apply to QSS-FCA. In addition to simplifying the measurement of lifetime in silicon, the 

QSS-FCA technique provides a direct means of quantifying 𝜎𝐹𝐶𝐴 to a high precision. As will be 

                                                 

3 “Quasi-steady state” refers to the case where the pump power is not constant in time but is modulated slowly enough 

that the free-carrier population is always in equilibrium with it. 
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discussed in Chapter 7, the literature values for 𝜎𝐹𝐶𝐴 have a considerable amount of spread and 

have high measurement uncertainty (~50%). In accordance with this high uncertainty there is also 

considerable disagreement regarding the underlying physical models that govern 𝜎𝐹𝐶𝐴. With my 

QSS-FCA technique, 𝜎𝐹𝐶𝐴 can be measured to a high degree of precision. Thus QSS-FCA provides 

a tool for probing more fundamental physics in silicon via 𝜎𝐹𝐶𝐴. Ideas for studies are proposed 

later on in this work. 

In order to theoretically describe the pump/probe techniques that I have developed, a model is 

required which captures all of the physics relevant to a lifetime measurement experiment. Since 

the probe signal is proportional to the free-carrier density, any effects that change this density are 

required to understand the results of a pump/probe experiment. The free-carrier density is 

described by the 3D continuity equation, which is a differential equation that accounts for the 

diffusion, generation and recombination of charge-carriers inside of a differential volume of a 

semiconductor slab. In this work I provide a general solution to the 3D continuity equation, which 

yields an equation that describes the free-carrier density as a function of 3D position and time in 

the semiconductor. This equation is analytic and algebraically succinct. It is almost completely 

closed form, except for a transcendental root that must be evaluated under certain conditions. From 

this equation, I develop a general model that predicts the probe signal from a pump/probe 

experiment of largely arbitrary configuration. The pump and probe powers, modulation 

frequencies, beam radii, and wavelength are all model parameters that can be specified by 

substituting the relevant quantities into the equation. The semiconductor under study can have an 

arbitrary thickness, surface reflection, bulk recombination lifetime, surface recombination 

velocity, and diffusion coefficient. Due to the model’s generality, the probe signal from a vast 

variety of experiments can be predicted. The primary assumption for the model is that the pump 

and probe beams have Gaussian intensity profiles and are overlapped at their centres on the sample. 

This essentially covers almost all pump/probe experiments that use laser beams. 

The content of this dissertation is outlined as follows. In Chapter 2 I review the literature behind 

lifetime measurements in silicon. Radio-frequency (RF), microwave, and free-carrier pump/probe 
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based lifetime measurements are examined, with free-carrier pump/probe techniques covered in 

depth. As well, I examine the small body of the literature around single-beam pump/probe 

techniques. In Chapter 3 I discuss the background theory that is relevant to this work. The various 

mechanisms that contribute to the overall recombination in a semiconductor are discussed, with 

emphasis given to the mechanisms relevant to silicon. The exact 1D solution to the continuity 

equation governing charge carrier transport and recombination in a semiconductor is examined in 

both the time and frequency domain. The generic signal that is acquired in a lifetime measurement 

is examined from a theoretical point of view, and related to this solution. In Chapter 4 I describe 

the experimental apparatus that is used in this work, which is divided into a pump, probe and 

detection branch. The components that comprise each branch and the methodology used to acquire 

data are discussed. I also tabulate the properties of the silicon wafers that have been studied in this 

work. In Chapter 5 I derive the generalized pump/probe equation, and examine several special 

cases based on common pump/probe configurations. In Chapters 6 and 7 I develop the single-beam 

pump/probe and QSS-FCA techniques. For both techniques I derive a model describing the signal 

measured, and then provide experimental validation of the model. It is shown that the lifetime 

measured by these techniques is consistent with the standard MFCA technique. In Chapter 8 I 

provide concluding remarks summarizing the accomplishments in this dissertation and my 

contribution to knowledge, as well as provide ideas for future work. 

  



Ph.D Thesis-Kevin M.W. Boyd  McMaster University-Engineering Physics 

6 

 

 

2 Literature Review 

2.1 Overview of Lifetime Measurement in Silicon 

Recombination in a semiconductor involves an electron in the conduction band getting captured 

by a hole in the valence band. In thermal equilibrium the rate of recombination of these free-

carriers is balanced by their rate of thermal generation, and there is no net exchange of electrons 

in the conduction band and holes in the valence band. When the population of the free-carriers is 

increased, for example by absorption of light with energy greater than the bandgap, the rate of 

recombination is increased above the rate of thermal generation and there is a net decay of the free-

carrier population over time. The average time it takes for an electron-hole population to decay is 

known as the recombination lifetime. In indirect bandgap semiconductors such as silicon, the 

lifetime is related to the purity of the material with higher purity material characterized by longer 

lifetimes. This information is invaluable to the photovoltaics community. The photovoltaics 

industry has grown at a remarkable rate over the last decade, often outpacing expert predictions. 

This growth was made possible, in part, by a dedicated supply line of solar-grade silicon feedstock. 

Solar-grade silicon is a cheaper alternative to the material used by the integrated circuits 

community, though the cost reduction comes at the expense of greater chemical contamination and 

degraded lifetime. Lifetime measurements are then critical for assessing the quality of incoming 

feedstock prior to photovoltaic device fabrication, or to improve the process used to create solar-

grade silicon. 

Lifetime measurements in silicon are ideally performed in a non-contact geometry (i.e. the wafer 

is not directly contacted with metal leads or a probe). This prevents contamination when 

performing the measurement, which is especially crucial if the wafer is to be subjected to high 

processing temperatures afterwards. As discussed in Chapter 1, lifetime measurements involve the 

excitation of excess free-carriers and the monitoring of their decay back to thermal equilibrium 

values. The excitation of free-carriers is performed by optical injection, where an optical source 

with energy above the bandgap of the semiconductor (𝜆 < 1100 nm in silicon) is absorbed to 
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promote electrons and holes across the bandgap into conduction states. The free-carrier population 

is then measured using either photoconductivity, optical-free carrier absorption, or 

photoluminescence [4]. Lifetime is extracted from either the steady-state or quasi-steady state 

population of free-carriers [5], [6], or from their decay in either the time [3], [7] or frequency [8], 

[9] domains. The decay of the free-carriers back to equilibrium usually follows a decaying 

exponential in the time domain (or equivalently a Lorentzian in the frequency domain), and the 

lifetime is extracted by fitting this decay curve to a simple exponential or Lorentzian parameterized 

by a time constant that is equal to the recombination lifetime. The main advantage of decay 

techniques is that they rely only on the relative-and not absolute-amplitude of the free-carrier 

population. The main disadvantage is that the measurement apparatus requires bandwidth 

comparable to the inverse of the lifetime. For silicon, where practical lifetimes may be on the order 

of microseconds, the measurement apparatus requires bandwidth in the hundreds of kHz range. 

Conversely, QSS measurements are inherently low frequency and have very modest bandwidth 

requirements. However, these measurements rely on the absolute amplitude of the free-carrier 

population, so they are subject to calibration error. QSS measurements are typically calibrated 

using reference samples with known properties, so their accuracy is limited to the accuracy and 

validity of the calibration. In time-domain studies, the pump-side bandwidth requirements are met 

by using a pulsed-laser for the free-carrier excitation. For example, Kunst [10] and Linross [3] use 

a pulsed Nd:YAG laser with pulse-widths of 15, and 300 ns, respectively. This excitation can be 

considered instantaneous with respect to the recombination lifetime in silicon. In frequency-

domain studies, the excitation source is modulated harmonically from low-to-high frequencies in 

order to map out the frequency-response of the semiconductor under test. To achieve high 

excitation bandwidths, fast laser diodes [9] or electro-optic modulators are used [8]. For both time 

and frequency-domain studies, high detection bandwidth is achieved by using fast diodes and high 

bandwidth oscilloscopes and lock-in amplifiers. 
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Figure 2.1: Number of Articles per Year for Various Lifetime Metrologies. Three common techniques for lifetime measurements 

are considered in this plot: QSSPC, u-PCD, and FCA. Data is obtained from Web of Science analytics. 

The three most important techniques for lifetime measurement in silicon are quasi-steady state 

photoconductance (QSSPC), microwave photoconductance decay (𝜇-PCD) and pump/probe 

infrared free-carrier absorption [4]. The main difference between the techniques is the physical 

quantity used to sense the free-carrier density of an optically excited silicon wafer. The former two 

methods use RF and microwave-frequency measurements of photoconductivity, while the latter 

uses the FCA of an infrared probe beam. Figure 2.1 shows a plot of the total number of articles 

published by year related to the three lifetime metrologies. Papers developing the theory and 

implementation of the techniques, as well as papers applying the techniques to scientific studies 

are included. It can be seen that QSSPC and 𝜇-PCD dominate the lifetime literature, compared to 

FCA. In the following section I review all three lifetime metrologies. Since the focus of this 
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dissertation is on pump/probe FCA, I review the corresponding literature in detail. QSSPC and 𝜇-

PCD are discussed briefly, with several references provided to the interested reader. 

2.2 Silicon Lifetime Measurements based on RF/Microwave Photoconductivity 

Under optical excitation the free-carrier density of a silicon wafer increases, which corresponds to 

an increase in the conductivity (lowering of electrical resistance) of the wafer. This 

photoconductivity may be sensed using RF/microwave-based measurements. Photoconductivity-

based measurements have been the mainstay of silicon lifetime characterization for decades. In 

fact, commercial instruments for measuring lifetime in silicon in a non-contact mode are 

exclusively based on photoconductivity measurements4. One of the earliest photoconductivity-

based techniques is time-resolved microwave conductivity, or as it is known today, microwave 

photoconductance decay (𝜇-PCD) [10]. In this technique, the semiconductor is placed inside of a 

microwave cavity. Microwaves are passed through a circulator and are brought incident upon the 

semiconductor. A pulsed laser with pulse-width much less than the lifetime of the wafer excites 

electron-holes pairs in the sample, increasing its photoconductivity. The increase in 

photoconductivity causes the wafer to become more metallic, and thus more reflective to 

microwaves. Reflected microwaves pass through a circulator and are detected. The decay of the 

excited electron-hole pairs back to equilibrium is monitored over time via the change in reflectance 

as the photoconductivity of the wafer decays back to equilibrium values. The decay constant, equal 

to the recombination lifetime, is extracted on an oscilloscope. 

The first measurements of lifetime using microwaves were reported at least as far back as 1959 

[11], though it wasn’t until later on that the method became more widely used. Kunst and Beck 

                                                 

4 Sinton Instruments (formerly Sinton Consulting) provides a series of lifetime measurement tools based upon QSSPC. 

SEMIlab provides a system that implements the μ-PCD technique. Freiberg Instruments provides tools that 

implements microwave-detected photoconductivity, which is related to μ-PCD. Each of these companies have tools 

for benchtop laboratory measurements as well as in-line characterization, all targeting photovoltaic applications. To 

my knowledge there are no commercial instruments for lifetime measurement based upon free-carrier pump/probe. 
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provided one of the first quantitative analyses of the measurement of charge carrier kinetics [10] 

using microwave conductivity measurements. In their work they derive a relationship between the 

change in conductivity due to optical excitation, and the change in reflectivity of microwave 

power. In general, the microwave reflectivity is a highly non-linear function of conductivity. In 

order to be useful as a relative measurement, the change in microwave reflectivity for a given 

change in conductivity should be linearly proportional to each other. This limits μ-PCD 

measurements to the small signal domain where the conductivity change is small enough that a 

first-order approximation to the change in reflectivity is valid. This is a significant complication 

when using μ-PCD  as a tool for lifetime defect spectroscopy. Lifetime is a function of the injected 

free-carrier density, and lifetime spectroscopy for defect analysis requires measuring lifetime over 

a wide range of carrier injection levels [1]. Since 𝜇-PCD is non-linear for large perturbations of 

the conductivity (i.e. large changes in carrier concentration), it cannot be used to directly measure 

lifetime at high carrier concentrations. To circumvent this, 𝜇-PCD apparatuses use a bias lamp to 

set a steady-state carrier concentration above the equilibrium level, and then a small perturbation 

is made on top of this steady-state concentration using a pulsed laser. This maintains linearity 

between the reflected microwave power and the conductivity, allowing the lifetime to be extracted 

for large carrier concentrations. 

Another prominent lifetime measurement tool based on the principle of photoconductivity is 

Quasi-Steady State Photoconductance (QSSPC) [5]. As the name suggests, this approach is a 

quasi-steady state technique and it extracts lifetime by measuring the absolute amplitude of 

photoconductivity in quasi-steady state, which is directly related to the free-carrier density via the 

carrier mobility. Though the relationship between photoconductivity and carrier density is non-

linear, it is well known and independent of the measurement apparatus. QSSPC measures the 

conductivity of the wafer using an RF inductance bridge [1]. A metal coil is placed in close 

proximity to the wafer under test and an RF current is fed through the coil. The alternating 

magnetic field of the coil induces eddy currents in the wafer. The loss of energy due to the 

induction of eddy currents is proportional to the wafer’s conductivity. The excitation source in 

QSSPC is a flash lamp with a slowly decaying optical power, the decay being slow enough that 
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the wafer’s excess free-carrier population is always in equilibrium with the excitation (hence the 

reason the technique is referred to as quasi-steady state). The photoconductivity is monitored as 

the lamp power decays, and with knowledge of the excitation rate the lifetime may be extracted. 

This dissertation is primarily focused on free-carrier absorption-based lifetime measurements. I 

have discussed the principles behind the μ-PCD and QSSPC techniques for the sake of 

completeness, and to give context to the lifetime metrologies that I have developed in this work. 

For further reading on μ-PCD and its applications, the curious reader may consult Refs  [14]–[21]. 

For QSSPC, [1], [22]–[28]. 

2.3 Review of Free-Carrier Absorption Characterization Work in Silicon 

In this section I review FCA-based lifetime measurement techniques, covering time-domain, 

frequency-domain, and steady/quasi-steady state methodologies. As is the case with microwave-

based lifetime measurement techniques, the earliest work dates back to the 1950s but it wasn’t 

until the 1990s where these techniques started gaining popularity. The growth in popularity 

coincides with the increasing feasibility of silicon photovoltaics as the cost of silicon decreased 

[29]. The technique itself has not evolved much since the early days of its implementation, though 

the technology used in its implementation has improved. Therefore most of this review focuses on 

the applications of the technique to silicon lifetime measurement, and the useful quantities that can 

be extracted.  

Before reviewing the literature, it is instructive to discuss the generic experimental geometry used 

in pump/probe FCA measurements, and what is actually measured. Free-carriers are generated by 

an optical source, and measured by monitoring the transmission of an infrared light source through 

a chunk of semiconductor material. The pump and probe sources are typically configured so that 

the probe examines an area of uniform pump intensity, and thus uniform carrier density. This is 

achieved by making the pump beam radius much larger than the probe radius. Free-carriers absorb 

the infrared light source in proportion to their density, which provides a direct probe of the free-
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carrier population. This population changes due to generation and recombination of free-carriers, 

and from that the recombination the lifetime of the semiconductor can be measured.  

Frequency-domain FCA is typically referred to as modulated free-carrier absorption (MFCA), 

and involves exciting the sample with a modulated optical source and demodulating the resultant 

probe signal and extracting the lifetime from signal’s frequency-dependence. One of the earliest 

FCA work was a frequency-domain approach that was the precursor to the modern MFCA 

technique [30], [31]. Huldt [30] examined the lifetime of near-intrinsic germanium. A tungsten 

strip lamp was used as the pump, and the probe beam was derived from a monochromator set to 

emit light at a wavenumber of 900 cm−1. The pump was mechanically chopped, and the probe 

signal was measured on a pneumatic (Golay cell) detector. Huldt showed that by sweeping 

modulation frequency the transmitted power of the probe beam changes, and this change could be 

used to predict the lifetime. He measured a lifetime of 165 μs with this technique. Nilsson [31] 

demonstrated an improved version of Huldt’s technique, where now the probe beam is also 

modulated to improve sensitivity. The detector used in this work was a thermocouple vacuum 

detector. He measured lifetimes in germanium ranging from twenty to several hundred 

microseconds. Nilsson also provided a general mathematical solution to the 1D continuity equation 

for a square-wave excitation, which is a complete description of the free-carrier recombination in 

the semiconductor. The minimum lifetime that could be measured by these techniques was limited 

by the excitation bandwidth of the setup, which is set by the speed of the mechanical chopper. 

Perhaps the first modern version of the MFCA technique emerged with Sanii et. al [8], [32]. In 

their work the pump source is a He-Ne laser emitting at 632 nm, and the probe is a second He-Ne 

laser emitting at 3.39 μm. The pump is modulated using an electro-optic modulator and the probe 

is detected with an InAs photodiode. The use of laser sources for pump and probe, as well as 

semiconductor-based detectors exemplifies Sanii’s work as the modern version of MFCA. In their 

work, Sanii et al. provide a solution to the 1D continuity equation similar to that of Nilsson [31], 

except Sanii’s solution is for a harmonically varying pump instead of a square-wave pump. The 

solution for a harmonic excitation is more versatile since harmonic functions form a temporal  basis 
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set from which all other solutions can be synthesized (i.e. the solution for an arbitrary temporal 

generation rate may be synthesized by a superposition of harmonic functions via a Fourier 

transform). The solution as presented by Sanii (and used by other authors [9], [33], [34]) is far 

more algebraically complicated than that of Nilsson. I demonstrate in this dissertation that the 

solution can be condensed significantly with the appropriate substitutions and algebraic 

manipulations, the final result resembling Nilsson’s solution. 

Sanii’s solution is a general mathematical model for 1 dimensional transport and recombination in 

a semiconductor wafer. In principle, by fitting the MFCA signal as a function of modulation 

frequency to this model it is possible to extract the bulk recombination lifetime, surface 

recombination velocity and diffusion coefficient5. However, as I discuss in Chapter 3, the shape 

of the frequency-response curve stays roughly the same regardless of the transport and 

recombination properties of the wafer so it is not possible to fit the curve to determine these 

parameters uniquely. Zhang and Li showed how the diffusion coefficient can be extracted by 

varying the separation of the pump and probe beams [35]. They showed both theoretically and 

experimentally that when the pump and probe are sufficiently separated, the phase of the probe 

signal with respect to the excitation signal grows linearly with separation distance, the slope being 

proportional to the inverse square root of the diffusion coefficient. 

Glunz et al. [9] used MFCA to measure the surface recombination velocity as a function of 

injected-carrier density for oxidized silicon surfaces. The surface recombination velocity is an 

important metric for determining the efficiency of solar cells since fast velocities lead to reduced 

photocurrent [36]. Since the lifetime extracted by MFCA is an effective lifetime that combines the 

                                                 

5 The bulk lifetime is associated with recombination in the bulk of the semiconductor, whereas the surface 

recombination velocity is the rate at which carriers recombine at the surface. The diffusion coefficient describes the 

transport of the free-carriers via diffusion. These parameters will be discussed in more detail in Chapter 3. For now, 

it is sufficient to say that the net lifetime that is measured is a complicated function of these parameters and under 

particular circumstances the individual parameters can be extracted. 
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effects of recombination in the bulk and at the surface of the semiconductor, the bulk lifetime must 

be known a priori in order to deduce the surface recombination velocity from a single MFCA 

measurement. The bulk lifetime is measured in Glunz’ work by submerging un-oxidized reference 

wafers into hydrofluoric acid and measuring the lifetime in situ with μ-PCD. HF reduces the 

surface recombination velocity to negligible levels, allowing the bulk lifetime to be measured 

directly [37]. In a later work, Glunz et al. used the same MFCA setup to perform high-resolution 

lifetime mapping on multicrystalline silicon wafers [38] with a spatial resolution of 200 μm. 

Multicrystalline silicon is used in commercial photovoltaic devices since it is low cost [39], 

however the poly-crystalline nature of the material leads to shorter recombination lifetimes and 

large spatial variations in the lifetime due to recombination on grain boundaries [40]. High 

resolution lifetime mapping is a powerful diagnostic tool for multicrystalline silicon since it can 

be used as feedback for optimizing the multicrystalline growth process. However, it should be 

noted that lifetime mapping with MFCA is slow since the frequency response of the free-carrier 

population must be acquired at each point on the wafer. In a later work, the authors comment that 

their MFCA apparatus took several hours to map a single wafer [6]. 

Zhang and Gao examined the effect that photoreflectance has on the MFCA signal [41]. MFCA 

studies collect the probe beam that transmits through the wafer under study, and it is assumed that 

the transmission is only affected by FCA. However, due to the Kramers-Kronig relationship a 

change in the absorption coefficient of a material also leads to a change in its refractive index. This 

change in refractive index modulates the reflection coefficient (photoreflectance), which then 

imposes an additional modulation on the transmission coefficient. Zhang and Gao simultaneously 

measure the transmitted and reflected beams, and correct the transmitted signal so that it contains 

only FCA effects. They measure a lifetime for both corrected and uncorrected transmitted signals, 

and show that they are different by about a factor of 2. This work is deficient since the magnitude 

of the perturbation due to photoreflectance effect should be a function of power, yet the authors 

do not report a value for the laser power. As far as I am aware, no other studies of MFCA have 
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concluded that photoreflectance has a significant effect on lifetime measurements and no other 

papers have cited this article, including later work by the same authors. 

Ren et al. extended the 1D diffusion model that considers only diffusion and recombination along 

the axis of the wafer to three dimensions [42]. Their 3D model is an analytic solution to the 

continuity equation in three dimensions, accounting for diffusion along the axis of the wafer and 

parallel to the wafer surface. They use their model to fit experimentally measured data and extract 

the bulk lifetime, surface recombination velocity, and diffusion coefficient simultaneously. The 

model presented by Ren et al. is very algebraically complicated and written in terms of integrals 

that don’t yield a closed-form solution. In this thesis I derive a superior 3D model that is general 

but also much more compact and usable than Ren’s model.  

MFCA has been used to study the interface quality of material systems outside of elemental silicon. 

For example, Suvanam et al. used MFCA to measure the surface recombination velocity of 4H-

silicon carbide substrates with a dielectric film [43]. Measurement of the surface recombination 

velocity provides an indirect means of extracting the density of trap states at the interface between 

substrate and film [44]. Suvanam et al. show that the FCA measurements correlate with 

capacitance-voltage measurements of the surface trap density, indicating that MFCA can be used 

to directly measure the surface properties in a non-contact geometry. 

A more exotic example of FCA characterization which is decidedly different from other techniques 

is an ultrafast pump/probe experiment that measures the FCA cross section, internal quantum 

efficiency, and diffusion coefficient of silicon, demonstrated by Meitzner et.al. [45]. In this work 

the evolution of a free-carrier population excited very close to the silicon surface (~35 nm) is 

monitored over a time-scale on the order of picoseconds. Since this timescale is many orders of 

magnitude shorter than the recombination lifetime of silicon, recombination has no effect on the 

measurement. The time-evolution of the carrier population as it diffuses away from the surface is 

measured via the fact that the FCA cross-section increases with increasing carrier density [46]. At 

short time-scales (~ 1 ps) the surface concentration is high and the FCA of the probe is high. At 
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longer times (> 100 ps) the FCA linearizes and the signal becomes constant in time. The time-

evolution of the signal at short times can be used to extract the diffusivity, while the post-transient 

signal can be used to determine the number of injected carriers which is used to quantify the FCA 

cross section of the probe beam, and measure the internal quantum efficiency of silicon. Since this 

measurement occurs on ultrafast timescales, no information is obtained about the recombination 

lifetime of silicon. 

One of the first time-domain FCA lifetime studies was performed by Schwartz et al. [47]. They 

used a Xenon flash lamp as the excitation source, but the resolvable lifetime was limited by the 

temporal bandwidth of the Xenon lamp. In the microsecond lifetime range a fitting procedure was 

required in order to extract the lifetime. One of the first studies to overcome the bandwidth 

limitation was performed by Warabisako et al. [48] using a Q-switched Nd:YAG laser with pulse-

widths < 110 ns, operating at the fundamental wavelength of 1064 nm. Compared to the time scale 

of recombination in silicon the pulses of this laser provide near-instantaneous excitation of free-

carriers. Using a CO2 laser (10.6 μm wavelength) as the probe, the authors were able to 

demonstrate the time-resolved measurement of lifetimes in silicon shorter than 800 ns. 

Johnson and Johnson used a similar experimental setup as Warabisako to study the spatial 

dependence of lifetimes in cast multicrystalline silicon ingots [49]. As mentioned above, the spatial 

dependence of lifetime is useful for process optimization when fabricating multicrystalline silicon 

wafers. Johnson and Johnson used a CW Nd:YAG laser operating at 1.319 μm as their probe beam, 

and a tunable infrared dye laser as the pump beam. The typical lifetimes they measured were in 

the 2-10 μs range. 

Waldmeyer performed a similar study to Warabisako but with the support of a mathematical model 

derived from solving the 1D continuity equation [50]. Waldmeyer’s model showed the conditions 

under which the bulk lifetime, surface recombination coefficient, and diffusion coefficient could 

be separated. Waldmeyer’s model shows that when the wafer is sufficiently thick the bulk lifetime 

is measured regardless of the value of the surface recombination velocity or diffusion coefficient. 



Ph.D Thesis-Kevin M.W. Boyd  McMaster University-Engineering Physics 

17 

 

 

When the wafer is thin and has high surface recombination velocity, then the diffusion coefficient 

may be directly measured. While Waldmeyer’s mathematical model is general and relevant beyond 

FCA-based lifetime work, it is not examined in depth in his work. In the year prior to Waldmeyer’s 

work, Luke and Cheng published a comprehensive study on a general solution to the 1D continuity 

equation for free-carriers in silicon [51]. This seminal work is a highly detailed examination of the 

1D continuity equation and its consequences for lifetime measurements in semiconductors. It is 

highly regarded and has been cited at least 273 times. Though this work focuses on silicon, it can 

be applied to understand the carrier dynamics in any semiconductor. The results of Luke and Cheng 

are cited heavily in this work, and the Luke and Cheng solution is the basis for the generalization 

of the 1D continuity equation into 3 dimensions that I present in later chapters. 

In 1998 Linnros published two comprehensive review articles on time-domain FCA lifetime 

measurements [3], [7]. These articles describe in detail the standard time-domain FCA lifetime 

experiment, and how it may be used to characterize the transport and recombination properties of 

silicon. In the first article, Linnros demonstrates the measurement of the injection-level dependent 

lifetime using a high-power pulsed Nd:YAG laser emitting at 1064 nm as the pump beam. The 

energy per pulse is on the order of millijoules, which injects a very high density (> 1018 cm−3) of 

free-carriers into the wafer. At this level of injection in silicon, Auger-recombination is readily 

observable. The decay of the free-carrier density across many orders of magnitude reveals the 

Auger, high-level injection and low-level injection lifetimes6. Injection-level dependent lifetime 

measurements reveal information about the nature of defects causing recombination in silicon via 

the Shockley-Read-Hall model for recombination [1]. Linnros demonstrates that the injection-level 

                                                 

6 “High” and “low” level injection refers to the relative concentration of injected carriers with respect to the 

background doping levels. High-level injection features an injected carrier density much greater than the background 

doping density, and vice-versa for low-level injection.  
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dependent lifetime that he measures is consistent with Shockley-Read-Hall theory7. In the second 

article Linnros describes the conditions required to accurately measure the bulk lifetime in the 

presence of low to high surface recombination velocity. He also experimentally demonstrates 

lifetime-mapping over a 4 inch wafer in the Auger, high-level, and low-level injection regimes. 

The lifetime maps in each recombination regime provide an interesting demonstration of intrinsic 

vs extrinsic recombination mechanisms. Auger recombination is an intrinsic mechanism that is 

independent of the electronic quality of the material. Lifetime maps in the Auger regime reveal a 

relatively constant recombination lifetime. In the high-level and low-level injection regimes, the 

recombination is due to Shockley-Read-Hall recombination which is an extrinsic, defect-assisted 

process and thus dependent on the electronic quality of the semiconductor. Lifetime maps in 

regimes where SRH recombination is dominant show a wide variation is lifetime due to 

inhomogeneities in the electronic quality of the wafer. 

Linnros and Grivickas demonstrated an interesting method for measuring the diffusion coefficient 

in silicon using time-domain FCA [52]. In their technique, the pump beam is filtered through a 

grating with a sinusoidal spatial opacity before being absorbed in the silicon wafer. This leads to 

an injection of carriers that initially follows a sinusoidal curve. The probe beam is focused to a 

point along the sinusoidal profile and measures the decay of carriers, which is due to both 

recombination and diffusion. By sweeping the probe beam and measuring the decay at each 

position along the excitation profile, a two-dimensional map of position and time is built up. 

Fourier transformation along the spatial dimension leads to peak whose decay in time can be used 

to extract the diffusion coefficient. A similar study was carried out by Scajev and Jarasiuanas [53] 

to measure the recombination and transport parameters of CVD-grown 4H-SiC. In their work they 

                                                 

7 Shockley-Read-Hall theory describes recombination via trap states within the bandgap. SRH recombination is 

typically the dominant recombination mechanism in silicon. This theory is reviewed in Chapter 2. 
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excite a sinusoidally varying carrier profile via optical interference of a split and then recombined 

pump beam. 

The FCA lifetime techniques I have described so far have operated in the time or frequency domain 

and measure lifetime by fitting a decay curve. There are few studies that have been performed to 

measure lifetime under steady/quasi-steady state conditions. Perhaps the first study to ever 

quantify lifetime in semiconductor using FCA was performed by Harrick [54]. In this work a block 

of germanium material is illuminated by a tungsten lamp that is used as a pump, while the free-

carrier population is monitored by the absorption of infrared radiation supplied by a globar source. 

Since the magnitude of absorption is proportional to the free-carrier population which is 

proportional to the lifetime, lifetime may be measured directly. The lifetime that is measured is on 

the order of milliseconds. Polla [55] describes a quasi-steady state measurement of lifetime using 

a chopper to modulate the pump in the quasi-steady state limit. The lifetime of various silicon 

wafers is examined by extracting the amplitude of the probe signal. Chang et al. describes a quasi-

steady technique that characterizes the device layer and substrate of a silicon-on-insulator wafer 

[33], [56]. They used a Tungsten lamp as the probe and two excitation lasers (He-Ne at 632 nm, 

He-Cd at 442 nm) for the pump beam. By varying the pump wavelength and angle of incidence 

the authors are able to characterize bulk and surface recombination in the device layer and substrate 

of the SOI wafer. Since all steady/quasi-steady state techniques require the absolute amplitude of 

the signal in order to extract lifetime, these techniques require an accurate value of the free-carrier 

absorption cross section in order to absolutely quantify the magnitude of FCA. As is discussed 

later in this thesis, this cross section is not well known and it is likely the lifetimes measured in the 

above works have large systematic errors attached to them. 

Recently, a camera-based pump/probe technique has been introduced that operates in steady or 

quasi-steady state [57] [6]. The first technique [57], Infrared Lifetime Mapping (ILM), is a purely 

steady-state technique that images the transmission of IR light through a silicon wafer onto an IR 

camera. The source of the infrared light is a blackbody radiator with peak emission at about 8 μm. 

The wafer sits between the blackbody source and the camera. A series of laser diodes emitting at 
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940 nm are used to pump the silicon wafer. The lasers are operated at a fixed power, leading to a 

steady-state excess carrier density in the wafer. These free-carriers attenuate the black body 

radiation, leading to a reduced signal on the camera. The signal from the camera is measured both 

when the excitation light is on and off and the signals are subtracted. This results in a contrast map, 

with higher contrast indicating a higher level of free-carrier absorption, and consequently higher 

lifetime. The drawback of ILM is that it is subject to higher noise due to it being a steady state 

method. Carrier Density Imaging (CDI) [6] improves upon ILM by using a modulated excitation 

and detection scheme. The excitation is modulated at 1.4 Hz, and the camera signal is demodulated 

on a lock-in amplifier. The in-phase component of the signal is due to free-carrier absorption, the 

magnitude of which is proportional to the lifetime. CDI is demonstrated to be capable of mapping 

the lifetime of a multi-crystalline silicon wafer with an area of 100 x 100 mm2 within 10 seconds. 

The average lifetime of the wafer examined was about 3 μs, which proves that CDI measurements 

are effective for characterization of silicon wafers since they can resolve very short lifetimes. 

ILM and CDI are steady/quasi-steady state measurements that require calibration in order to 

convert the camera signal into an absolute lifetime value. In ILM/CDI the calibration is achieved 

by quantifying the free-carrier absorption cross section, which then allows for an absolute value 

of absorption to be determined and from that the lifetime. In [6], the IR transmission through 

several reference wafers with known carrier concentration are used to quantify the absorption cross 

section, which then leads to a calibration curve. However, this calibration relationship is acquired 

using p-type wafers which means that only the hole absorption cross section is measured. In 

lifetime measurements electrons and holes are injected in equal concentrations so an accurate cross 

section for electrons is required as well. The authors account for this by using a correction factor 

that leverages the fact that the ratio between electron and holes is supposedly well known [58]. 

Their calibration also assumes that the absorption cross section is constant with injected carrier 

density, which as I demonstrate in this dissertation may not be a valid assumption. 

The bulk of the work measuring lifetime in silicon using free-carrier absorption in a pump/probe 

geometry dates back to the 1990s. In recent years this work has tapered off, which is partly due to 
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the prominence of RF/microwave based approaches. The body of work surrounding 

RF/microwave techniques is much more extensive, as seen in Figure 2.1. For example, the paper 

introducing the quasi-steady photoconductance technique [5] has been cited at least 1419 times. 

This is in stark contrast to one of the more prominent FCA-based lifetime work in silicon [3] that 

has been cited at least 110 times. As well, the several commercial tools available for measuring 

lifetime in silicon are all based on RF/microwave photoconductivity measurements. One reason 

for the adoption of RF/microwave based approaches over FCA is that the former are insensitive to 

the optical properties of silicon’s surface. Silicon wafers are typically only polished to a mirror-

finish on a single side, leaving the other side optically rough. In addition to this, silicon used for 

solar cell applications is textured in order to improve light collection. Roughened/textured surfaces 

tend to scatter the probe beam used in FCA studies, so collection optics are required to study 

roughened samples. The primary technique developed in this work-single beam pump/probe free-

carrier absorption- does not overcome this disadvantage. However, it opens a new realm of 

possibilities for in situ process monitoring that would be difficult if not impossible to implement 

using traditional RF/microwave-based and two-beam FCA based approaches. 

2.4 Review of Single-Beam Pump Probe Studies 

Up to this point, every single FCA study I have reviewed uses a dual-beam pump/probe geometry. 

That is the pump and probe are comprised of separate beams. There are very few studies that have 

implemented a pump/probe technique using a single-beam for both pump and probe. Studies that 

do are cited only a few times, and the work is never expanded upon. Suddendorf and Somekh 

published a photoreflectance study that uses a frequency-doubled Nd:YAG laser (emitting at 532 

nm) laser as both the pump and probe [59]. The laser is modulated sinusoidally by an acousto-

optic modulator and split into two beams after emerging from the modulator. The first beam is the 

sample beam which reflects from a multi-layered silicon sample and is captured by a 

photodetector. This beam optically induces a change in the refractive index of the sample, which 

leads to a change in the reflection coefficient of the beam. Frequency-mixing between the 

modulated beam and the modulated reflectance gives rise to a signal component at the first 
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harmonic of the modulation signal. In order to reliably extract this harmonic, stray harmonic 

components arising from non-linearities in the modulation transfer function must be eliminated. 

The second beam is used as a reference in a feedback system to suppress these stray harmonics. 

The reference beam is fed into a second photodetector and the signal is demodulated on a lock-in 

amplifier. The in-phase and quadrature components are used as feedback into the acousto-optic 

modulator to remove stray harmonics and purify the sample beam. 

Suddendorf and Somekh’s work was cited three times, once by the authors in an unrelated work 

and twice by another group that had published the same work in a journal and a conference 

proceeding. This journal article, by Ho et al. [60], employs a similar approach to Suddendorf and 

Somekh to study nitrogen-implanted silicon and the effect of rapid-thermal annealing on the 

photoreflectance signal. A 532 nm laser is modulated using a liquid-crystal modulator and the 

beam is split into reference and sample beams, with the reference beam providing feedback to 

suppress stray harmonics in the sample beam. The sample beam is collected in reflection-mode 

and the harmonic frequency that contains the photoreflectance signal is demodulated on a lock-in 

amplifier. The authors were able to show a difference in photoreflectance signal between 

implanted and un-implanted regions on the silicon wafer. To my knowledge this study has zero 

citations. 

There are two studies that I have found that quantify free-carrier absorption in silicon using a 

single-beam [61], [62]. In the first [61], Svantesson and Nilsson use a pulsed Nd:YAG laser for the 

pump and measure the transmission of the laser through silicon wafers of various thicknesses. The 

incident power of the pump beam is varied and the transmitted power is plotted as a function of 

the incident power. For low powers the transmitted power is linear with incident power, which is 

expected when the absorption mechanism is band-to-band absorption only. However, as power is 

increased further the transmitted power begins to plateau due to free-carrier absorption becoming 

more prominent as the injected carrier density increases. By fitting the transmission curves for 

various sample thicknesses and powers, the authors are able to deduce values for the reflectivity, 

band-to-band, and free carrier absorption coefficient. A similar study was carried out by Heisel et 
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al. in [62]. They use a pulsed Ti-Sapphire laser and studied its transmission through a 10 μm thick 

silicon membrane at 800 nm at various powers. Like Svantesson and Nilsson’s work, the 

transmitted vs incident power is initially linear when incident power is low, but begins to plateau 

for higher incident powers. Heisel et.al. pushed this trend even further than Svantesson and 

Nilsson, showing that eventually the transmitted power starts decreasing with increasing incident 

power, which is indicative of a saturation in absorption due to an excessively high free-carrier 

concentration. Both authors had follow-up studies where the single-beam technique is used, but 

the technique is not further expanded upon [63]–[66]. All of these studies constitute a steady-state 

measurement since it is the CW transmission of the laser that is measured. Since the free-carrier 

absorption coefficient is measured, it is possible to derive the excess carrier density from which 

the recombination lifetime could be determined [5]. However, these studies rely on the fitting of 

non-linear transmission curves with the non-linearity arising from very high carrier densities. Thus 

any lifetime measurement that is performed with these techniques will be measuring lifetime under 

very high-injection conditions, likely measuring Auger recombination. Since Auger recombination 

is an intrinsic recombination process, it will not reveal information about the material quality of 

silicon which is the desired information when performing lifetime measurements [7]. 

 

2.5 Summary of Literature Review 

I have reviewed the scientific literature for free-carrier absorption-based lifetime measurements in 

silicon. The principles behind quasi-steady state, time-domain, and frequency-domain approaches 

to the technique have been discussed, along with applications primarily focused on silicon. The 

common feature to all FCA-based lifetime techniques that I have examined is the use of a dual-

beam pump/probe geometry, i.e. a separate source for pump and probe. Another feature to note is 

that all applications that I discussed are performed on a laboratory bench top, and not for inline 

process control or monitoring of processes in situ. This is probably not a coincidence. Pump/probe 

FCA studies demand that the pump and probe beams overlap on the sample under study, with the 

beam diameters typically on the order of millimeters or less. This is straightforward enough to 
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implement on a bench top since the experimenter has direct access to the sample and it is easy to 

make the adjustments required to ensure that pump and probe are overlapped. It would be 

considerably more difficult to implement such a setup to monitor a process in situ, such as the 

deposition of a silicon nitride coating on a silicon wafer via chemical vapour deposition (CVD)8, 

or in an annealing tube furnace. Single-beam pump/probe is a technology that is uniquely suited 

for monitoring of processes in situ since there is no consideration about beam overlap. As long as 

the beam strikes the sample and can be collected afterwards, single-beam pump/probe can be 

implemented. In Chapter 6 I will examine potential applications for single-beam pump/probe. 

Another issue that has been addressed in this literature review are steady-state techniques for 

lifetime measurement, both FCA-based in the case of ILM/CDI and RF-based in the case of 

QSSPC. The common theme in all of these techniques is the requirement for the instrument to be 

calibrated in order to map the measured signal to the recombination lifetime. In all of the 

techniques examined the calibration is indirect, relying on a reference wafer of known electronic 

properties in order to establish the relationship between measured signal and lifetime. Verification 

of the veracity of the calibration requires measurement of the lifetime using a separate technique. 

Calibration of the QSS-FCA technique that I develop in this work is completely direct, with the 

relationship between quasi-steady state lifetime and the true lifetime measured unambiguously. A 

major advantage of QSS-FCA is that the unknown factor that is quantified is a material constant, 

and not a geometrical factor as is the case with the QSSPC technique. The geometrical factor 

restricts the QSSPC apparatus to measurements made in the same geometry9 under which the 

                                                 

8CVD silicon nitride is a standard coating for silicon photovoltaic cells. It acts simultaneously as an antireflection 

coating and for electronic passivation of the silicon surface [67]. 

9 Geometry in this context refers to the geometrical relationship between the sensing coil used by the QSSPC apparatus 

and the wafer under test. The coupling constant between the coil and wafer is a complicated function of position [68] 
which is determined during calibration. Obviously then the coil must be consistently positioned in the same place with 

respect to the wafer under test as it was during calibration 
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system is calibrated. This restriction does not apply to QSS-FCA, allowing for more flexibility in 

its implementation. 
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3 Theoretical Background 

3.1 Absorption in Semiconductors: Band-to-band and Free Carrier Absorption 

 

 

Figure 3.1: Diagram of band-to-band and free carrier absorption processes in an indirect bandgap semiconductor. 

To measure lifetime in a semiconductor, electrons and holes are promoted into the conduction and 

valence bands, and their population over time or modulation frequency is observed. Interband 

absorption is used to excite electrons and holes into these bands, while intraband absorption is used 

to monitor their population. Intraband absorption is proportional to the density of electrons/holes 

in the conduction/valence bands, so its measurement gives direct access to the population density 

of free-carriers. Figure 3.1 shows a simplified energy band diagram for an indirect bandgap 

semiconductor, like silicon, illustrating interband and intraband absorption processes. Interband, 

or band-to-band absorption, occurs when light is absorbed to promote an electron from the valence 
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to the conduction band, leaving behind a hole in the valence band. For band-to-band absorption to 

occur, the light must usually have energy greater than the characteristic bandgap of the 

semiconductor. In silicon this about 1.1 eV, which corresponds to a wavelength of 1100 nm. 

Silicon is an indirect bandgap semiconductor, so the valence and conduction band edges are not 

aligned in crystal momentum (Figure 3.1). Since the momentum of light is very small10, a 

momentum-conserving collision with a phonon is required in order to excite an electron to the 

conduction band in indirect semiconductors. This requirement of an additional quasi-particle to 

facilitate the transition reduces the probability of it occurring, so the absorption coefficient is much 

smaller in indirect bandgap than direct bandgap semiconductors such as GaAs. 

Intraband absorption occurs when a free electron or hole absorbs light and is promoted to a higher 

energy state within the same band. Since intraband absorption involves free-carriers, it is also 

known as free-carrier absorption (FCA). The energy dispersion in the conduction or valence band 

is parabolic (or approximately so), so a transition to higher energy states requires a momentum-

conserving collision. This momentum-conserving event may be lattice scattering (i.e. emission or 

absorption of a phonon), electron-hole scattering or scattering from a charged impurity [69]. The 

classical description of the FCA coefficient 𝛼𝐹𝐶𝐴 is given by the Drude theory of conductivity [58]: 

 
𝛼𝐹𝐶𝐴 =

𝑞3𝜆2

4𝜋2휀0𝑐3𝓃
[

𝑛

𝑚𝑛
∗2𝜇𝑛

+
𝑝

𝑚𝑝
∗2𝜇𝑝

] 

 

(3.1) 

where 𝑞 is the fundamental electron charge, 𝜆 is the wavelength of light being absorbed, 휀0 is the 

permittivity of free space, 𝑐 is the speed of light, 𝓃 is the refractive index of the semiconductor,  

                                                 

10 The order of phonon momentum can be estimated by ℏ𝐾, where 𝐾 is the reciprocal lattice vector of silicon (𝐾 =
2𝜋/𝑎, where 𝑎 is the lattice constant of silicon). This results in a value of 1.22x10−24 kg m/s. The momentum of 

light is given by ℎ/𝜆, which is 6.23x10−28 kg m/s. This is obviously much smaller than the phonon momentum. 
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𝑚𝑛
∗  & 𝑚𝑝

∗  are the electron and hole conductivity effective masses, respectively, 𝜇𝑛 & 𝜇𝑝 are the 

electron and hole mobilities, respectively, and 𝑛 & 𝑝 are the concentrations of free electrons and 

holes, respectively. In this work free electrons and holes are generated in a one-to-one ratio, so 

𝑛 = 𝑝. It is helpful to write Equation (3.1) in terms of the free-carrier absorption cross section 

𝜎𝐹𝐶𝐴: 

 𝛼𝐹𝐶𝐴 = 𝜎𝐹𝐶𝐴𝑛 

 

(3.2) 

Equation (3.2) shows that the free-carrier absorption coefficient is proportional to a material 

constant and the free-carrier density. In general 𝜎𝐹𝐶𝐴 varies with 𝑛 since the carrier mobilities are 

dependent on the carrier density [70]. It is well known in the literature that the Drude model 

underestimates the value of 𝜎𝐹𝐶𝐴 [71]. The Drude model is actually a simplification of a more 

general model derived from perturbation theory that describes FCA in terms of scattering from 

acoustic phonons [72]. There are also contributions due to scattering from optical phonons, 

scattering between electrons and holes, and scattering from ionized impurities (i.e. donor/acceptor 

atoms) in the material [46], [69], [73]. For the purposes of this work, FCA is a tool to 

experimentally access 𝑛. From this point of view the underlying physics of the FCA phenomenon, 

while interesting, is irrelevant; all that matters is that a signal can be measured that is proportional 

to 𝑛. For the single-beam pump/probe technique the absolute value of 𝜎𝐹𝐶𝐴 is unimportant since I 

am only interested in the relative amplitude of the FCA signal. In QSS-FCA an absolute value for 

𝜎𝐹𝐶𝐴 will be required, which the technique provides a mechanism for measuring directly. 

3.2 Recombination in Semiconductors 

 



Ph.D Thesis-Kevin M.W. Boyd  McMaster University-Engineering Physics 

29 

 

 

 

Figure 3.2: A simplified energy band diagram illustrating the fundamental recombination processes in a semiconductor. Radiative, 

trap-assisted (or Shockley-Read-Hall), Auger, and surface recombination processes are illustrated. Each process is a mechanism 

by which an electron in the conduction band falls into a hole in the valence band, annihilating both carriers. 

At room temperature (𝑇 = 300 K) in a semiconductor, there is a finite rate at which electrons are 

pumped into the conduction band due to thermal excitation. For each electron pumped into the 

conduction band, there is a hole left behind in the valence band. In thermal equilibrium, the rate at 

which free-carriers are generated is equal to the rate at which they recombine. During 

recombination, an electron in the conduction band falls back into a hole in the valence band 

annihilating the two carriers. Recombination is parameterized by the recombination lifetime, which 

is the average time over which a population of carriers above the thermal equilibrium concentration 

recombine. The total lifetime that is measured-the effective lifetime 𝜏- is the reciprocal sum of 

several independent recombination mechanisms: 
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 1

𝜏
= [

1

𝜏𝑟𝑎𝑑
+

1

𝜏𝐴𝑢𝑔
+

1

𝜏𝑆𝑅𝐻
] +

1

𝜏𝑠
 

 

(3.3) 

where 𝜏𝑟𝑎𝑑 , 𝜏𝐴𝑢𝑔, 𝜏𝑆𝑅𝐻, & 𝜏𝑠 are the radiative, Auger, Shockley-Read-Hall, and surface lifetimes, 

respectively. These processes are illustrated in Figure 3.2. Equation (3.3) is a rate equation, and 

states that the total rate of recombination is just the sum of the rates from the contributory 

recombination mechanisms. Shorter lifetimes represent faster rates of recombination, and 

dominate the overall contribution to recombination. The squares brackets delineate the bulk 

lifetime 𝜏𝑏, which is recombination that occurs within the volume of the crystal. The surface 

lifetime is due to recombination via trap states at the semiconductor’s surface. 

Radiative and Auger recombination are known as intrinsic recombination processes since they are 

fundamental processes that cannot be eliminated. Shockley-Read-Hall recombination, also known 

as trap-assisted recombination, is an extrinsic recombination mechanism facilitated by trap states 

within the semiconductor’s forbidden gap. These traps are due to impurity atoms inside the crystal 

lattice of the semiconductor, and so Shockley-Read-Hall recombination can largely be mitigated 

by using hyper-pure semiconductor material. In photovoltaics, long recombination lifetimes are 

desirable since optically-excited charge carriers have a higher probability of reaching the pn-

junction before recombination. Carriers that cross the junction are essentially “home-free” and are 

able to participate in electrical conduction in an external circuit. In the following section each of 

the recombination mechanisms listed above are described, with emphasis given to the mechanisms 

relevant to silicon. 

3.2.1 Radiative Recombination 

Radiative recombination occurs when a conduction-band electron recombines directly with a hole 

in the valence band, releasing energy as light. The lifetime associated with radiative recombination 

is given by Equation 1.32 in [1]: 
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𝜏𝑟𝑎𝑑 =

1

𝐵(𝑛0 + 𝑝0) + 𝐵𝑛
 

 

(3.4) 

where 𝑛0 & 𝑝0 are the thermal equilibrium concentrations of electrons and holes, respectively, 𝑛 

is the density of free-carriers above the equilibrium concentration, and 𝐵 is a rate constant. It is 

assumed that the electron and hole concentrations are equal, since free electrons and holes are 

generated in a one-to-one ratio by optical injection. Radiative recombination is typically the 

dominant mechanism for carrier recombination in direct bandgap semiconductors. In direct 

bandgap semiconductors, the edges of the valence and conductions bands are aligned in 

momentum-space, so an electron may transition from the conduction to valence band without a 

change in momentum. This results in a high rate constant, and thus a high probability of radiative 

recombination. Silicon has an indirect bandgap, so in order for an electron to fall from the 

conduction to valence band a momentum-conserving collision with the lattice (i.e. a phonon) must 

occur. The requirement of interaction with a third quasi-particle reduces the probability of radiative 

recombination in silicon, making it an inefficient process. Indeed the rate constant for a direct 

bandgap semiconductor like GaAs is 𝐵 = 2x10−10 cm3s−1 whereas for silicon it is 𝐵 =

1x10−14 cm3s−1, which is a difference of four orders of magnitude [4]. This difference results in 

a very large span in carrier lifetimes between direct and indirect bandgap semiconductors. 

Choosing a background doping level of 𝑁𝑑 = 10
16cm−3 and assuming carrier injection is small 

(𝑛 → 0), the radiative lifetime in GaAs is about 500 ns, whereas for silicon it is 10 ms. 

Radiative recombination is the operational mechanism behind light-emitting diodes or diode 

lasers. Excess electrons and holes are electrically injected and recombine radiatively to produce 

light. It is the indirect bandgap of silicon that makes silicon-based LEDs or lasers an elusive 

prospect. Still, while radiative recombination is inefficient in silicon, it still occurs and has been 

used for materials characterization [4], [74]. In this context, the radiative recombination in silicon 

is referred to as photoluminescence. 
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3.2.2 Auger Recombination 

Auger recombination is similar to radiative recombination in that an electron recombines directly 

with a hole. In Auger recombination however, the energy of recombination is transferred to an 

adjacent electron or hole, instead of light. The energy transferred to the adjacent carrier excites it 

to a higher energy level within its respective band, after which the carrier rapidly thermalizes back 

to the band edge. The lifetime associated with Auger recombination in the high injection limit 

(𝑛 ≫ 𝑁𝑑, where 𝑁𝑑 is the doping density) is given by Equation 1.36 in [1]: 

 
𝜏𝐴𝑢𝑔 =

1

𝐶𝑎𝑛2
 

 

(3.5) 

where 𝐶𝑎 is the ambipolar Auger coefficient, and 𝑛 is the number of free-carriers. Equation (3.5) 

shows that the Auger lifetime is inversely proportional to the square of the carrier density. This 

non-linearity is intuitive since Auger recombination is a three-particle process, so the probability 

of recombination occurring will rise at higher carrier densities. In silicon, 𝐶𝑎 =

3.79 x 10−31 cm6s−1, so for a moderate injection of carriers 𝑛 = 1016 cm−3 the lifetime is 26 ms, 

which is very high. At higher injection (𝑛 = 1018 cm−3)  the lifetime drops to 2.6 μs. Auger 

recombination becomes the dominant recombination mechanism at high carrier densities in both 

direct and indirect bandgap semiconductors. In fact, Auger recombination is responsible for the 

droop phenomenon in LEDs, which is a reduction in the radiative efficiency at high current 

densities [75]. 

3.2.3 Shockley-Read-Hall Recombination 

Shockley-Read-Hall (SRH) recombination is a trap-assisted process, whereby energy states within 

the forbidden bandgap of the semiconductor capture (or trap) free-carriers. Figure 3.2 illustrates a 
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trap-assisted recombination event, where a trap state captures an electron and then a hole to 

complete the recombination process. The SRH lifetime is given by the SRH equation (Equation  

3.1 in [1]): 

 
𝜏𝑆𝑅𝐻 =

𝜏𝑛0(𝑝0 + 𝑝1 + 𝑛) + 𝜏𝑝0(𝑛0 + 𝑛1 + 𝑛)

𝑝0 + 𝑛0 + 𝑛
 

 

(3.6) 

where 𝑛 is the density of excess carriers, 𝜏𝑛0 & 𝜏𝑝0 are the capture time constants for electrons and 

holes, respectively, 𝑛0 & 𝑝0 are the equilibrium carrier densities for electrons and holes, 

respectively, and 𝑛1 & 𝑝1 are the electron and hole concentrations corresponding to a Fermi level 

of 𝐸𝑡, where 𝐸𝑡 is the energy of the level of the trap state. The capture time constants are given by: 

 𝜏𝑝0 = (𝑁𝑡𝜎𝑝𝑣𝑡ℎ)
−1

 

 

(3.7) 

 𝜏𝑛0 = (𝑁𝑡𝜎𝑛𝑣𝑡ℎ)
−1 

 

(3.8) 

where 𝑁𝑡 is the density of the trap state, 𝑣𝑡ℎ is the electron thermal velocity (~107cm/s at room 

temperature) and 𝜎𝑛 & 𝜎𝑝 are the capture cross sections for electrons and holes, respectively. 

 𝑛1 and 𝑝1 are given by: 

 
𝑛1 = 𝑁𝑐𝑒

−
𝐸𝑐−𝐸𝑡
𝑘𝑇  

 

(3.9) 
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𝑝1 = 𝑁𝑉𝑒

𝐸𝑉−𝐸𝑡
𝑘𝑇  

 

(3.10) 

where 𝑘 is Boltzmann’s constant, 𝑇 is temperature, 𝐸𝐶  & 𝐸𝑉 are the energies of the conduction and 

valence bands, respectively, and 𝑁𝐶  & 𝑁𝑉 are the effective densities of states in the conduction and 

valence bands, respectively.  

 

Figure 3.3: Ionization energies for various impurities in silicon. Figure printed from Sze [76]. 

Equation (3.6) forms the theoretical basis behind lifetime spectroscopy, which is the set of 

techniques used to probe the defects responsible for recombination in a semiconductor. Defect 

characterization seeks to elucidate parameters such as the energetic position 𝐸𝑡 and density 𝑁𝑡 of 

particular trap species. Figure 3.3 shows the energetic position of several impurity species in 

silicon. It can be seen that the impurity’s position within the bandgap provides a fingerprint for the 

impurity’s species. Measurement of the impurity content in a semiconductor is a useful diagnostic 

tool for identifying sources of contamination that can degrade device performance. Defect 

characterization is achieved experimentally by analyzing the SRH lifetime’s dependence on the 
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injected carrier density 𝑛 and temperature. Defect characterization is outside the scope of this 

work. In this dissertation, I am primarily focused on techniques for measuring the lifetime, not 

interpreting it. Still, it is helpful to discuss the injection-level dependence of lifetime here, since it 

will be encountered later on. 

 

Figure 3.4: Injection level dependence of the total effective lifetime in silicon as a function of carrier injection, for various trap 

levels within the bandgap. Figure printed from [4]. 

Figure 3.4 plots the injected carrier dependence of the SRH lifetime (solid curves) and the total 

lifetime due to SRH and Auger recombination (long dashed curve), for n-type silicon. The family 

of solid curves is the SRH injection-level dependent lifetime for various trap state energies, with 

the trap energy level referenced to the conduction band edge. The vertical dashed line indicates 

the concentration of background donors, and separates the regions of low and high level injection. 

Clearly the SRH lifetime depends sensitively on the position of the trap state within the bandgap, 

in a complicated way. At low-level injection, the SRH lifetime is high for trap levels close to either 

band-edge. This is because carriers that fall into these trap states have a higher probability of being 

excited out of them by thermal agitation, delaying recombination. Deeper trap levels (traps close 

to the middle of the bandgap) are much more detrimental to the lifetime. Once carriers fall into 

these traps, it is unlikely they will be excited out by thermal agitation. In high-level injection, the 
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SRH lifetimes converge to a final value given by 𝜏𝐻𝐿𝐼 = 𝜏𝑛0 + 𝜏𝑝0, which is independent of the 

trap’s position within the bandgap. 

Though in high-level injection the SRH lifetime converges to a constant value, the total lifetime 

(long dashed curve) begins dropping before the convergence. This is due to the fact that Auger 

recombination starts to dominate recombination. From Figure 3.4, the pure Auger lifetime (dotted 

line labelled “Auger”) is very long with respect to the SRH lifetime at carrier densities below 𝑛 =

1016 cm−3. Beyond 𝑛 = 1016 cm−3 the Auger lifetime drops below the SRH lifetime and 

becomes the dominant recombination mechanism. For practical injection levels, the radiative 

lifetime (dotted line labelled “Radiative”) is always much longer than the SRH and Auger 

lifetimes, so radiative recombination makes a negligible contribution to the total recombination 

lifetime. 

Since silicon is an indirect bandgap semiconductor and thus has a very long radiative lifetime, the 

dominant recombination is Shockley-Read-Hall recombination at low levels of injection. 

Lifetimes in silicon are typically in the range of 1 μs − 1 ms. 

3.2.4 Surface Recombination 

So far all of the recombination mechanisms that have been considered are bulk recombination 

mechanisms (i.e. recombination that occurs within the volume of the crystal). There is also 

recombination that occurs at the surface. Surface recombination is closely related to Shockley-

Read-Hall recombination; trap states at the surface of the semiconductor capture electrons and 

holes to annihilate them. The difference is that SRH recombination considers traps with discrete 

energy levels, whereas surface recombination considers a continuum of energy levels. The origin 

of trap centers at the semiconductor’s surface are dangling bonds which give rise to energy states 

that can capture electrons and holes. The rate of surface recombination is given by a generalized 

form of the Shockley-Read-Hall recombination rate (Equation 1.48 in [1]): 
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𝑈𝑠 = (𝑛𝑠𝑝𝑠 − 𝑛𝑖

2)∫
𝑣𝑡ℎ𝐷𝑖𝑡(𝐸𝑡)𝑑𝐸𝑡

[𝑛𝑠 + 𝑛1(𝐸𝑡)]𝜎𝑝(𝐸𝑡)−1 + [𝑝𝑠 + 𝑝1(𝐸𝑡)]𝜎𝑛(𝐸𝑡)−1

𝐸𝑐

𝐸𝑣

  

 

(3.11) 

where 𝑛𝑠  & 𝑝𝑠 are the electron and hole concentrations at the surface, 𝑛𝑖 is the intrinsic 

concentration of carriers in silicon, 𝐸𝑣 & 𝐸𝑐 are the energies of the valence and conduction band 

edges, respectively, 𝑣𝑡ℎ is the electron thermal velocity, 𝜎𝑛 & 𝜎𝑝 are the capture cross sections of 

electrons and holes, respectively, 𝐸𝑡 is the trap energy, and 𝐷𝑖𝑡(𝐸𝑡) is the trap density at 𝐸𝑡. Surface 

recombination is parameterized by a surface recombination velocity, given by: 

 
𝑆 ≡

𝑈𝑠
𝑛

 

 

(3.12) 

The surface recombination velocity (SRV) represents the flux of carriers that recombine at the 

surface. Higher SRVs indicate a faster rate of recombination, so it is desirable for 𝑆 to be as low 

as possible. The upper limit on 𝑆 is 107 cm/s [1], which is dictated by the thermal velocity for 

electrons (i.e. the SRV cannot exceed the rate at which electrons diffuse to the surface). State-of-

the-art low SRVs are in the range of 𝑆 < 10 cm/s for silicon [77], [78]. SRV is reduced by 

passivating the semiconductor’s surface.  

There are two mechanisms for passivation: chemical and field-effect passivation [36]. Chemical 

passivation involves “soaking-up” dangling bonds at the silicon surface by adding a dielectric 

material to the surface, deactivating the dangling bonds as trap centres. Thermally-oxidized silicon 

provides good passivation, and was used on the PERL (Passivated Emitted, Rear Locally-diffused) 

cell [79], which held the record for highest efficiency crystalline silicon solar cell until 2014 [80]. 

Field-effect passivation uses a built-in electric field at the semiconductor’s surface to repel 

minority carriers [36]. Since a majority and a minority carrier are required for a recombination 
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event to occur, repelling minority carriers away from the surface effectively reduces recombination 

there. There are two origins for the electric-field at the surface. In the first, charges trapped in the 

dielectric film coating the semiconductor substrate induce an electric field at the surface. Silicon 

nitride films deposited on silicon with plasma-enhanced chemical vapor deposition (PECVD) 

provide good chemical and field effect passivation, achieving state-of-the-art low SRVs [78]. 

Silicon nitride films also act as effective anti-reflection coatings, and are standard films used in 

the commercial production of solar cells [67]. Another mechanism for incorporating field-effect 

passivation is to intentionally dope the surface with a higher concentration of carriers of the same 

doping type. This creates an n++,n (or p++,p) junction at the surface, where the electric field repels 

carriers of the opposite type. This type of field-effect passivation is referred to as front or back 

surface fields, depending on which side of the solar cell the additional doping is incorporated. 

 

3.3 Measurement of Lifetime 

3.3.1 Time, Frequency, and Quasi-Steady State Domains 

The time rate-of-change for free electrons (or holes) in a semiconductor can be described by the 

following differential equation: 

 

 𝜕𝑛

𝜕𝑡
= 𝑔(𝑡) −

𝑛

𝜏
 

 

(3.13) 

where 𝑛 is the concentration of electrons above the thermal equilibrium concentration, 𝜏 is the 

recombination lifetime and 𝑔(𝑡) is the volumetric generation rate of free carriers. This equation 

states that the net rate of change of carriers is the rate of generation subtracted by the rate of 

recombination. In lifetime experiments, 𝑔(𝑡) is due to optical excitation and 𝑛 is the 

experimentally measured quantity. Measurements are conducted in the time, frequency, or steady-



Ph.D Thesis-Kevin M.W. Boyd  McMaster University-Engineering Physics 

39 

 

 

state/quasi-steady regimes, which are distinguished by the temporal nature of 𝑔(𝑡), and how 𝑛 is 

monitored. Time domain studies use a pulsed laser with pulse-width << 𝜏 to near-instantaneously 

excite 𝑛, and then monitor 𝑛 over time as it decays back to equilibrium [3]. In this case, 𝑔(𝑡) may 

be approximated as a Dirac-delta function in time and Equation (3.13) becomes 
𝜕𝑛

𝜕𝑡
= −𝑛/𝜏 with 

the initial condition 𝑛(0) = 𝑛0 = 𝑁0 where 𝑁0 is the number of photons absorbed from the laser 

pulse. The solution to this equation is: 

 
𝑛 = 𝑛0𝑒

−
𝑡
𝜏 

 

(3.14) 

From (3.14) it can be seen that 𝑛 decays with an exponential dependence from an initial 

concentration 𝑛0 back to 0 with a decay constant equal to the recombination lifetime. Therefore 

by monitoring 𝑛 over time the lifetime can be extracted by fitting the 𝑛 decay curve to an 

exponential function parameterized by 𝜏. 𝑛 is found by measuring a physical quantity proportional 

to it. In the μ-PCD technique this quantity is the power of microwaves reflected from the 

semiconductor, which is related to photoconductivity. In the free-carrier pump/probe technique 

this quantity is the absorption of an optical probe beam. 

In frequency domain studies 𝑔(𝑡) describes a harmonically varying excitation of angular 

frequency 𝜔, which leads to a harmonically varying 𝑛. Letting 𝑁(𝜔) and 𝐺(𝜔) be the complex 

amplitudes11 of the free-carrier population and generation rate, respectively, 𝑛 & 𝑔(𝑡) can be 

written in their harmonic form: 𝑛 = 𝑁(𝜔)𝑒𝑖𝜔𝑡 and 𝑔(𝑡) = 𝐺(𝜔)𝑒𝑖𝜔𝑡. Substituting  𝑛 & 𝑔(𝑡) into 

(3.13) and rearranging: 

                                                 

11 In the frequency domain the signal amplitude is a complex number. The real part is the signal component in phase 

with the excitation, and the imaginary part is the signal component 90° out of phase with the excitation. 
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𝑁(𝜔) =

𝐺(𝜔)𝜏

1 + 𝑖𝜔𝜏
 

 

(3.15) 

Equation (3.15) is the frequency response of the free-carrier population under a harmonic 

excitation. 𝑁(𝜔) is a complex number, indicating an in-phase and out-of-phase component to the 

signal. For a generation rate that is independent of frequency, this frequency response is a 

Lorentzian function which describes the response of a 1st order low-pass filter, with the roll-off 

frequency being equal to the reciprocal of the recombination lifetime. In an experiment, the 

modulation frequency of the excitation is swept while the value of 𝑁(𝜔) is demodulated on a lock-

in amplifier. The magnitude of the 𝑁(𝜔) curve is fit with the magnitude of (3.15) to extract 𝜏. This 

is the principle behind the MFCA technique. 

In steady-state or quasi-steady state lifetime measurements, 𝑛 is measured following excitation 

with a constant or slowly varying 𝑔(𝑡). The quasi-steady state regime is distinguished by an 

excitation that varies slowly enough that 𝑛 is always in equilibrium with it. It is a special case of 

Equation (3.15), where 𝜔𝜏 ≪ 1: 

 𝑛 = 𝐺𝜏 

 

(3.16) 

Equation (3.16) shows that the free-carrier population measured under a constant generation rate 

𝐺 is directly proportional to 𝜏. 𝑛 is measured experimentally and 𝐺 is known, allowing 𝜏 to be 

extracted. QSSPC is the most popular commercial instrument for measuring lifetime in the quasi-

steady state. In this technique, an eddy-current sensor measures the photoconductivity of the wafer, 

which is proportional to 𝑛. In this work I demonstrate a new QSS technique for measuring lifetime 

via free-carrier pump/probe. 
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The quasi-steady state and transient/roll-off lifetime measurement techniques have complementary 

advantages and disadvantages. Quasi-steady state measurements are inherently low frequency, and 

are not limited by finite bandwidth on the excitation or measurement side of the experiment. 

However, in order to use Equation (3.16) to find 𝜏, 𝑛 must be measured in absolute units. 

Measuring in absolute units typically requires calibration in order determine the experimental 

parameters that relate 𝑛 to the experimentally measured quantity. Conversely, transient/roll-off 

techniques require bandwidth comparable to the inverse lifetime in order to resolve the 

time/frequency decay curves and extract 𝜏. For a lifetime of 1 μs this corresponds to a bandwidth 

on the order of 100s of kHz to a MHz. However, since these techniques need only measure the 

relative amplitude of the signal, calibration of the measurement apparatus is not required. 

In this work, measurement of lifetime is performed exclusively in the frequency or quasi-steady 

state regimes. 

3.3.2 The Effective Lifetime 

When measuring recombination lifetime the experimenter is typically interested in the bulk 

lifetime 𝜏𝑏, particularly the Shockley-Read-Hall lifetime, since it gives access to information about 

the nature of defects in a semiconductor [1]. In general the actual lifetime that is measured 

experimentally is an effective lifetime that has contributions from both the bulk region of the wafer 

and the surface. As will be discussed in this section, the effective lifetime measured in quasi-steady 

and the lifetime measured in a time/frequency domain study are only equivalent in the limit of 

slow surface recombination velocity (𝑆 ≤ 1000 cm/s). When surface recombination goes to zero 

both lifetimes are equivalent to the bulk lifetime. A distinction is made between the two, with 𝜏𝑞𝑠𝑠 

being the lifetime measured in quasi-steady state conditions, and 𝜏 being measured via the roll-off 

frequency of (3.15). In this section I describe the physical model from which the effective lifetime 

originates, and examine how it differs for the quasi-steady state and roll-off measurement 

approaches. 
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Equation (3.13) is a simplified modelled that does not take into account the 3-dimensional nature 

of carrier generation and diffusion. A more general equation describing the time-dependent excess 

electron concentration 𝑛 in a semiconductor is given by: 

 𝜕𝑛(𝑟, z, 𝑡)

𝜕𝑡
= 𝐷∇2𝑛(𝑟, z, 𝑡) −

𝑛(𝑟, z, 𝑡)

𝜏𝑏
+ 𝑔(𝑟, 𝑧, 𝑡) 

 

(3.17) 

where 𝐷 is the diffusion coefficient, 𝜏𝑏 is the bulk recombination lifetime, and 𝑔 is the volumetric 

generation rate of free-carriers. The coordinate system that is used for this equation will be 

illustrated in Figure 5.1. Equation (3.17) is the 3D continuity equation for electrons in cylindrical 

coordinates. It states that the time rate of change of the electron population in a differential volume 

of semiconductor material is equal to the sum of the net rates at which carriers diffuse into the 

volume, recombine inside the volume, and are generated due to optical-excitation. Since electrons 

and holes are generated and recombine in equal concentrations, charge neutrality is maintained 

and drift effects may be neglected. A consequence of electrons and holes being generated in equal 

concentrations is that the carrier diffusion becomes ambipolar [81]. In silicon, electron mobilities 

are higher than hole mobilities which results in a higher diffusion coefficient for electrons [69]. 

Since electrons and holes are generated in equal concentrations under optical excitation, electrons 

diffusing faster than holes would lead to a spatial charge imbalance that would tend to bring the 

carriers back together due to Coulombic attraction. The net result of this is that carriers tend to 

diffuse together with a diffusion coefficient that is intermediate between the value for electrons 

and holes. The consequence of ambipolar diffusion is that electron and hole transport do not need 

to be separately considered. The equation describing electron transport and recombination is 

identical to the equation describing hole transport and recombination. Therefore a complete 

description of charge carrier transport and recombination for lifetime experiments is given by 

𝑛(𝑟, 𝑧, 𝑡) alone. Because of this, 𝑛 is interpreted as the free-carrier density, not as the electron-

density alone. 
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In typical lifetime experiments, the pump beam diameter is much larger than the diffusion length 

of free-carriers and the probe beam is much smaller than the pump, permitting a purely 1-

dimensional treatment of the continuity equation: 

 𝜕𝑛(𝑧)

𝜕𝑡
= 𝐷

𝜕2

𝜕𝑥2
𝑛(𝑧, 𝑡)  −

𝑛(𝑧, 𝑡)

𝜏𝑏
+ 𝑔(𝑧, 𝑡) 

 

(3.18) 

where 𝑧 is the dimension along the thickness axis of the wafer. For a monochromatic excitation 

source with absorption coefficient 𝛼 passing through the wafer a single time, the axial dependence 

of the generation rate takes on the form 𝑔𝑎𝑥(𝑧)~𝑒
−𝛼𝑧, 𝛼 being the absorption coefficient of the 

light source. The simplest case of (3.18) occurs when the generation rate is uniform along 𝑧, and 

recombination at the wafer surface can be neglected. In this case, 𝑛 & 𝐺 are independent of position 

and (3.18) reduces to (3.13) whose solution in the frequency domain is (3.15). 

I define a generalized lifetime 𝔗 as the following: 

 
𝔗(𝜔) ≡

𝑁(𝜔)

𝐺(𝜔)
 

 

(3.19) 

where 𝔗(𝜔 = 0) = 𝜏𝑞𝑠𝑠. This factor is defined since it is often more convenient to discuss 𝑁(𝜔) 

normalized to the generation rate  𝐺(𝜔), especially when comparing different formulations of 

𝑁(𝜔). For the simplest case involving only bulk recombination, 𝔗 is given by : 

 𝔗𝑠 =
𝜏

1 + 𝑖𝜔𝜏
 

 

(3.20) 
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Figure 3.5: Plot of magnitude (top), real part (middle), and imaginary part (bottom) of Equation (3.20) for two different bulk 

recombination lifetimes τb 
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Figure 3.5 (top) plots the magnitude of 𝔗𝑠 for a 10 μs and 1 ms lifetime. There are two 

characteristic regions of interest: the flat region at low frequency, and the roll-off region at high 

frequencies. In the limit of low frequency, the amplitude is flat and equal to the bulk lifetime. At 

high frequencies, the frequency-response rolls-off with a characteristic decay constant equal to the 

bulk lifetime. The difference in frequency-response for different lifetimes is also clearly evident. 

Long lifetimes lead to higher amplitudes that roll-off at lower frequencies, and vice-versa for short 

lifetimes. It is evident from Figure 3.5 that lifetime may be extracted either from the absolute 

amplitude of 𝔗𝑠 or its frequency-dependence. In addition to the magnitude, the real (middle) and 

imaginary (bottom) components of 𝔗𝑠 are also shown. The real part is similar in shape to the 

magnitude. The imaginary component is more interesting since it has a characteristic peak at the 

angular frequency 𝜔𝑝 which is related to the recombination lifetime via the following relationship: 

 
𝜏 =

1

𝜔𝑝
 

(3.21) 

This shows that the peak of the imaginary component of the signal can be used to determine the 

lifetime. Shorter lifetimes lead to a shift of the imaginary spectrum towards higher frequencies. In 

general, either the real, imaginary, or magnitude of 𝔗𝑠 can be used to measure lifetime since they 

all contain the same lifetime information. In Chapter 6 it will be seen that the imaginary component 

(i.e. the component that is out-of-phase with respect to the pump modulation signal) is the most 

convenient way to extract lifetime for single-beam pump/probe studies. 

Equation (3.20) is the idealized case where the wafer is perfectly passivated (i.e.) surface 

recombination is negligible. In this case the characteristic lifetime is the bulk lifetime, and is 

equivalent in both the quasi-steady state and transient cases. However, when the surface 

passivation is imperfect, there is additional recombination that lowers the excess carrier density at 

the surface. This in turn leads to a diffusive flux towards the surface, leading to further 

recombination. The situation is now further complicated by the fact that the absorption profile of 

the excitation source now comes into play. Surface recombination effects are more exaggerated 
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when the absorption coefficient is high because most of the carriers are generated close to the 

surface. 

To account for the more general case involving surface recombination, Equation (3.18) is solved 

directly, applying surface-recombination boundary conditions at the front and rear surfaces of the 

wafer [8]: 

 
𝐷
𝜕𝑛

𝜕𝑥
|
𝑥=0

= 𝑆𝑛(0) 

 

(3.22) 

  

 
−𝐷

𝜕𝑛

𝜕𝑥
|
𝑥=𝑊

= 𝑆𝑛(𝑊) 

 

(3.23) 

where 𝑊 is the wafer thickness, and 𝑆 is the surface recombination velocity at the surface of the 

wafer. It is assumed in this work that 𝑆 is identical on both surfaces, which is valid since the 

samples that are examined have identical front and back surfaces. Luke and Cheng provide an 

analytic solution to this equation in the time domain [51]: 

 

𝑛(𝑡) = 𝜙0
(1 − 𝑅)

1 − 𝑅𝑒−𝛼𝜂𝑊
8𝛼휂𝑒−

𝛼𝜂𝑊
2

𝑊
 ∑𝐴𝑛

𝑙𝑐

∞

𝑛=1

𝑒
−
𝑡
𝜏𝑛 

 

(3.24) 
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where 𝜙0 is the photon flux per unit area, 𝛼 is the absorption coefficient of the pump beam, 휂 is 

the ratio of pathlength through the wafer to the wafer thickness12, 𝑅 is the reflectance of the pump 

beam, 𝑊 is the wafer thickness. The factor 𝐴𝑛
𝑙𝑐 is known as the Luke and Cheng coefficient which 

is given by: 

 

𝐴𝑛
𝑙𝑐 =

sin (
𝛼𝑛𝑊
2 )

((𝛼휂)2 + 𝛼𝑛2)(𝛼𝑛𝑊 + sin 𝛼𝑛𝑊)
[𝛼휂 sinh (

𝛼휂𝑊

2
) cos (

𝛼𝑛𝑊

2
)

+ 𝛼𝑛 cosh (
𝛼휂𝑊

2
) sin (

𝛼𝑛𝑊

2
)] 

(3.25) 

 

The factors 𝛼𝑛 are related to a factor 𝛿𝑛 via the following relationship: 

 
 
𝛼𝑛𝑊

2
= 𝛿𝑛 

 

(3.26) 

where 𝛿𝑛 are the roots of the transcendental equation: 

 
 cot 𝛿𝑛 = (

2𝐷

𝑆𝑊
)𝛿𝑛 

 

(3.27) 

The factors 𝜏𝑛 are the series effective lifetimes, given by: 

                                                 

12 The factor 휂 is given by sec 휃, where 휃 is the angle of propagation inside of the wafer. Due to the high refractive 

index of silicon (about 3.5), the steepest angle inside the wafer will be limited to about 16.6°, which corresponds to 

휂 = 1.04. This is a small correction, but it is included here for the sake of generality. 
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𝜏𝑛 = (

1

𝜏𝑏
+ 𝛼𝑛

2𝐷)
−1

 

 

(3.28) 

It will be shown in this section that the lifetime that is measured experimentally is the first term of 

this series, 𝜏1, which will just be referred to as the effective lifetime in this work. The equation for 

the effective lifetime is: 

 
𝜏 = (

1

𝜏𝑏
+ 𝛼1

2𝐷)
−1

 
(3.29) 

Note that there is no dependence on 𝑧 in Equation (3.24) because this dependence is averaged out 

by integrating over the thickness of the wafer. It is useful to do this because it is only the average 

carrier density that is accessible experimentally, not the spatially resolved carrier density13. 

Equation (3.24) is computed assuming that the temporal profile of the optical generation of 

carriers 𝑔(𝑧, 𝑡) is an impulse response function (i.e. it has a Dirac-Delta shape in time). The general 

solution for an arbitrary 𝑔(𝑧, 𝑡) is given by the convolution over the impulse response solution. 

The impulse-response solution given by Equation (3.24) is valid for studies where the free-carriers 

are excited by a pulsed laser with pulse width ≪ 𝜏, since this approximates a Dirac-Delta shape. 

This is how lifetime is measured in time-domain free-carrier pump/probe. In this work I perform 

measurements in the frequency domain. In this case the generation rate is harmonically varying in 

time, and it is the complex amplitude of the free-carrier density 𝑁(𝜔) that is measured. Converting 

𝑛(𝑡) to the frequency domain and writing in terms of 𝔗 (Appendix A) yields: 

                                                 

13 The spatial profile of the excess carrier may be accessed experimentally with other techniques such as ellipsometry 

[82]. 
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𝔗 =
8𝛼휂𝑒−

𝛼𝜂𝑊
2

1 − 𝑒−𝛼𝜂𝑊
 ∑

𝜏𝑛
1 + 𝑖𝜔𝜏𝑛

∞

𝑛=1

𝐴𝑛
𝑙𝑐 

 

(3.30) 

At first glance Equation (3.30) appears very complicated, but it is actually easy to understand in 

terms of the simple case stated in (3.20). Equation (3.20) shows that the frequency dependence of 

the free-carrier complex amplitude is of the form 𝜏/(1 + 𝑖𝜔𝜏), which is a single Lorentzian roll-

off curve. Equation (3.30) takes on a similar form, but now there are multiple roll-off terms instead 

of one. These higher order roll-offs represent the higher order decay modes of 𝑛(𝑡), which are due 

to diffusion of free-carriers to the surface and their recombination there. In practice, the first term 

is usually much larger than higher order terms and the total decay is effectively a single roll-off 

parameterized by 𝜏 as given by Equation (3.29). Equation (3.30) is useful because it clearly shows 

how the general case of both bulk and surface recombination differs from the simple case of bulk 

recombination only, namely that the solution is now a summation of Lorentzians instead of just a 

single one.  

For the purposes of calculation, this formulation can be problematic because of the transcendental 

roots 𝛼𝑛. I have derived an alternative form of Equation (3.30) in Appendix B which is completely 

closed-form. This equation is an elegant algebraic simplification of the solution presented by Sanii 

[8] that reduces a very complex equation to a much simpler form. This equation, which is 

completely equivalent to (3.30) is given by: 

 

𝔗 =
𝐿2

𝐷((𝛼휂)2𝐿2 − 1)
[
𝜇 + coth

𝛼휂𝑊
2

𝜈 + coth
𝑊
2𝐿

𝛼휂𝐿 − 1] 

 

(3.31) 



Ph.D Thesis-Kevin M.W. Boyd  McMaster University-Engineering Physics 

50 

 

 

where 𝐿 is the effective diffusion length, 𝐷 is the diffusion coefficient, 𝛼 is the absorption 

coefficient, and 𝜇 & 𝜈 are dimensionless parameters. 𝐿, 𝜇 & 𝜈 are given by: 

 

 

𝐿 = √
𝐷𝜏𝑏

1 + 𝑖𝜔𝜏𝑏
 

 

(3.32) 

 

 

 
𝜇 =

𝛼휂𝐷

𝑆
 

 

(3.33) 

 

 

 
𝜈 =

𝐷

𝐿𝑆
 

 

(3.34) 

where 𝑆 is the surface recombination velocity of the front and rear surface, and 𝜔 is the angular 

modulation frequency. 
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Figure 3.6: Plot of Equation (3.31) vs frequency (‘x’ markers) and a fit to Equation (3.20) (solid-line) for various combinations of 

surface recombination velocity and absorption coefficient 

To demonstrate how the exact solution for the frequency-domain free-carrier concentration 

(Equation (3.30) or (3.31)) differs from simplified solution in (3.20), I compare the two for various 

surface recombination velocities and absorption coefficients in Figure 3.6. For this comparison I 

have chosen 𝜏𝑏 = 100 μs, 𝑊 = 300 μm, and 𝐷 = 16 cm2/s, which are reasonable values for a 

silicon wafer. The absorption coefficient 𝛼 and the SRV are varied between low and high values14 

to demonstrate how surface recombination affects the shape of the curve. The exact solution is 

plotted for a particular set of parameters, and then fitted to the simplified model given by Equation 

(3.20) to determine the effective lifetime. In all but one case the exact solution is fitted well to the 

                                                 

14 “Low” values for 𝛼 are values such that 𝛼𝑊~1, and “high” values are 𝛼𝑊 ≫ 1. “Low” values for SRV are values 

where 𝑆~102 cm/s which is reasonable for a passivated silicon surface. “High” values for SRV are values where 

𝑆~106 cm/s which is reasonable for an unpassivated silicon surface [36]. 



Ph.D Thesis-Kevin M.W. Boyd  McMaster University-Engineering Physics 

52 

 

 

simplified model, and the fitted lifetime is consistent with the effective lifetime given by Equation 

(3.29). The one case where the fit does break down is when both the surface recombination velocity 

and absorption coefficient are high (bottom right of Figure 3.6). This behavior can be explained 

with reference to Equation (3.30). In the case when the absorption coefficient is small, only the 

first term in the series is dominant and so the frequency-dependence of the free-carrier population 

takes on the same form as the simplified model in (3.20). In the case where both SRV and the 

absorption coefficient are high, the frequency-response is perturbed from its Lorentzian shape at 

high frequencies. This is because higher order terms in Equation (3.30) are coming into play. The 

lifetime corresponding to the first term (i.e the effective lifetime) is 𝜏1 = 5.40 μs, but the lifetime 

fit by the Lorentzian is 𝜏 = 4.34 μs. In this case, a single Lorentzian curve does not adequately fit 

the exact solution. However, it should be noted that higher order terms in (3.30) only contribute to 

the high-frequency regions of the roll-off curve. If the fit range is restricted, better agreement 

between the fit and the actual effective lifetime is found. In this case, fitting from 10 Hz to 100 

kHz results in 𝜏 = 4.86 μs, which is closer to the true value. 
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Figure 3.7: Individual Lorentzian curves that contribute to sum in Equation (3.30). The first three terms of the sum are included, as 

well as the total sum. The surface recombination velocity is set to S = 106 𝑐𝑚/𝑠 and the absorption coefficient is α = 105 cm−1. 

To illustrate the origin of the high frequency deviation, it is helpful to consider the contributions 

of the individual Lorentzians from Equation (3.30) to the overall sum. This is shown in Figure 3.7 

where the first three terms and the total sum are plotted together. The first term is clearly dominant 

over the higher order terms. Since the higher order terms roll-off at higher frequencies, they don’t 

contribute to the overall shape of total sum at low frequencies. This is why a fit to the exact solution 

in the bottom-right of Figure 3.6 yields a lifetime close to that of the first term, when the fit is 

restricted to low frequencies. At higher frequencies, the higher order terms contribute to the overall 

shape of the curve since the first order term has rolled-off, which leads to the deviation from the 

purely Lorentzian decay. The point of this discussion is to show that only in the case when both 

the surface recombination velocity and the absorption coefficient are high that higher order 

terms in (3.30) need to be considered. In all other cases, the higher order terms can be safely 

omitted. This is important for this work since often I will use only the first term of the series in 



Ph.D Thesis-Kevin M.W. Boyd  McMaster University-Engineering Physics 

54 

 

 

Equation (3.30) when performing analyses. The condition of a low absorption coefficient is met 

experimentally by choosing a pump source that has a relatively weak absorption coefficient. In 

this work I use a 1064 nm laser. This is close to the band-edge of silicon, and so the absorption 

coefficient is small (𝛼 = 9.85 cm−1). 

  

 

Figure 3.8: Ratio of Quasi-Steady State Lifetime to Roll-off lifetime for various absorption coefficients. 

In general, the roll-off lifetime found by fitting 𝔗 to the frequency-dependence in Equation (3.20) 

does not correspond to the quasi-steady state lifetime when 𝜔 → 0. This can be seen in Figure 3.7 

where higher order terms from Equation (3.30) don’t contribute to the shape of the curve at low-

frequencies, but do affect the amplitude. Figure 3.8 plots the ratio of the quasi-steady state lifetime 

to the lifetime found by fitting 𝔗 to Equation (3.20) as a function of surface recombination velocity, 

for various absorption coefficients. The absorption coefficients correspond to wavelengths that 



Ph.D Thesis-Kevin M.W. Boyd  McMaster University-Engineering Physics 

55 

 

 

range from the NIR to UV. As in Figure 3.6, 𝜏𝑏 = 100 μs, 𝑊 = 300 μm, 𝐷 = 16 cm2/s. Figure 

3.8 demonstrates how the equivalence between 𝜏𝑞𝑠𝑠 and 𝜏 depends on the surface recombination 

velocity and absorption coefficient. The reason for the discrepancy is in how the quantities 𝜏𝑞𝑠𝑠 & 𝜏 

emerge. 𝜏𝑞𝑠𝑠 is proportional to the amplitude of the carrier density 𝑛 (see Equation (3.16)). When 

the SRV is high, carriers are consumed by the surface and 𝜏𝑞𝑠𝑠 is reduced. This effect is small 

when the absorption coefficient is low since carriers are generated uniformly throughout the wafer, 

and only carriers close to the surface are lost to surface recombination. When the absorption 

coefficient is high, most of the carriers are generated close to the front surface and so a significant 

fraction of them recombine, lowering 𝜏𝑞𝑠𝑠. The important takeaway from Figure 3.8 is that when 

the pump is weakly absorbed (the curve corresponding to 1064 nm illumination), the quasi-steady 

state lifetime is close to the true lifetime even when the surface recombination velocity is high. 

Since 1064 nm radiation is used as the pump in this work, the discrepancy between 𝜏𝑞𝑠𝑠 and 𝜏 can 

be ignored. 

3.3.3 Summary 

This section may be summarized with the following points: 

1. The lifetime that is of interest to experimenters is the bulk lifetime 𝜏𝑏 since it provides 

direct access to the material quality of the semiconductor wafer. 

2. The lifetime that is measured experimentally is an effective lifetime that depends on both 

bulk and surface recombination. 

3. Even in the presence of high surface recombination, the frequency-dependence of the free-

carrier population takes on the same form as the simplified solution in Equation (3.20), so 

long as the absorption coefficient is low. In this work the absorption coefficient is 

sufficiently low that this assumption is valid. 

4. The lifetime measured in quasi-steady state and that measured with the roll-off technique 

are only equivalent in the case of low surface recombination velocity. However, the 

discrepancy between the two is small when the absorption coefficient is small. 
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The purpose of this section is to detail that what is measured experimentally is an effective lifetime 

and not the true bulk lifetime. The most important result of this section is that even in the presence 

of surface recombination, the functional form of the frequency-response is nearly identical to the 

simplified case where only bulk recombination occurs. This means that the simplified model of 

(3.20) is sufficient for extracting the effective lifetime experimentally. The separation of the 

effective lifetime into its bulk and surface components is outside the scope of this work. The scope 

of this work is to demonstrate novel techniques for measuring the effective lifetime, and showing 

that it matches with the effective lifetime measured using traditional approaches. 
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4 Experimental Apparatus 

4.1 Overview 

 

Figure 4.1: Photograph of experimental apparatus. The path of the pump beam and probe beams from source to detector is shown 

by red and green lines, respectively. 

This work uses a generic pump/probe configuration for performing lifetime measurements. The 

pump laser emits 1064 nm radiation which has energy above the bandgap of silicon and thus can 

be used to generate free electron-hole pairs. The probe laser emits 1550 nm radiation which has 

energy below the bandgap of silicon, and is absorbed primarily by intraband free-carrier 

absorption. In both single-beam and QSS-FCA techniques, the pump and probe beam are both 
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utilized. The role of the probe beam in the single-beam experiment is to validate the results 

acquired with the single-beam technique. The experimental apparatus is shown in Figure 4.1. The 

red and green lines show the path of the pump and probe lasers, respectively, from source to 

detector. The apparatus can be broken down into three branches: Pump, Probe, and Measurement 

branches. The individual branches will be described in this Chapter. 

4.2 Pump Branch 

 

Figure 4.2: Annotated photograph of the Pump branch of the experimental apparatus. The laser beam path is shown by the red line. 

The pump branch consists of the pump laser source, as well as components that modulate the laser 

beam, and control its size and power. Figure 4.2 shows an annotated photograph of the components 
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of the pump branch, with a red line denoting the path of the laser. The pump source is a Laser 

Quantum Opus laser emitting horizontally polarized 1064 nm radiation and capable of producing 

10 W of optical power. The laser is operated at an output power of 2 W in this work. The laser is 

mounted to a heatsink which is maintained at 22℃ via water-cooling. The beam emitted from the 

pump laser is raised to a height of about 3 inches using a periscope, and is then guided through a 

Conoptics electro-optic modulator (EOM) using two mirrors. The EOM is a Lithium Tantalate 

(LTA) Pockel’s cell, custom-built for 1064 nm and capable of sustaining the full 10 W of the laser. 

The modulator is driven by a Conoptics Model 25 A driver (not shown), which is capable of 

impressing an arbitrary analog signal on the laser beam in the frequency range of 0 to 25 MHz. 

The EOM provides pump modulation for the frequency-dependent studies of this work. The 

modulation signal is sinusoidal and originates from a Zurich Multi-Frequency Lock-in amplifier 

(MFLI). After passing through the EOM, the laser beam passes through a half-waveplate/polarizer 

pair. The beam is linearly polarized, and its polarization direction can be changed by rotation of 

the half-waveplate. The polarizer is a glan-laser calcite polarizer which is oriented to pass p-

polarized light and reject s-polarized light. Rotation of the half-waveplate changes the degree of p 

and s polarization of the laser beam, which in conjunction with the polarizer provides the 

experimenter with a means of controlling the laser power. The waveplate is mounted to a motorized 

rotational stage which can be interfaced with a computer so that power can be controlled remotely. 

After emerging from the polarizer, the laser beam is guided through a Standa beam expander 

(shown in Figure 4.1) which can increase the diameter of the beam from 2-12x its native diameter 

(~1.77 mm at the sample stage). After emerging from the beam expander, the laser is guided to 

the sample. 
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4.3 Probe Branch 

 

Figure 4.3: Annotated photograph showing the Probe branch of the experimental apparatus. The laser beam path is shown by the 

green line. 

The components that comprise the probe branch are shown in Figure 4.3 with the beam path 

denoted by the green line. The probe laser is a Thorlabs fiber optic laser emitting at 1550 nm, 

driven by a constant current source. The laser is capable of producing 100 mW of optical power, 

though it is usually operated at about a quarter of the full output. Since the laser is not equipped 

with a power feedback diode, it is operated in constant current mode. The end of the fiber is 

attached to fiber-coupling optics which collimate the beam. The laser is then guided through a 

half-waveplate/polarizer pair for power control. The half-waveplate is a superachromatic 
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waveplate which is designed to operate over a broad range of wavelengths, including 1550 nm. 

The polarizer is a glan-laser calcite polarizer, oriented to reject s-polarized light and pass p-

polarized light. After the half-waveplate/polarizer, the laser is either expanded to a large diameter 

with a beam-expander (shown in Figure 4.1) or focused to a small diameter with a lens. The size 

of the pump and probe beams with respect to one another is set by the experimental study being 

carried out. 

4.4 Measurement Branch 

 

Figure 4.4: Annotated photograph showing the Measurement branch of the experimental apparatus. The beam paths of the pump 

and probe lasers are denoted by red and green lines, respectively. 



Ph.D Thesis-Kevin M.W. Boyd  McMaster University-Engineering Physics 

62 

 

 

The Measurement branch is shown in Figure 4.4. The detection branch consists of the sample 

stage, separate photodetectors for measuring the pump and probe beam signals, calibrated power 

meters for quantifying the absolute power of the pump laser and a lock-in amplifier (not shown) 

for demodulation of the pump and probe signals. The silicon wafer that is under examination is 

mounted to the sample holder with its surface normal parallel to the table. The pump and probe 

beams illuminate the sample on the same side, and propagate orthogonal to one another. The 

sample holder is rotated so that the angle of incidence for the pump and probe beams is 15° & 75°, 

respectively. The 75° angle of incidence is approximately Brewster’s angle for the probe laser. 

Since the probe laser is p-polarized, illuminating the sample at Brewster’s angle ensures negligible 

reflection of the probe laser from the silicon wafer. The pump and probe beams transmit through 

the silicon wafer and are collected by their respective photodetectors. Both photodetectors are 

Newport Model 2033 Germanium photodiodes with built-in transimpedance amplifiers. The 

amplifiers have variable gain, which are set to 2000x in this experiment. At this setting the 

detectors have a bandwidth of 200 kHz which is sufficient for all experiments in this work. For 

each detector, a lens is used to focus the beam into the photodiode. The probe detector is outfitted 

with a 1550 nm bandpass filter to reject stray 1064 nm pump light from entering and corrupting 

the probe signal. The filter does pass some 1064 nm light so a second long pass filter is installed 

before the lens to further suppress stray pump light. The pump detector is preceded by a half-

waveplate/polarizer pair15 to control the power into the detector. This is necessary because the 

detector saturates at about 10 mW of optical power, and the pump power often exceeds 100 mW 

in these experiments. The power into the probe detector is set by the waveplate/polarizer pair in 

the Probe Branch. The signal from the pump or probe detector is fed into a lock-in amplifier using 

a BNC cable. 

                                                 

15 There is a second polarizer after the half-waveplate/polarizer, which is configured to pass the pump light. It does 

not have a functional purpose for the studies in this work. 
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The incident, reflected, and transmitted power of the pump beam are measured by Gentec 

calibrated power meters. The power meter shown in Figure 4.4 collects the beam that reflects from 

the silicon sample. To collect the incident power and the power transmitted through the silicon 

wafer, the laser beam has to be disrupted. Two flipper mirrors placed into the path of the incident 

and transmitted beams can be toggled to guide the laser into a power meter. The power meter that 

measures the incident and transmitted beams is shown in Figure 4.3. 

4.5 Experimental Methodology 

Both of the techniques that I have developed in this work have a similar experimental 

methodology, which is discussed here. The main practical difference between the two is that in 

single-beam pump/probe experiments both the signal from the 1064 nm pump laser and the signal 

from the 1550 nm probe laser are collected. The former signal contains single-beam pump/probe 

data, while the latter signal contains dual-beam pump/probe data used to verify the single-beam 

results. In QSS-FCA experiments, only the probe signal is required so the pump is ignored. In both 

techniques the experimentally measured quantity is the amplitude and phase of the pump or probe 

beam collected by the photodetector. This information is acquired on a lock-in amplifier. 

The first step after turning on the equipment is to modulate the pump beam. A DC-coupled sine 

wave is outputted from a Zurich Multi-Frequency Lock-in amplifier (MFLI) and inputted into a 

Conoptics Model 25A Driver. The Model 25A amplifies the signal and drives the Pockel’s cell of 

the EOM which modulates the pump laser. The average power that is output from the EOM is set 

by the DC bias on the Model 25A driver. The signal from the pump detector is fed into the Zurich 

MFLI input channel. The input channel is AC-coupled since the DC component of the signal is 

not required. The power into the pump detector is controlled so that the amplitude of the pump 

signal demodulated by the lock-in amplifier is about 0.400 Vrms. For both single-beam 

pump/probe and QSS-FCA experiments, the amplitude and phase of the signal is collected as a 

function of pump modulation frequency. The frequency is swept from about 100 Hz-100 kHz in 

logarithmically spaced steps. The Sweeper module on the Zurich MFLI provides a fast and 

efficient way of collecting the signal amplitude and phase as a function of modulation frequency. 
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When collecting the 1550 nm probe signal, the time constant is set to a long time (100-1000 ms) 

to suppress random noise, and a single frequency spectrum is acquired. When collecting single-

beam data, the demodulation time constant on the lock-in is set to a short time (1-10 ms) and 

several frequency spectra are collected rapidly and then averaged. The reasoning behind this 

unconventional method of data collection will be discussed later in Chapter 6.4. Prior to collecting 

frequency spectra from the pump or the probe, the pump power that is incident upon the sample 

and reflected and transmitted through it is measured. The reflected power is measured in situ, 

whereas the incident and transmitted powers are measured by disrupting the path of the pump laser 

and guiding it into a power meter using flipper mirrors. 

The experimental setup is almost entirely automated, and controlled via a custom instrument 

control Application Programming Interface (API) I wrote in the Python programming language. 

This API gives an experimenter complete control over laboratory instruments that interface with 

GPIB and USB connections. Control of laser power, modulation amplitude and frequency, 

positioning of flipper mirrors, and data acquisition all occur remotely and automatically. Switching 

in new samples, and changing and measuring the area of the pump and probe beams is the only 

part of the experiment that requires human intervention. Beam profiles for the pump and probe are 

measured on the Nanoscan beam profiler. These profiles, shown in Appendix K, confirm a 

Gaussian distribution of laser power and allow for the extraction of the beam radius for quantitative 

calculations. 
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4.6 Sample Specifications 

Table I: Specifications of Silicon Wafers Used in This Study 

Wafer ID Thickness 

(µm) 

Resistivity 

(Ω cm) 

Doping 

Density 

(𝒄𝒎−𝟑) 

Surface 

El-Cat 2_9 325 ± 2 1 − 10 3.2x1015 Thermal Oxide (100 nm) 

Thick 

Wafer 

1470 ± 2 1 − 5 4.51x1014 Native Oxide 

 

Two n-type (phosphorus-doped) monocrystalline silicon wafers are examined in this study. The 

wafer specifications are shown in Table I. The thinner wafer is FZ grown while the thicker wafer 

is CZ silicon. Both wafers are double-side polished. 
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5 Generalized Semiconductor Pump/Probe Equation 

5.1 Overview 

In this chapter I will develop a generalized pump/probe equation to describe the signal measured 

in a generic pump/probe experiment on a semiconductor wafer. This general model will be used 

to derive the models describing the single-beam pump/probe and QSS-FCA techniques, which are 

special cases of the general model. The general model is derived from an equation that describes 

the free-carrier density 𝑛(𝑟, 𝑧, 𝑡) as a function of radial (𝑟) and axial (𝑧) position, and time (𝑡). The 

equation for 𝑛(𝑟, 𝑧, 𝑡) provides a general description of free-carrier transport and recombination in 

a semiconductor for an arbitrary set of wafer parameters.  

5.2 Mathematical Model of 3D Diffusion and Recombination 

In Chapter 3, I reviewed the 1D solution to the free-carrier continuity equation in both the time 

(Equation (3.24)) and frequency (Equation (3.30)) domain. These relationships account for the 

optical generation, 1-D transport and recombination of excess electrons in a semiconductor. Being 

a 1-dimensional solution, the equations only account for movement of electrons along the axial-

axis of the wafer; lateral diffusion in the plane of the wafer is neglected. This analysis is valid for 

pump/probe studies where the pump beam is much larger than the probe, or the probe beam is 

much larger than the pump. In the case where the probe illuminates the centre of a much larger 

pump, the area being probed is under a uniform excitation where concentration gradients (and thus 

diffusion effects) are negligible. When the probe beam is much larger than the pump, diffusion of 

carriers does not affect the signal since carries cannot escape the volume of the probe beam. When 

the pump and probe are comparable in size and that size is comparable to the free-carrier diffusion 

length √𝐷𝜏 of the semiconductor, then diffusion must be accounted for. This consideration is 

especially important for single-beam pump/probe studies since the pump and probe beam sizes 

cannot be varied independently of one another. The derivation of 𝑛(𝑟, 𝑧, 𝑡) is lengthy so I have 

relegated it to Appendix C. The derivation results in the following equation: 
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𝑛(𝑟, 𝑧, 𝑡) = 𝑒
−
𝑡
𝜏𝑏

1
𝑡
𝜏𝐷
+ 1

𝑒

−2𝑟2

𝑤2(
𝑡
𝜏𝐷
+1)

∑[𝐴𝑛
𝑎𝑥𝑒−𝛼𝑛

2𝐷𝑡 cos 𝛼𝑛𝑧 + 𝐵𝑛
𝑎𝑥𝑒−𝛽𝑛

2𝐷𝑡 sin 𝛽𝑛𝑧]

𝑛

 

 

(5.1) 

Equation (5.1) is a general description of free-carrier transport in a semiconductor under a 

Gaussian-shaped excitation beam. The solution is derived by assuming an optical generation rate 

that is a Dirac-Delta function in time. To compute the solution for an arbitrary temporal profile, 

(5.1) must be convolved over the profile. For a harmonic excitation of angular frequency 𝜔, this 

convolution takes the form: 

 

𝑛𝜔(𝑟, 𝑧, 𝑡) = ∫𝑛(𝑟, 𝑧, 𝑡 − 𝜏)(1 + 𝑚𝑒
𝑖𝜔𝜏)𝑑𝜏

𝑡

0

 

 

(5.2) 

where 𝑛𝜔 is the excess carrier density for a harmonically varying optical generation rate. The term 

(1 +𝑚𝑒𝑖𝜔𝜏) describes this optical generation. Here 𝑚 is the modulation depth of the pump which 

is real number between 0 and 1 that describes the magnitude of the excitation’s AC component 

relative to the DC component. Since 0 ≤ 𝑚 ≤ 1, the magnitude of (1 + 𝑚𝑒𝑖𝜔𝜏) is always greater 

than 0. This condition is necessary since optical generation can only add free-carriers, it cannot 

remove them16. The integral starts at 0 since 𝑛(𝑟, 𝑧, 𝑡) = 0 for 𝑡 < 0. In the limit of long 𝑡, the 

time-dependence of 𝑛𝜔 will be purely harmonic and the convolution ranges from 0 to infinity. A 

convolution in the time domain is just a multiplication in the frequency domain, so: 

                                                 

16 Technically optical excitation can remove free-carriers via simulated emission, but this effect isn’t present in this 

work. 
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 𝑁𝜔(𝑟, 𝑧, 𝜔′) = 𝑁(𝑟, 𝑧, 𝜔′)(𝛿(𝜔
′) + 𝑚𝛿(𝜔′ − 𝜔)) 

 

(5.3) 

where 𝛿 are Dirac-Delta functions, 𝑁𝜔(𝑟, 𝑧, 𝜔′) is the Fourier transform of 𝑛𝜔, and 𝑁(𝑟, 𝑧, 𝜔′) is 

the Fourier transform of 𝑛 (Equation (5.1)). According to Equation (5.3) the frequency domain 

representation of 𝑛𝜔 consists of a DC component (i.e. 𝜔′ = 0) and an AC component (i.e. 𝜔′ =

𝜔) at 𝜔. This makes sense since the optical generation rate consists of a DC light level with a 

harmonically varying ripple superimposed on top of it. Using this information, 𝑛𝜔 can be written 

in terms 𝑁(𝑟, 𝑧, 𝜔): 

 𝑛𝜔(𝑟, 𝑧, 𝑡) = 𝑁(𝑟, 𝑧, 0) + 𝑚𝑁(𝑟, 𝑧, 𝜔)𝑒
𝑖𝜔𝑡 

 

(5.4) 
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5.3 Generalized Theory of Semiconductor Pump/Probe Experiments 

 

Figure 5.1: Cylindrical Coordinate System for Pump/Probe Experiment. Green and red Gaussian curves correspond to pump and 

probe beams, respectively. The coordinate system is centered at the center of a wafer of thickness W. The r coordinate describes 

the plane of the wafer and the z coordinate describes the axis. 
In this section I will derive a generalized equation to describe pump/probe experiments in a 

semiconductor. This analysis is very general, making no assumptions about the semiconductor’s 

thickness, bulk lifetime, surface recombination velocity, or diffusion coefficient, except that they 

remain constant. In addition to this, the angle of incidence, incident power, wavelength, and beam 

radius for both pump and probe are kept general. Perhaps the biggest assumption that is made is 

that the reflection and transmission from the front and back side of the semiconductor is specular, 

instead of diffuse. Physically this means that the semiconductor under study is double-side 

polished, which is the case for the wafers examined in this work. Diffusely reflecting surfaces will 

scatter the incident light over a range of angles. The angle of propagation inside the wafer sets the 

pathlength the light travels through, with longer paths experiencing a greater amount of FCA. 

Modelling the signal that is expected in this case requires a more general mathematical treatment, 

which is beyond the scope of this work. Figure 5.1 shows the cylindrical coordinate system that is 
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used to develop the general equation. Two Gaussian laser beams are overlapped on the same side 

of a silicon wafer of thickness 𝑊, with their peaks positioned at 𝑟 = 0. Green and red Gaussian 

curves correspond to the pump and probe beams, respectively. Beam radii 𝑤𝑝𝑢 & 𝑤𝑝𝑟 are defined 

by the point where the laser power drops to 1/𝑒2 of the peak power. The radial coordinate 𝑟 

describes the plane of the wafer, while the axial coordinate 𝑧 corresponds to the thickness-axis of 

the wafer. The coordinate system is centred at the centre of the wafer. 

In the first stage of this derivation, I derive the general expression for the transmission of the probe 

beam through the semiconductor wafer in the presence of an arbitrary absorption factor and non-

zero surface reflectance. Consider a monochromatic laser beam of power 𝑃𝑝𝑟 hitting a 

semiconductor surface with an interfacial reflectance coefficient of 𝑅𝑝𝑟. The subscript 𝑝𝑟 indicates 

that this beam is the probe beam. In general, 𝑃𝑝𝑟  may depend on time. If the absorption factor for 

a single pass through the laser is given by 𝑒−𝜂𝛽, then the total power that transmits through the 

wafer is given by (Appendix I): 

 
𝑃𝑡𝑟 =

𝑇𝑝𝑟
2

1 − 𝑅𝑝𝑟2 𝑒
−2𝜂𝑝𝑟𝛽

𝑃𝑝𝑟 𝑒
−𝜂𝑝𝑟𝛽 

 

(5.5) 

where 𝑇 = 1 − 𝑅 is the interfacial transmission coefficient. 휂 is a factor equal to the single-pass 

pathlength of the laser through the wafer divided by the wafer thickness. The factor 휂 is the relative 

increase in pathlength due to an oblique angle of propagation through the wafer. 휂 is given by: 

 휂𝑝𝑟 = sec 휃𝑝𝑟  

 

(5.6) 

where 휃𝑝𝑟 is the angle of propagation inside of the wafer. 𝛽 is a factor describing the attenuation 

of the laser beam through the wafer. The origin of absorption is either band-to-band or free-carrier 
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absorption. Writing 𝛽 = 𝛽𝑏𝑏 + 𝛽𝐹𝐶𝐴, where 𝛽𝑏𝑏 & 𝛽𝐹𝐶𝐴 are the band-to-band and FCA 

components, respectively. Equation (5.5) becomes: 

 
𝑃𝑡𝑟 =

𝑇𝑝𝑟
2

1 − 𝑅𝑝𝑟2 𝑒
−2𝜂𝑝𝑟𝛽𝑏𝑏𝑒−2𝜂𝑝𝑟𝛽𝐹𝐶𝐴

𝑃𝑝𝑟𝑒
−𝜂𝑝𝑟𝛽𝑏𝑏𝑒−𝜂𝑝𝑟𝛽𝐹𝐶𝐴 

 

(5.7) 

The band-to-band absorption factor is given by the product of the band-to-band absorption 

coefficient 𝛼 and the wafer thickness 𝑊: 

 𝛽𝑏𝑏 = 𝛼𝑝𝑟𝑊 

 

(5.8) 

The first assumption that is made is that 𝛽𝐹𝐶𝐴 is sufficiently small that 𝑒−𝛽𝐹𝐶𝐴 may be 

approximated as a first order Taylor expansion17. Doing this, it can be shown (Appendix J) that 

(5.7) becomes: 

 
𝑃𝑡𝑟 =

𝑇𝑝𝑟
2

1 − 𝑅𝑝𝑟′
2 𝑃𝑝𝑟

′ (1 − ℜ𝑝𝑟휂𝑝𝑟𝛽𝐹𝐶𝐴) 

 

(5.9) 

where 𝑃′ and 𝑅′ are the effective incident powers and reflectance coefficients, respectively, and ℜ 

is the multiple-reflection correction factor. These are given by: 

                                                 

17 In this work 𝛽𝐹𝐶𝐴~10
−3 so a first-order Taylor approximate of 𝑒−𝛽𝐹𝐶𝐴 is valid. 
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 𝑃′ = 𝑃𝑒−𝜂𝛽𝑏𝑏 

 

(5.10) 

 𝑅′ = 𝑅𝑒−𝜂𝛽𝑏𝑏  

 

(5.11) 

 
ℜ =

1 + 𝑅′2

1 − 𝑅′2
 

 

(5.12) 

Equation (5.9) can be generalized to include the variation of the power as a function of radial 

position from the center of illumination. If the laser beam is Gaussian in shape with a radius of 

𝑤𝑝𝑟 and incident power 𝑃0, then the differential power in an area element 2𝜋𝑟𝑑𝑟 is given by 

2𝑃0

𝜋𝑤𝑝𝑟
2 𝑒

−
2𝑟2

𝑤𝑝𝑟
2
2𝜋𝑟𝑑𝑟. Therefore the total probe power that transmits through the wafer is given by 

 

𝑃𝑡𝑟 = ∫
𝑇𝑝𝑟
2

1 − 𝑅𝑝𝑟′
2

2𝑃𝑝𝑟
′

𝜋𝑤𝑝𝑟2
𝑒
−
2𝑟2

𝑤𝑝𝑟
2
(1 − ℜ𝑝𝑟휂𝑝𝑟𝛽𝐹𝐶𝐴)

∞

0

(2𝜋𝑟𝑑𝑟) 

 

(5.13) 

Equation (5.13) is a general description of a Gaussian probe beam passing through a wafer, which 

accounts for the surface reflection of the beam, and its attenuation due to both band-to-band and 

free-carrier absorption. The origin of free-carriers is due to both the background doping of the 

wafer, and due to the free-carriers excited by the pump beam.  

The factor 𝛽𝐹𝐶𝐴 is given by: 
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𝛽𝐹𝐶𝐴 = (𝜎𝐹𝐶𝐴,𝑒𝑁𝑒 + 𝜎𝐹𝐶𝐴,𝑝𝑁ℎ)𝑊 + 𝜎𝐹𝐶𝐴,𝑒∫ 𝑛𝜔(𝑟, 𝑧, 𝑡)𝑑𝑧

𝑊
2

−
𝑊
2

+ 𝜎𝐹𝐶𝐴,ℎ∫ 𝑝𝜔(𝑟, 𝑧, 𝑡)𝑑𝑧

𝑊
2

−
𝑊
2

 

 

(5.14) 

where 𝜎𝐹𝐶𝐴,𝑒 & 𝜎𝐹𝐶𝐴,ℎ are the individual FCA cross sections for electrons and holes, respectively, 

and 𝑁𝑒 & 𝑁ℎ are the thermal equilibrium concentrations of electrons and holes in the 

semiconductor, respectively. 𝑊 is the wafer thickness, and 𝑛𝜔(𝑟, 𝑧, 𝑡) & 𝑝𝜔(𝑟, 𝑧, 𝑡) are the 

electron and hole concentrations in excess of the thermal equilibrium values, respectively. The 

excess carrier densities are assumed to vary harmonically in time. The first bracketed term is the 

FCA component due to intrinsic free-carriers and free-carriers that originate from donors and 

acceptors. The remaining terms are due to excess carriers generated by optical excitation. Since 

these carriers are generated in a one-to-one ratio, 𝑛𝜔(𝑟, 𝑧, 𝑡) = 𝑝𝜔(𝑟, 𝑧, 𝑡) and thus (5.14) can be 

written in terms of just 𝑛𝜔(𝑟, 𝑧, 𝑡): 

 

𝛽𝐹𝐶𝐴 = 𝛽𝐹𝐶𝐴,0 + 𝜎𝐹𝐶𝐴∫ 𝑛𝜔(𝑟, 𝑧, 𝑡)𝑑𝑧

𝑊
2

−
𝑊
2

 

 

(5.15) 

where 𝜎𝐹𝐶𝐴 is the total FCA cross section due to electrons and holes, 𝛽𝐹𝐶𝐴,0 is just the FCA factor 

due to the equilibrium concentration of carriers. Substituting in the expression for 𝑛𝜔 (Equation 

(5.4)): 

 

𝛽𝐹𝐶𝐴 = 𝛽𝐹𝐶𝐴,0 + 𝜎𝐹𝐶𝐴∫ [𝑁(𝑟, 𝑧, 0) + 𝑚𝑝𝑢𝑁(𝑟, 𝑧, 𝜔)𝑒
𝑖𝜔𝑡]𝑑𝑧

𝑊
2

−
𝑊
2

 

(5.16) 
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𝛽𝐹𝐶𝐴 = [𝛽𝐹𝐶𝐴,0 + 𝜎𝐹𝐶𝐴∫ 𝑁(𝑟, 𝑧, 0)𝑑𝑧

𝑊
2

−
𝑊
2

] + 𝜎𝐹𝐶𝐴𝑚𝑝𝑢𝑒
𝑖𝜔𝑝𝑢𝑡∫ 𝑁(𝑟, 𝑧, 𝜔)𝑑𝑧

𝑊
2

−
𝑊
2

 

 

(5.17) 

where 𝑚𝑝𝑢 is the modulation depth of the pump beam and 𝜔𝑝𝑢 is the angular frequency of the 

pump excitation. Equation (5.17) can be simplified by noting that the term in square brackets is a 

DC term which will not be demodulated by the lock-in amplifier that is used to extract the signal. 

Therefore it can be dropped. Substituting (5.17) into (5.13) and dropping the DC term: 

 

�̃�𝑡𝑟 = ∫
𝑇𝑝𝑟
2

1 − 𝑅𝑝𝑟′
2

2𝑃𝑝𝑟
′

𝜋𝑤𝑝𝑟2
𝑒
−
2𝑟2

𝑤𝑝𝑟
2
(1

∞

0

−ℜ𝑝𝑟휂𝑝𝑟𝜎𝐹𝐶𝐴𝑚𝑝𝑢𝑒
𝑖𝜔𝑝𝑢𝑡∫ 𝑁(𝑟, 𝑧, 𝜔)𝑑𝑧

𝑊
2

−
𝑊
2

)(2𝜋𝑟𝑑𝑟) 

 

(5.18) 

In Equation (5.18) I have used the symbol �̃�𝑡𝑟 to denote that the transmitted power is now a 

complex number due to the complex exponential 𝑒𝑖𝜔𝑝𝑢𝑡 and 𝑁(𝑟, 𝑧, 𝜔) terms. All other factors in 

(5.18) are real numbers. The actual power that is transmitted through the wafer is obtained by 

taking the real part of �̃�𝑡𝑟 (i.e. 𝑃𝑡𝑟 = Re[�̃�𝑡𝑟]). 

Multiply the terms with the radial dependence into the brackets: 
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�̃�𝑡𝑟 =
𝑇𝑝𝑟
2

1 − 𝑅𝑝𝑟′
2

2𝑃𝑝𝑟
′

𝜋𝑤𝑝𝑟2
(2𝜋∫ 𝑟𝑒

−
2𝑟2

𝑤𝑝𝑟
2
𝑑𝑟

∞

0

− 2𝜋ℜ𝑝𝑟휂𝑝𝑟𝜎𝐹𝐶𝐴𝑚𝑝𝑢𝑒
𝑖𝜔𝑝𝑢𝑡 ∫ ∫ 𝑟𝑒

−
2𝑟2

𝑤𝑝𝑟
2
𝑁(𝑟, 𝑧, 𝜔)𝑑𝑧𝑑𝑟

𝑧=
𝑊
2

𝑧=−
𝑊
2

𝑟=∞

𝑟=0

) 

 

(5.19) 

 

�̃�𝑡𝑟 =
𝑇𝑝𝑟
2

1 − 𝑅𝑝𝑟′
2

2𝑃𝑝𝑟
′

𝜋𝑤𝑝𝑟2
(
𝜋𝑤𝑝𝑟

2

2

− 2𝜋ℜ𝑝𝑟휂𝑝𝑟𝜎𝐹𝐶𝐴𝑚𝑝𝑢𝑒
𝑖𝜔𝑝𝑢𝑡 ∫ ∫ 𝑟𝑒

−
2𝑟2

𝑤𝑝𝑟
2
𝑁(𝑟, 𝑧, 𝜔)𝑑𝑧𝑑𝑟

𝑧=
𝑊
2

𝑧=−
𝑊
2

𝑟=∞

𝑟=0

) 

 

 

(5.20) 

By definition, 𝑁(𝑟, 𝑧, 𝜔) is the Fourier transform of 𝑛(𝑟, 𝑧, 𝑡): 

 �̃�𝑡𝑟

=
𝑇𝑝𝑟
2

1 − 𝑅𝑝𝑟′
2

2𝑃𝑝𝑟
′

𝜋𝑤𝑝𝑟2

(

 
 𝜋𝑤𝑝𝑟

2

2

− 2𝜋ℜ𝑝𝑟휂𝑝𝑟𝜎𝐹𝐶𝐴𝑚𝑝𝑢𝑒
𝑖𝜔𝑝𝑢𝑡 ∫ ∫ ∫ 𝑟𝑒

−
2𝑟2

𝑤𝑝𝑟
2
𝑛(𝑟, 𝑧, 𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡

∞

𝑡=0

𝑑𝑧𝑑𝑟

𝑧=
𝑊
2

𝑧=−
𝑊
2

𝑟=∞

𝑟=0

)

 
 

 

(5.21) 
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Note that the Fourier transform is computed from 0 to infinity and not from negative to positive 

infinity. This is because 𝑛(𝑟, 𝑧, 𝑡) = 0 for 𝑡 < 0. The triple integral in (5.21) is computed in 

Appendix D. Substituting the result into (5.21): 

 �̃�𝑡𝑟

=
𝑇𝑝𝑟
2

1 − 𝑅𝑝𝑟′
2

2𝑃𝑝𝑟
′

𝜋𝑤𝑝𝑟2
(
𝜋𝑤𝑝𝑟

2

2

− 2𝜋ℜ𝑝𝑟휂𝑝𝑟𝜎𝐹𝐶𝐴𝑚𝑝𝑢𝑒
𝑖𝜔𝑝𝑢𝑡 [2𝑤𝑝𝑟

2 𝜏𝐷𝑔0𝛼휂𝑝𝑢𝑒
−
𝛼𝜂𝑝𝑢𝑊

2 ∑𝑒

𝜏𝐷
𝑝𝑢
+𝜏𝐷

𝑝𝑟

𝜏𝑛
′

Γ(0,
𝜏𝐷
𝑝𝑢 + 𝜏𝐷

𝑝𝑟

𝜏𝑛′
 ) 𝐴𝑛

𝑙𝑐

𝑛

]) 

 

 

(5.22) 

 

 �̃�𝑡𝑟

=
𝑇𝑝𝑟
2

1 − 𝑅𝑝𝑟′
2

2𝑃𝑝𝑟
′

𝜋𝑤𝑝𝑟2
𝜋𝑤𝑝𝑟

2

2
(1

− 8ℜ𝑝𝑟휂𝑝𝑟𝜎𝐹𝐶𝐴𝑚𝑝𝑢𝑒
𝑖𝜔𝑝𝑢𝑡𝜏𝐷𝑔0𝛼휂𝑝𝑢𝑒

−
𝛼𝜂𝑝𝑢𝑊

2 ∑𝑒

𝜏𝐷
𝑝𝑢
+𝜏𝐷

𝑝𝑟

𝜏𝑛
′

Γ(0,
𝜏𝐷
𝑝𝑢 + 𝜏𝐷

𝑝𝑟

𝜏𝑛′
 ) 𝐴𝑛

𝑙𝑐

𝑛

) 

 

 

(5.23) 
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 �̃�𝑡𝑟

=
𝑇𝑝𝑟
2

1 − 𝑅𝑝𝑟′
2 𝑃𝑝𝑟

′ (1

− 8ℜ𝑝𝑟휂𝑝𝑟𝜎𝐹𝐶𝐴𝑚𝑝𝑢𝑒
𝑖𝜔𝑝𝑢𝑡𝜏𝐷𝑔0𝛼휂𝑝𝑢𝑒

−
𝛼𝜂𝑝𝑢 𝑊

2 ∑𝑒

𝜏𝐷
𝑝𝑢
+𝜏𝐷

𝑝𝑟

𝜏𝑛
′

Γ(0,
𝜏𝐷
𝑝𝑢 + 𝜏𝐷

𝑝𝑟

𝜏𝑛′
 ) 𝐴𝑛

𝑙𝑐

𝑛

) 

 

 

(5.24) 

where 𝜏𝑛
′  is the frequency-dependent effective lifetime factor, given by: 

 𝜏𝑛
′ =

𝜏𝑛
1 + 𝑖𝜔𝑝𝑢𝜏𝑛

 (5.25) 

 

And 𝜏𝐷
𝑝𝑢

 and 𝜏𝐷
𝑝𝑟

 are the pump and probe diffusion time constants, given by: 

 
𝜏𝐷
𝑝𝑢(𝑝𝑟)

=
𝑤𝑝𝑢(𝑝𝑟)
2

8𝐷
 

 

(5.26) 

The function Γ is the upper incomplete gamma function. Equation  (5.24) can be reduced by 

bundling several terms into the 3D frequency-dependent factor 𝜉: 
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�̃�𝑡𝑟 =

𝑇𝑝𝑟
2

1 − 𝑅𝑝𝑟′
2 𝑃𝑝𝑟

′ (1 − 8ℜ𝑝𝑟휂𝑝𝑟𝑚𝑝𝑢𝜉(𝜔𝑝𝑢)𝑒
𝑖𝜔𝑝𝑢𝑡) 

 

(5.27) 

where 𝜉(𝜔) is given by: 

 

𝜉(𝜔𝑝𝑢) = 𝜎𝐹𝐶𝐴𝜏𝐷
𝑝𝑢𝑔0𝛼휂𝑝𝑢𝑒

−
𝛼𝑝𝑢𝑊

2 ∑𝑒

𝜏𝐷
𝑝𝑢
+𝜏𝐷

𝑝𝑟

𝜏𝑛
′

Γ(0,
𝜏𝐷
𝑝𝑢
+ 𝜏𝐷

𝑝𝑟

𝜏𝑛′
 ) 𝐴𝑛

𝑙𝑐

𝑛

 

 

(5.28) 

To further generalize the expression for the transmitted probe power �̃�𝑡𝑟, I incorporate a harmonic 

time dependence into the probe beam. Replace 𝑃𝑝𝑟
′  with 𝑃𝑝𝑟

′ (1 + 𝑚𝑝𝑟 cos(𝜔𝑝𝑟𝑡 + 𝜙𝑝𝑟)), where 

𝜔𝑝𝑟 is the modulation frequency of the probe, 𝑚𝑝𝑟 is the modulation depth, and  𝜙𝑝𝑟 is a phase 

term: 

 
�̃�𝑡𝑟 =

𝑇𝑝𝑟
2

1 − 𝑅𝑝𝑟′
2  𝑃𝑝𝑟

′ (1 +𝑚𝑝𝑟 cos(𝜔𝑝𝑟𝑡 + 𝜙𝑝𝑟))(1

− 8ℜ𝑝𝑟휂𝑝𝑟𝑚𝑝𝑢𝜉(𝜔𝑝𝑢)𝑒
𝑖𝜔𝑝𝑢𝑡) 

 

(5.29) 

Equation (5.29) is a general equation for pump/probe lifetime experiments in semiconductors. It 

can be used to predict the signal expected when the pump and probe beams have an arbitrary 

radius, incident power, wavelength and modulation frequency for a semiconductor sample with 

arbitrary surface reflectance, thickness, bulk recombination lifetime, and surface recombination 

velocity. The main assumptions are that the pump and probe beams are Gaussian in shape, are 
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centered on the same point, and that the magnitude of free-carrier absorption is small. The 

assumption that the pump and probe lasers are centred on the same point is necessary in order to 

take advantage of the radial symmetry between the profiles of the probe laser power and free-

carrier distribution (see the integration over 𝑟 in Appendix D, Equations (D.11) and (D.12)). The 

Gaussian shape is the characteristic shape of single-mode lasers, so this requirement is usually 

satisfied by the experimental apparatus. However, the angle of incidence on the semiconductor 

wafer must be shallow otherwise the projection of the beam over the surface takes on an elliptical 

shape and the Gaussian approximation is invalidated. The long axis of the ellipse is 10% larger 

than the short axis for an angle of incidence of 25 degrees. This condition is met by the 1064 nm 

pump laser, which illuminates the sample at 15°. The condition is violated by the 1550 nm probe 

laser since its angle of incidence is 75°. This is not a concern for this work since the probe laser is 

either expanded to a diameter much larger than the pump, or focused to a diameter much smaller 

than the pump. In the former case the probe laser is uniform over the free-carrier profile and so it 

has no radial dependence. In the latter case the probe laser illuminates a region where the free-

carrier profile is uniform, so the specific distribution of the probe power is irrelevant; all that 

matters is the total power illuminating the region. 

5.4 Special Cases of 𝜉 factor 

Appendix H derives several special cases of 𝜉 which will be useful later on. They are summarized 

here. Single beam and dual beam cases are identified by subscripts ‘SB’ and ‘DB’, respectively. 

Case 1: Surface Recombination Velocity equal to 0 

 
𝜉𝑆𝐵 =

1

8
𝜎𝐹𝐶𝐴𝜏𝐷𝑔0(1 − 𝑒

−𝛼𝜂𝑊)𝑒
2𝜏𝐷
𝜏′ Γ (0,

2𝜏𝐷
𝜏′
 ) 

 

(5.30) 
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𝜉𝐷𝐵 =

1

8
𝜎𝐹𝐶𝐴𝜏𝐷

𝑝𝑢𝑔0(1 − 𝑒
−𝛼𝜂𝑝𝑢𝑊)𝑒

𝜏𝐷
𝑝𝑢
+𝜏𝐷

𝑝𝑟

𝜏′ Γ(0,
𝜏𝐷
𝑝𝑢 + 𝜏𝐷

𝑝𝑟

𝜏′
 ) 

 

 

(5.31) 

In Case 1 the summation over 𝑛 is reduced to a single term. The frequency dependence of 𝜉 is due 

to bulk recombination and radial diffusion only. 

Case 2: Pump and Probe Beam Diameters large enough to neglect radial diffusion 

((𝝉𝑫
𝒑𝒖
+ 𝝉𝑫

𝒑𝒓
) ≫ 𝝉𝒏

′ ) 

 
𝜉𝑆𝐵 =

1

2
𝜎𝐹𝐶𝐴𝑔0𝛼휂𝑒

−
𝛼𝜂𝑊
2 ∑

𝜏𝑛
1 + 𝑖𝜔𝜏𝑛

𝐴𝑛
𝑙𝑐

𝑛

 

 

 

(5.32) 

 

 

𝜉𝐷𝐵 =

{
 
 

 
 
𝜏𝐷
𝑝𝑢

𝜏𝐷
𝑝𝑟 𝜎𝐹𝐶𝐴𝑔0𝛼휂𝑝𝑢𝑒

−
𝛼𝜂𝑝𝑢𝑊

2 ∑
𝜏𝑛

1 + 𝑖𝜔𝜏𝑛
𝐴𝑛
𝑙𝑐

𝑛

, 𝜏𝐷
𝑝𝑟 ≫ 𝜏𝐷

𝑝𝑢

𝜎𝐹𝐶𝐴𝑔0𝛼휂𝑝𝑢𝑒
−
𝛼𝜂𝑝𝑢𝑊

2 ∑
𝜏𝑛

1 + 𝑖𝜔𝜏𝑛
𝐴𝑛
𝑙𝑐

𝑛

, 𝜏𝐷
𝑝𝑢 ≫ 𝜏𝐷

𝑝𝑟

 

 

 

(5.33) 
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In Case 2, the terms that carry the radial diffusion effect are removed and the frequency 

dependence of 𝜉 takes on the same form as the simple 1D continuity equation (Equation (3.30)). 

To understand this it is helpful to reformulate the  (𝜏𝐷
𝑝𝑢 + 𝜏𝐷

𝑝𝑟)/𝜏𝑛
′  term in terms of the free-carrier 

diffusion length 𝐿𝑛. Substituting in the values for 𝜏𝑝𝑢 & 𝜏𝑝𝑟 (Equation (5.26)) and setting the 

modulation frequency 𝜔 to 0 (𝜏𝑛
′ → 𝜏𝑛): 

 𝜏𝑝𝑢 + 𝜏𝑝𝑟

𝜏𝑛
=
𝑤𝑝𝑢
2 + 𝑤𝑝𝑟

2

8𝐿𝑛2
 

(5.34) 

The free-carrier diffusion length is the average distance free-carriers travel before recombining. 

From Equation (5.34) it can be seen that when (𝜏𝐷
𝑝𝑢 + 𝜏𝐷

𝑝𝑟) ≫ 𝜏𝑛
′  , the pump and probe beam 

diameters are much larger than the diffusion length of free-carriers. If the pump beam is much 

larger than the diffusion length, then the free-carrier profile generated by the pump is unperturbed 

by diffusion effects over time (or frequency). When the probe beam is much larger than the 

diffusion length, its power is changing slowly with respect to diffusion along the radial axis of the 

beam. In this case, the carriers cannot diffuse out of the area covered by the probe beam and escape 

detection. In this work the dual-beam pump/probe is configured either so 𝜏𝑝𝑢 ≫ 𝜏𝑝𝑟 or 𝜏𝑝𝑟 ≫ 𝜏𝑝𝑢. 

The frequency-dependence is the same regardless, but there is a difference in prefactor. Both cases 

are listed in Equation (5.33). 

Case 3: Surface recombination velocity goes to 0 and pump or probe beam large enough to neglect 

radial diffusion ((𝝉𝑫
𝒑𝒖
+ 𝝉𝑫

𝒑𝒓
) ≫ 𝝉𝒏

′ ) 

 

 
𝜉𝑆𝐵 =

1

16
𝜎𝐹𝐶𝐴𝑔0(1 − 𝑒

−𝛼𝜂𝑊)
𝜏

1 + 𝑖𝜔𝜏
 

 

(5.35) 
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𝜉𝐷𝐵 =

{
 
 

 
 1

8

𝜏𝐷
𝑝𝑢

𝜏𝐷
𝑝𝑟 𝜎𝐹𝐶𝐴𝑔0(1 − 𝑒

−𝛼𝜂𝑝𝑢𝑊)
𝜏

1 + 𝑖𝜔𝜏
, 𝜏𝐷
𝑝𝑟 ≫ 𝜏𝐷

𝑝𝑢

1

8
𝜎𝐹𝐶𝐴𝑔0(1 − 𝑒

−𝛼𝜂𝑝𝑢𝑊)
𝜏

1 + 𝑖𝜔𝜏
, 𝜏𝐷
𝑝𝑢 ≫ 𝜏𝐷

𝑝𝑟

 

 

 

(5.36) 

Case 3 is a combination of Case 1 and Case 2. In this case the behavior as a function of frequency 

𝜔 is identical to the simplified model in Equation (3.20). This is expected since zero surface 

recombination velocity and negligible radial diffusion reduces the problem to the simple case of 

measuring the bulk lifetime 𝜏. 
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6 Single Beam Pump/Probe 

6.1 Overview 

Pump/probe spectroscopy is an indispensable tool that has a diverse range of applications amongst 

the physical sciences. Pump/probe studies with ultrafast lasers have been used to probe the 

fundamental dynamics of chemical and atomic systems from picosecond to femtosecond to even 

attosecond resolution [83], [84]. In the biological sciences, pump/probe techniques have been 

developed to measure the temperature of cancer cells, or perform time-resolved crystallography 

on biological macromolecules [85], [86]. In semiconductor physics, pump/probe studies have been 

used to measure the fundamental thermalization dynamics of electrons [87]. The common feature 

among all of these techniques is the use of separate beams for pump and probe. This is necessary 

in applications where the pump beam is not sensitive to the quantity being pumped. For example 

in Refs [86] Schmidt et al. study photo-excited stages of complex proteins with x-ray diffraction. 

An optical pump laser excites the proteins and a pulse of x-rays probes their crystal structure. 

Clearly an optical pump cannot interact with the protein in a way that elucidates crystallographic 

information, so in this application it is necessary to have separate beams for pump and probe. 

However, in semiconductor pump/probe studies, the pump beam that excites free-carriers is also 

attenuated by them via free-carrier absorption. Therefore it should be possible to perform 

pump/probe experiments in semiconductors using a single laser beam as both the pump and the 

probe. A single-beam pump/probe technique would have a tremendous advantage over its dual-

beam counterpart in terms of cost, complexity, and implementation challenges. By removing the 

second beam, the supporting optics for that beam are eliminated and physical space is freed up. 

The problem of overlapping the pump and probe on the sample under study is also eliminated. 

In this chapter I develop a single-beam pump/probe method for measuring effective lifetime in 

silicon. I use an Nd:YAG laser emitting at 1064 nm as the combined pump and probe. 1064 nm 

is very close to the absorption edge of silicon (~1100 nm), and since silicon is an indirect bandgap 
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semiconductor, the laser is weakly absorbed. In this work, about 25-65% of the laser is absorbed 

in the wafer. Low absorption is necessary so that a fraction of the beam can transmit through the 

wafer and be collected and analyzed. The single-beam signal is modelled using the generalized 

pump/probe equation from Chapter 5.3, which provides a general description of the signal 

accounting for bulk and surface recombination, as well as 3D carrier transport within the 

semiconductor. In the limit where the beam radius is large with respect to the free-carrier diffusion 

length, the model predicts that the lifetime measured by the single-beam technique is the 1D 

effective lifetime containing bulk and surface recombination. This is the lifetime that is usually 

measured in dual-beam studies, and the one that is of interest for defect spectroscopy in silicon [1]. 

I have experimentally verified that the lifetimes measured by the single and dual-beam experiments 

agree when the pump beam radius is large. When the beam radius is small with respect to the 

diffusion length, free-carriers generated by the pump escape the volume of the laser spot. This 

additional loss mechanism shortens the lifetime, and complicates the extraction of the effective 

recombination lifetime. Experimentally, this manifests as a shifting of the imaginary component 

of the signal to high frequencies, and a broadening of the peak. I have confirmed this 

experimentally, and showed that when the curve is fit to the general 3D model the effective 1D 

lifetime is determined, along with information containing the diffusion coefficient of the 

semiconductor. This demonstrates that even in the more complex case when bulk and surface 

recombination, as well as radial diffusion losses affect the signal, the effective recombination 

lifetime can still be determined unambiguously. I have also verified that the amplitude of the signal 

predicted by the 3D model is consistent with experimentally measured values.  

The content of this chapter is as follows. In 6.2 I derive the mathematical model governing single 

beam pump probe and explore how the pump/probe beam radius affects the measurement of the 

effective recombination lifetime. In 6.3 I provide experimental validation of single-beam 

pump/probe in the limit where the beam radius is much larger than the diffusion length of free-

carriers. In this limit the general pump/probe model predicts that the frequency dependence of the 

single-beam signal should be identical to that of the 1D model described in 3.3.2. This is confirmed 

experimentally, and is consistent with the lifetime measured by the dual-beam technique. In 6.4 I 
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describe the specifics of single-beam pump/probe data acquisition, and develop a strategy for 

separating out the probe contribution to the measured signal. It is demonstrated that drift effects, 

and not random noise, are what limits single-beam measurements. In 6.5 I compare the measured 

signal amplitude to what is predicted by the model and show quantitative agreement between the 

two. In 6.6 I show that in the limit where the beam radius is much smaller than the diffusion length 

of free-carriers, the lifetime that is measured by the single-beam technique is dominated by radial 

diffusion effects as is expected from the model. By fitting the frequency-dependence of the 

measured signal, the true effective recombination lifetime is extracted. In 6.7 I discuss some 

additional considerations for the single-beam technique, and in 6.8 I summarize the results of this 

section. 

6.2 Theoretical Description of Single Beam Pump/Probe Technique 

6.2.1 Derivation of Model for Single-Beam Pump/Probe 

Experimentally I measure the transmission of a probe beam through a silicon wafer, and use the 

detected signal to measure the lifetime of the wafer. The signal measured in single-beam 

pump/probe experiments can be derived using the generalized pump/probe equation (Equation 

(5.29)). In single-beam pump/probe studies, the pump and probe beams are identical. Dropping 

the subscripts ‘pu’ and ‘pr’, the power transmitted through a wafer in the single-beam pump/probe 

technique is given by: 

 
�̃�𝑡𝑟 =

𝑇2

1 − 𝑅′2 
𝑃0
′(1 + 𝑚 cos𝜔𝑡)(1 − 8ℜ휂𝑚𝜉(𝜔)𝑒𝑖𝜔𝑡) 

 

(6.1) 

where 𝜉(𝜔) is given by: 

 
𝜉(𝜔) = 𝜎𝐹𝐶𝐴𝜏𝐷𝑔0𝛼휂𝑒

−
𝛼𝜂𝑊
2 ∑𝑒

2𝜏𝐷
𝜏𝑛
′
Γ (0,

2𝜏𝐷
𝜏𝑛′
 ) 𝐴𝑛

𝑙𝑐

𝑛

 
(6.2) 
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In (6.1) I have converted the symbol 𝑃𝑝𝑟
′  to 𝑃0

′, and set the phase factor 𝜙𝑝𝑟 to zero since the pump 

and probe modulations are initially in phase with each other. Multiplying through (6.1): 

 
�̃�𝑡𝑟 =

𝑇2

1 − 𝑅′2 
𝑃0
′ +

𝑇2

1 − 𝑅′2 
𝑃0
′𝑚[cos𝜔𝑡 − 8ℜ휂𝜉(𝜔)𝑒𝑖𝜔𝑡]

−
𝑇2

1 − 𝑅′2 
𝑃0
′𝑚28ℜ휂𝜉(𝜔)𝑒𝑖𝜔𝑡 cos𝜔𝑡 

 

(6.3) 

The real part of Equation (6.3) is the power that is measured experimentally, 𝑃𝑡𝑟: 

 
𝑃𝑡𝑟 ≡ Re[�̃�𝑡𝑟] =

𝑇2

1 − 𝑅′2 
𝑃0
′

+
𝑇2

1 − 𝑅′2 
𝑃0
′𝑚[cos𝜔𝑡 − 8ℜ휂𝜉𝑟𝑒 cos𝜔𝑡 + 8ℜ휂𝜉𝑖𝑚 sin𝜔𝑡]

−
𝑇2

1 − 𝑅′2 
𝑃0
′𝑚28ℜ휂(𝜉𝑟𝑒 cos𝜔𝑡 − 𝜉𝑖𝑚 sin𝜔𝑡) cos𝜔𝑡 

(6.4) 

where 𝜉𝑟𝑒 = Re[𝜉(𝜔)] and 𝜉𝑖𝑚 = Im[𝜉(𝜔)] (i.e. 𝜉 = 𝜉𝑟𝑒 + 𝑖𝜉𝑖𝑚). Factoring Equation (6.4) and 

using the identities cos2 𝜔𝑡 =
1

2
(1 + cos 2𝜔𝑡) and sin𝜔𝑡 cos𝜔𝑡 =

1

2
sin 2𝜔𝑡: 

 
𝑃𝑡𝑟 =

𝑇2

1 − 𝑅′2 
𝑃0
′(1 − 4ℜ휂𝑚2𝜉𝑟𝑒)

+
𝑇2

1 − 𝑅′2 
𝑃0
′𝑚[(1 − 8ℜ휂𝜉𝑟𝑒) cos𝜔𝑡 + 8ℜ휂𝜉𝑖𝑚 sin𝜔𝑡]

−
𝑇2

1 − 𝑅′2 
𝑃0
′𝑚24ℜ휂(𝜉𝑟𝑒 cos 2𝜔𝑡 − 𝜉𝑖𝑚 sin 2𝜔𝑡) 

(6.5) 
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Equation (6.5) describes the exact time-resolved power that is seen on a detector for single-beam 

pump/probe. There is a DC term, and terms at the fundamental frequency and its 1st harmonic. 

The DC term is just the signal seen after attenuation of the beam due to band-to-band absorption, 

subtracted by a small contribution due to the rectification of the FCA term that goes as cos2𝜔𝑡. 

The fundamental term is the power seen after attenuation of the beam due to band-to-band 

absorption, reduced further by free-carrier absorption. The second harmonic term is due entirely 

to free-carrier absorption. This term arises due to frequency mixing between the modulation of the 

laser at 𝜔 and the FCA term at 𝜔.  Each of the harmonic terms can be individually isolated with a 

lock-in amplifier. In order to extract lifetime information from the single beam experiment the 𝜉𝑟𝑒 

or 𝜉𝑖𝑚 terms must be isolated. The obvious way of doing this would be to measure the component 

of the power at 2𝜔 since it is arises purely due to FCA; in the absence of FCA there should be no 

contribution to the signal at 2𝜔. However, this is not straightforward to do experimentally. Due to 

non-linearities in the experimental setup, there are spurious signals that exist at 2𝜔 that are larger 

than the free-carrier signal18. These non-linearities are likely due to distortion in the electro-optic 

modulator but can also arise in the photodiode detector and its transimpedance amplifier. The non-

linearity at 2𝜔 can be suppressed by splitting the laser beam prior to hitting the sample, and using 

one component as a reference beam in a feedback loop. This is the approach that has been used in 

the few single-beam pump/probe studies in the literature [59], [60]. There are several drawbacks 

to this approach. Firstly, it complicates the implementation of the technique since now a second 

detector is required as well as an amplifier with very high gain over a sufficient bandwidth for 

mapping out the frequency-response of 𝜉𝑟𝑒 or 𝜉𝑖𝑚. Secondly, it is required that both the sample 

detector and feedback detector have very similar characteristics so that performing a feedback loop 

with one detector will effectively suppress distortion in the second. In the development of this 

technique I have attempted to extract the FCA component from the 2𝜔 term, but was never able 

                                                 

18 Empirically, stray harmonic components are about 10−2 of the direct pump signal. The FCA signal is typically less 

than 10−3. 
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to acquire consistent results. In the case when no feedback scheme was implemented, the 2𝜔 signal 

was dominated by a background signal that originates due to distortion of the 𝜔 term. When 

feedback was implemented there was still a non-zero signal at 2𝜔 when a sample was absent. I 

attribute this to the fact that the sample and feedback detectors were not identical, so suppressing 

the 2𝜔 in one detector does not translate into a reduced 2𝜔 in another. 

I have found that the most reliable method of isolating the FCA contribution is to extract it from 

the fundamental term in (6.5). The entire fundamental term is measured by demodulating the 

detector signal on a lock-in amplifier at a frequency of 𝜔. In general, the signal consists of an in-

phase component and out-of-phase component, which are given by the coefficients of the cos𝜔𝑡 

and sin𝜔𝑡 terms in (6.5), respectively. The demodulated signal can be represented as a complex 

number 𝑆𝜔, given by: 

 
𝑆𝜔(𝜔) = 휁(𝜔)

𝑇2

1 − 𝑅′2 
𝑃0
′𝑚[1 − 8ℜ휂𝜉(𝜔)] 

 

(6.6) 

where 휁(𝜔) is the transimpedance transfer function19 of the detector. The physical interpretation 

of (6.6) is quite straightforward. It is the signal due to the total laser power that transmits through 

the wafer, accounting for the reflection and absorption losses. In the absence of FCA the signal is 

휁(𝜔)
𝑇2

1−𝑅′
2
 
𝑃0
′ which is the signal when the only absorption loss is band-to-band absorption. In the 

presence of FCA there is additional attenuation of the beam which reduces the intensity beyond 

what is expected from band-to-band absorption alone. This additional absorption is frequency 

dependent, since the amplitude of the free-carrier population depends on frequency.  

                                                 

19 In general the transimpedance transfer function is a complex number since the detector can change the magnitude 

and phase of the transduced signal. 
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When no sample is present the background signal 𝑆𝑏
′ (𝜔) is given by: 

 𝑆𝑏
′ (𝜔) = 휁(𝜔)𝑃0 

 

(6.7) 

Here the signal is just due to the incident power and the detector’s transimpedance response. In 

practice, I control the power into the pump detector with a half-waveplate/polarizer pair, and 

always maintain the same amount of power throughput into the detector regardless of whether or 

not a sample is in place. This is to ensure that the experimental conditions between measuring the 

sample spectrum and the background spectrum are as close as possible. Large power differences 

between measurements of these spectra could reveal non-linearities in the detector’s 

transimpedance response. Even though any deviations from linearity are probably small, the free-

carrier signal itself is also quite small (typically |8ℜ휂𝜉(𝜔)| < 10−3), so it is proactive to avoid 

introducing non-linearities when possible. Let 𝑆𝑏 be this new background spectrum, where the 

power into the detector is adjusted to match the power that was incident upon the detector when 

𝒮𝜔 was collected. Since |8ℜ휂𝜉(𝜔)| ≪ 1, 𝑆𝜔~𝑆𝑏 and the prefactor in front of 𝑆𝑏 is the same as 

𝑆𝜔. Thus 𝑆𝑏 can be written as: 

 
𝑆𝑏 = 휁(𝜔)

𝑇2

1 − 𝑅′2 
𝑃0
′𝑚 

(6.8) 

 

Dividing 𝑆𝜔 by 𝑆𝑏 yields the signal that is analyzed for single-beam pump/probe measurements: 

 
𝒮 ≡

𝑆𝜔
𝑆𝑏
= 1 − 8ℜ휂𝜉(𝜔) 

 

(6.9) 
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Note that all terms related to power and the transimpedance response of the detector have been 

removed. Equations (6.6) and (6.9) reveal a unique characteristic of single-beam pump/probe that 

differentiates it from traditional dual-beam measurements. The measured signal is proportional to 

a factor of unity subtracted by the FCA component. The factor of unity corresponds to the pump 

signal whereas the other term corresponds to probe signal. In other words, the measured signal is 

a superposition of the pump and probe signals. In almost every other pump/probe experiment the 

probe signal is entirely decoupled from the pump since the probe is a separate beam. So long as 

the pump source is rejected by the probe detector it is not measured. This makes it easy to 

discriminate between the two. In the single-beam technique they are necessarily coupled. Since 

the induced FCA is quite small, the drive signal is significantly larger than the desired probe. 

During early trials in the development of the single-beam technique I tried many strategies for 

isolating the free-carrier signal using Equation (6.6) before finally settling on the formulation of 

Equation (6.9). Some of the unsuccessful schemes are discussed in Appendix G. Formulating 

Equation (6.9) is a useful way to isolate the FCA component since it eliminates the instrumentation 

response of the detector and reduces the measureable quantity to a simple relationship. The 

imaginary part of this relationship is due entirely due to FCA. In general 𝜉(𝜔) is a complex 

quantity. Since 𝜉(𝜔) = 𝜉𝑟𝑒(𝜔) + 𝑖𝜉𝑖𝑚(𝜔), the real and imaginary components 𝑋 & 𝑌 of (6.9) are: 

 𝑋 = 1 − 8ℜ휂𝜉𝑟𝑒(𝜔) 

 

(6.10) 

 𝑌 = −8ℜ휂𝜉𝑖𝑚(𝜔) 

 

(6.11) 

Equation (6.11) shows that the imaginary component of 𝒮 is directly proportional to the imaginary 

component of the FCA spectrum. In other words, by taking the imaginary component of the signal 

the probe beam contribution is isolated, decoupling it from the pump contribution. It is this 

component of the signal that is used to determine the effective recombination lifetime of the wafer.  
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6.2.2 The Effect of Beam Radius on Lifetime Measurements  

The signal in FCA pump/probe studies is sensitive to the free-carrier density that falls within the 

volume of probe beam. Along the axis of the wafer (the 𝑧 axis in Figure 5.1), the only way for 

carriers to escape the probe beam is to recombine in the bulk, or diffuse to the surfaces of the wafer 

and recombine there. This is because the probe beam propagates along the axis of the wafer, so it 

“sees” the free-carriers no matter where they are along that axis. The rate at which carriers escape 

along the axis of the wafer is 1/𝜏, where 𝜏 is the effective recombination lifetime which is a 

function of recombination rates in the bulk and at the surface of the semiconductor (see Equation 

(3.29)). Since the probe beam has a finite radius, carriers diffusing in the plane of the wafer (𝑟-

axis in Figure 5.1) can escape the probe beam without recombining. The rate at which carriers 

diffuse out of the probe volume is given by 1/𝜏𝑟 where 𝜏𝑟 is the radial diffusion lifetime. The total 

rate at which carriers escape the probe beam 1/𝜏3𝐷  is the sum of the rates at which carriers 

recombine and diffuse out of the beam: 

 

 1

𝜏3𝐷
=
1

𝜏
+
1

𝜏𝑟
 

(6.12) 

 

where 𝜏3𝐷 is the 3D effective lifetime. As discussed in 3.3.1, the imaginary component of the 1D 

FCA signal has a characteristic peak 𝜔𝑝 in the imaginary spectrum that corresponds to the effective 

lifetime 𝜏 (see Figure 3.5). In the 3D case, this peak corresponds to the 3D effective lifetime, which 

is given by: 

 
𝜏3𝐷 =

1

𝜔𝑝
 

(6.13) 
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The 3D effective lifetime is what is measured experimentally in single-beam pump/probe. The 

effective lifetime 𝜏 is set by the properties of the sample under investigation and generally remains 

fixed in a single measurement. The radial diffusion lifetime 𝜏𝑟 also depends on the properties of 

the sample, but it is also dependent on the beam radius which can be controlled by the 

experimenter. If the probe radius is large with respect to the free-carrier diffusion length, then the 

rate at which carriers escape by diffusion will be very low and 𝜏3𝐷~𝜏. When the beam radius is 

very small with respect to the diffusion length, the rate of escape due to diffusion is very high and 

𝜏3𝐷~𝜏𝑟. From Equation (6.12) it is clear that 𝜏3𝐷 ≤ 𝜏. Note that 𝜏𝑟 is not the same as the diffusion 

time constant 𝜏𝐷. 𝜏𝑟 is a lifetime that is defined through Equation (6.12), and is used to describe 

the rate at which carriers leave the probe volume without recombining. 

To get an understanding how the relationship between beam radius and carrier diffusion length 

affect 𝜏3𝐷, I examine the frequency-dependent terms of the FCA signal. These terms are inside the 

summation in the factor 𝜉 (Equation (6.2)). Since the first term of the series is dominant (Figure 

3.7), the frequency-dependence can be approximated by the factor ℱ: 

 
ℱ = 𝜏𝐷𝑒

2𝜏𝐷
𝜏
 (1+𝑖𝜔𝜏)Γ(0,

2𝜏𝐷
𝜏
 (1 + 𝑖𝜔𝜏)) 

(6.14) 

 

In Equation (6.14) I have substituted 𝜏′ =
𝜏

1+𝑖𝜔𝜏
 (Equation (5.25)). The frequency dependent term 

of the argument (1 + 𝑖𝜔𝜏) is weighted by the factor 2𝜏𝐷/𝜏. The magnitude of this factor controls 

the relative contribution of 𝜏𝑟 to 𝜏3𝐷. It is shown in Appendix H that when 
2𝜏𝐷

𝜏
≫ 1, the frequency 

dependence of ℱ reduces to the simple case of 1D diffusion. This is Case 2 of the 𝜉 factor in 

Chapter 5.4. An intuitive interpretation of the factor 2𝜏𝐷/𝜏 is revealed by substituting in 𝜏𝐷 =

𝑤2/8𝐷 and using the fact that the free-carrier diffusion length is 𝐿 = √𝐷𝜏. The factor 2𝜏𝐷/𝜏 

becomes: 
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 2𝜏𝐷
𝜏
=
1

4

𝑤2

𝐿2
  

(6.15) 

 

From Equation (6.15) it is clear that the factor 2𝜏𝐷/𝜏 is related to the ratio of the beam radius to 

diffusion length. Obviously if the beam radius is large with respect to diffusion length, diffusion 

effects are negligible. 

 

Figure 6.1: Plot of imaginary component of FCA signal vs ωτ for various probe beam ratios. The probe beam ratio is defined as 

the probe radius divided by the effective diffusion length of free-carriers. Beam ratios are labelled in the legend. 

Figure 6.1 plots the imaginary component of Equation (6.14) vs 𝜔𝜏 for various beam ratios, with 

the peak amplitude normalized to unity for each curve. The probe beam ratio is defined as the ratio 

of the beam radius to the diffusion length. Note that 𝜏 here is the effective recombination lifetime, 

not the 3D effective lifetime. When the beam radius is 25 times larger than the diffusion length, 



Ph.D Thesis-Kevin M.W. Boyd  McMaster University-Engineering Physics 

94 

 

 

the imaginary component peaks at 𝜔𝜏 = 1. This means that 𝜏 = 1/𝜔𝑝 which follows from 

Equations (6.12) & (6.13) if 𝜏𝑟 → ∞. As the beam ratio is reduced with respect to diffusion length, 

the peak of the imaginary component shifts towards higher frequencies and the curve broadens. In 

this case, 1/𝜔𝑝 no longer corresponds to the effective recombination lifetime and diffusion effects 

have to be explicitly accounted for in order to extract 𝜏. The effective recombination lifetime 𝜏 is 

the quantity that experimenters are typically interested in since it is a direct measure of the 

electronic quality of a semiconductor wafer [1]. From this perspective, radial diffusion effects are 

parasitic and obfuscate the quantity of interest. The simple solution to this is to configure the 

pump/probe radius beam such that diffusion is negligible. However, single-beam pump/probe 

would be considerably more flexible if it was possible to deduce 𝜏 regardless of the beam radius. 

The most obvious way to unambiguously resolve 𝜏 is to fit the imaginary component of the signal 

to (6.14). Fitting is performed in Chapter 6.6 to extract 𝜏 & 𝜏𝐷 simultaneously.  

Alternatively, it would be useful to be able to extract 𝜏 directly from the peak position 𝜔𝑝. To do 

this I introduce a modified version of Equation (6.13): 

 
𝜏 =

𝒟

𝜔𝑝
 

(6.16) 

where 𝒟 is the diffusive factor, which is a dimensionless number greater than or equal to unity. 

When the beam radius is large 𝒟 → 1 and the effective lifetime is just the inverse of the peak 

angular frequency 𝜔𝑝. As the beam radius becomes smaller, for a fixed effective lifetime 𝜏, 𝜔𝑝 

shifts to higher frequencies which means that the diffusive factor must increase to compensate. 

Alternatively, the effective lifetime can be related directly to 𝜏3𝐷 by substituting Equation (6.13) 

into (6.16): 

 𝜏 = 𝒟𝜏3𝐷 (6.17) 
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Figure 6.2: Plot of Diffusive factor vs 2τDωp 

The diffusive factor is determined in Appendix E. I derive an equation that implicitly relates 𝒟 to 

the factor 2𝜏𝐷𝜔𝑝. This factor is not arbitrary, and emerges naturally from the mathematical 

analysis of the peak position of Im[ℱ]. For each value of 2𝜏𝐷𝜔𝑝 there is a unique diffusive factor 

𝒟. The diffusive factor is plotted vs 2𝜏𝐷𝜔𝑝 in Figure 6.2. As the beam radius is increased the 

diffusion is mitigated and 𝒟 → 1. When the beam radius is small, 𝒟 > 1. As long as 2𝜏𝐷 can be 
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determined20, the effective lifetime can be always be isolated by a measurement of 𝜔𝑝 and 

extraction of the appropriate 𝒟 from Figure 6.2.  

As an example, consider the case where the effective lifetime is 𝜏 = 100 μs, the diffusion 

coefficient is 𝐷 = 16 cm2/s, and the beam radius is 𝑤 = 10 μm. The diffusion length is √𝐷𝜏 =

400 μm, and so the beam ratio is 0.025. Using these parameters, the imaginary component of ℱ 

peaks at 𝜔𝑝 = 3.74 x 10
5 rad/s. This corresponds to 𝜏3𝐷 = 2.67 μs, which is clearly much 

shorter than the effective recombination lifetime that is being measured. Of course this is expected 

since the beam radius is much smaller than the diffusion length and the lifetime is dominated by 

the radial diffusion lifetime. Since 𝑤 & 𝐷 are known 𝜏𝐷 can be computed and so can the factor 

2𝜏𝐷𝜔𝑝, which is this case is 5.84 x 10−3. From Figure 6.2 this corresponds to a diffusive factor of 

𝔇 = 37.39. Using the values of 𝒟 & 𝜔𝑝 I arrive at an effective lifetime of 𝜏 = 99.7 μs using 

Equation (6.16) which is within 0.7% of the true effective lifetime. Thus even in the case when the 

radial diffusion affects the single-beam pump/probe lifetime, the desired effective lifetime can still 

be determined from the peak position 𝜔𝑝, if 𝜏𝐷 is known. 

6.3 Experimental Validation of Single-Beam Pump/Probe in 1D limit 

In this section I provide experimental validation of the single-beam pump/probe experiment for 

the case where the beam is sufficiently large to neglect radial diffusion effects in the measured 

lifetime. In this case, the lifetime measured by the single-beam technique should correspond to the 

true effective recombination lifetime 𝜏. The effective lifetime is measured independently using 

MFCA in dual-beam pump probe configuration, where the probe beam is a 1550 nm laser. Details 

about the experimental configuration of the single and dual beam experiments are provided in 

Chapter 4. Summarizing here, the probe beam is a p-polarized 1550 nm laser which is expanded 

                                                 

20 𝜏𝐷 contains the beam radius 𝑤 and diffusion coefficient 𝐷. The beam radius is defined by the experimenter and is 

always measureable. The diffusion coefficient is a material constant whose behavior in silicon is well-behaved so it 

may always be estimated [81].  
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to a large diameter21 via a beam-expander, and then illuminates the silicon sample at Brewster’s 

angle to reduce reflectance to 0. The probe beam is held at a fixed power and is not directly 

modulated. The probe beam diameter is much larger than the pump diameter so that the all free-

carriers generated by the pump are probed, and none can escape via radial diffusion. This means 

that the dual-beam method will be sensitive to only recombination, and not diffusion. The pump 

beam is expanded to a radius of 3.84 mm, which is about 9.6 times larger than the free-carrier 

diffusion length of the sample under study in this section. 

6.3.1 Mathematical Derivation of Single and Dual-Beam Signals 

The signal that is extracted in single-beam pump/probe is given by (6.9), which is derived in 6.2.1. 

Substituting in the 𝜉 factor from Case 2 in 5.4, the single-beam signal is given by: 

 
𝒮 = 1 − 4ℜ휂𝜎𝐹𝐶𝐴𝑔0𝛼휂𝑒

−
𝛼𝜂𝑊
2 ∑

𝜏𝑛
1 + 𝑖𝜔𝜏𝑛

𝐴𝑛
𝑙𝑐

𝑛

 
(6.18) 

 

Taking the imaginary component of the signal: 

 
𝑌𝑆𝐵 = 4ℜ휂𝜎𝐹𝐶𝐴𝑔0𝛼휂𝑒

−
𝛼𝜂𝑊
2   ∑

𝜔𝜏𝑛
2

1 + 𝜔2𝜏𝑛2
𝐴𝑛
𝑙𝑐

𝑛

 
(6.19) 

 

For the dual beam technique, the signal can be derived from the generalized pump/probe equation 

in 5.3 (Equation (5.29)). The probe beam does not experience band-to-band absorption, so 𝑃𝑝𝑟
′ =

𝑃𝑝𝑟. The probe reflectance at the surface is 0 so 𝑅𝑝𝑟
′ = 𝑅𝑝𝑟 = 0, 𝑇𝑝𝑟 = 1 & ℜ = 1. The probe 

                                                 

21 The probe beam is expanded to completely fill the aperture of the sample holder, which is about 1 cm in diameter. 
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beam is not modulated so 𝑚𝑝𝑟 = 0. Substituting these into Equation (5.29) and taking the real 

part: 

 𝑃𝑡𝑟 = 𝑃𝑝𝑟(1 − 8휂𝑝𝑟𝑚(𝜉𝑟𝑒 cos𝜔𝑡 − 𝜉𝑖𝑚 sin𝜔𝑡) ) 

 

(6.20) 

Equation (6.20) is the probe power transmitted through the silicon wafer for the dual-beam 

pump/probe technique. Note that the time-dependent component is due to FCA induced by the 

pump modulation of the free-carrier density. Experimentally this power is transduced by a 

photodiode/transimpedance amplifier, and the resultant signal is fed into a lock-in amplifier. The 

time-dependent term is then demodulated. The resultant signal is: 

 𝒮𝐷𝐵 = −8휁(𝜔)𝑃𝑝𝑟휂𝑝𝑟𝑚𝜉(𝜔) (6.21) 

 

where 휁(𝜔) is the transimpedance response (i.e. the conversion between power and voltage) of the 

photodetector. A negative sign on Equation (6.21) ensures that the imaginary component is 

positive, which is consistent with the sign of the imaginary component of the single-beam signal. 

When the probe beam is much larger than the pump, and greater than the diffusion length of free-

carriers, the 𝜉 factor is given by Equation (5.33) (Case 2 in 5.4). Substituting this in: 

 
𝒮𝐷𝐵 = −8휁(𝜔)𝑃𝑝𝑟휂𝑝𝑟𝑚

𝜏𝐷
𝑝𝑢

𝜏𝐷
𝑝𝑟 𝜎𝐹𝐶𝐴𝑔0𝛼휂𝑝𝑢𝑒

−
𝛼𝜂𝑝𝑢𝑊

2 ∑
𝜏𝑛

1 + 𝑖𝜔𝜏𝑛
𝐴𝑛
𝑙𝑐

𝑛

 
(6.22) 

 

Taking the imaginary component of this signal: 
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𝑌𝐷𝐵 = 8휁(𝜔)𝑃𝑝𝑟휂𝑝𝑟𝑚

𝜏𝐷
𝑝𝑢

𝜏𝐷
𝑝𝑟 𝜎𝐹𝐶𝐴𝑔0𝛼휂𝑝𝑢𝑒

−
𝛼𝜂𝑝𝑢𝑊

2 ∑
𝜔𝜏𝑛

2

1 + 𝜔2𝜏𝑛2
𝐴𝑛
𝑙𝑐

𝑛

 
(6.23) 

 

Bundling together the prefactors that precede the series terms in Equations (6.19) & (6.23) the 

final equations for the single and dual beam signals are given by: 

 
𝑌𝑆𝐵 = 𝐾𝑆𝐵∑

𝜔𝜏𝑛
2

1 + 𝜔2𝜏𝑛2
𝐴𝑛
𝑙𝑐

𝑛

 
(6.24) 

 
𝑌𝐷𝐵 = 𝐾𝐷𝐵∑

𝜔𝜏𝑛
2

1 + 𝜔2𝜏𝑛2
𝐴𝑛
𝑙𝑐

𝑛

 
(6.25) 

Equations (6.24) & (6.25) prove that when radial diffusion is negligible, the frequency-dependence 

of the single and dual beam signals are identical, except for a prefactor. This frequency dependence 

is identical to that of the 1D model discussed in 3.3.2 (Equation (3.30)), which is expected since 

the beam radius is larger than the free-carrier diffusion length.  
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6.3.2 Experimental Validation 

 

Figure 6.3: Comparison of single and dual beam pump/probe techniques for thick silicon wafer. Datapoints are denoted by discrete 

symbols. Continuous lines represent fits to data. Curves are fitted with the frequency dependence of the 1D recombination model 

(Equation (3.30)). The amplitude of the single beam data is given in absolute units while the amplitude of the probe beam data is 

scaled arbitrarily for comparison. The data in this figure is collected using a pump power of 654 mW. Given the beam radius of 

3.84 mm, this corresponds to an intensity of 1412 mW/cm2. 

Equations (6.24) & (6.25) are validated experimentally on the thick wafer (see Table I for sample 

specifications). The pump beam radius is set to 𝑤 = 3.84 mm, and the probe beam radius is 

adjusted to uniformly illuminate the aperture of the sample holder (diameter ~ 10 mm). The 

average power of the pump beam is 654 mW. Figure 6.3 shows a plot of the imaginary component 

of the single and dual beam signals over a frequency range of 200 Hz to 10 kHz. Both data sets 
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are fitted22 to the frequency-dependence of the 1D recombination model (Equation (3.30)). The 

experimental data is represented by discrete symbols and the fits are represented by the solid 

curves. The amplitude of the single-beam data is given in absolute units, whereas the amplitude of 

the dual-beam data is scaled arbitrarily so that both datasets may be compared on a single axis. 

It can be seen that both the single and dual beam pump/probe signals exhibit nearly-identical 

frequency dependences, which are well described by theory. The effective lifetime is extracted 

from the peak of the fits, with the single and dual beam techniques yielding 𝜏𝑆𝐵 = 123.7 ± 0.5 μs 

and 𝜏𝐷𝐵 = 124.0 ± 0.7. These lifetimes are identical to within experimental precision, the 

precision being quoted in a one-sigma confidence interval. Clearly the beam radius is large enough 

that radial diffusion effects are negligible in the single-beam data. The question now is whether or 

not this is expected from the theory? Experimentally I have determined that 𝜏3𝐷 = 𝜏, which implies 

that the diffusive factor (Equation (6.17)) is equal to unity. Using 𝐷 = 16 cm2/s, and using the 

peak of the single-beam data for 𝜔𝑝, I calculate 2𝜏𝐷𝜔𝑝 = 18.6. This corresponds to a diffusive 

factor of 𝒟 = 1.05 (Equation (E.13)). This diffusive factor implies that the effective lifetime 

should be 𝜏 = 129.9 μs, but instead I measure a value of 124 μs from the dual-beam technique. I 

am not sure what the reason is for this discrepancy. One potential issue is that the pump beam 

radius is incorrect. Figure K.1 shows a screenshot of the pump beam profile characteristics 

measured by the Nanoscan Beam Profiler. The profile fits well to a Gaussian curve, and has < 2% 

eccentricity between the x and y components of the beam. The standard deviation of the measured 

beam diameters is < 1% of the mean. Using the beam radius of the 𝑦 component (𝑤 = 3.87 mm), 

the diffusive factor is still 𝒟 = 1.05. Since the beam is incident upon the sample at 15° to the 

normal, the projected radius will actually be a factor of 1.03 (sec 15°) longer in one direction. This 

is not enough to appreciably change the value of 𝒟. Regardless of the source of the discrepancy, 

the single-beam has outperformed here and it recovers the same value of effective lifetime as the 

                                                 

22 The fitting routine uses non-linear least squares fitting. The uncertainty of the 𝜏 extracted from the fit as the square 

root of the parameter’s covariance. 
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dual-beam technique! This is proof of concept that single-beam pump/probe technique can be used 

for lifetime metrology, and can supersede dual beam pump/probe. 

 

Figure 6.4: Comparison of single and dual beam pump/probe techniques for thick silicon wafer. Datapoints are denoted by discrete 

symbols. Continuous lines represent fits to data. Single beam data amplitude is given in absolute units while the probe beam data 

is scaled arbitrarily for comparison. This data is collected using a pump power of 70 mW. Given the beam radius of 3.84 mm, this 

corresponds to an intensity of 151 mW/cm2. 

The data in Figure 6.3 is collected at a power of 654 mW. Given the beam diameter, this 

corresponds to an intensity of 1412 mW/cm2. Clearly the signal-to-noise ratio of the measurement 

is high since the data is well-fit to the theoretical model. In Figure 6.4 I have plotted data taken at 

a pump power of 70 mW (intensity of 151 mW/cm2). The spread in the single-beam data points 

indicates a much lower signal-to-noise ratio than the data in Figure 6.3. The lifetimes extracted 

from the peak of the fits for the single and dual-beam techniques are 𝜏𝑆𝐵 = 150 ± 5 μs and 𝜏𝐷𝐵 =
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135.0 ± 0.7 μs. In this case the discrepancy between the two techniques is greater. From a 

theoretical point of view, there are no circumstances where the lifetime measured by the single-

beam experiment should exceed the effective lifetime measured by the dual-beam configuration. 

The reason why this happens here is that the single-beam data is noisy and the peak location is not 

obvious from the spread of datapoints. Interestingly though, the lifetime that is fit is within 10% 

of the dual-beam technique. Later on I will explore the detection limits of the single-beam 

technique. 

6.4 Specifics of single-beam data acquisition and detection limits 

In experiments that use a lock-in amplifier to extract signals, the signal-to-noise ratio is controlled 

by setting the time-constant on the lock-in’s low-pass filter. Longer time constants correspond to 

narrower bandwidths and thus greater rejection of signal noise. However, since the low-pass filter 

has a settling time lasting several time constants, long time constants lead to long acquisition times. 

In this work, the dual-beam pump/probe data is typically collected with a time constant of 100 ms 

over a frequency range spanning 100 Hz to 100 kHz. Depending on how many discrete frequencies 

are collected, it can take several minutes to acquire a single spectrum. This is not a problem for 

dual-beam data collection. For single-beam data, long acquisition times degrade the signal due to 

drift effects.  

From the definition of the single-beam signal 𝒮 in 6.2.1 (Equation (6.9)) it can be seen that the 

relationship between the sample and background spectra 𝒮𝜔 & 𝑆𝑏 is: 

 𝒮𝜔(𝜔) = 𝒮𝑏(𝜔)(1 − 8ℜ휂𝜉(𝜔)) (6.26) 

 

𝒮𝜔 is the raw signal collected from the pump/probe beam that transmits through the silicon wafer, 

and 𝒮𝑏 is the signal collected when the wafer is removed. In order to form the single-beam 

pump/probe signal 𝒮, 𝑆𝑏(𝜔) is measured separately from 𝑆𝜔(𝜔). The main concern here is 
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whether or not the background spectrum measured separately corresponds to the background 

spectrum inside (6.26) when 𝒮𝜔 is collected. Frequency-spectra are susceptible to drift errors when 

collected over a long time. For example, say that one spectrum 𝒮𝑏 is measured over several minutes 

and the laser power is slowly drifting upwards over that time. Then the spectrum is collected again, 

but now the laser power is drifting downwards. Obviously these spectra are not identical. Normally 

drift is a small effect. Experimentally, I have observed that the signal demodulated from the 

detector drifts only a few percent over time. In the dual-beam pump/probe technique, this is 

acceptable because the signal is only composed of the probe signal. In the single-beam technique 

the signal is a superposition of both the pump and the probe (see 6.2.1). The probe component has 

to be separated from the pump, which is very challenging since the probe signal is on the order of 

10−4 − 10−3 of the pump signal. For single-beam pump/probe, drift must be mitigated as much 

as possible. The strategy I have adopted is instead of collecting a single spectrum with a long time-

constant, I collect several spectra with a short time constant and then average them. If the time 

constant is short, the entire spectrum is collected on a timescale shorter than drift effects so the 

relative spectrum remains unaffected by drift. The trade-off is that since the time-constant is short, 

each spectrum is more susceptible to random noise. The more spectra that are collected, the more 

this noise can be suppressed by averaging. 
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Figure 6.5: Imaginary component background for 1 ms and 1 s time constants. The ‘1 ms’ data is averaged over 10 spectra, while 

the ‘1 s’ data is composed of a single spectrum. The total measurement time for the ‘1 ms’ and ‘1 s’ data are 1 minute, and 25 

minutes, respectively.  

The detection floor of single-beam pump/probe can be estimated by dividing two separate spectra 

taken without a sample in place. If the spectra are identical, the real part should be unity across all 

frequencies, and the imaginary part should be 0. Any deviation from 0 in the imaginary component 

reveals the practical detection limits of the single-beam technique as has been presented here. The 

imaginary background is defined by the following equation: 

 
𝑌𝑏 = Im [

𝒮𝑏1 + 𝒮𝑏2 +⋯𝒮𝑏𝑘
𝒮𝑏1
′ + 𝒮𝑏2

′ +⋯𝒮𝑏𝑘
′ ] 

(6.27) 
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where 𝒮𝑏𝑖 are elements of the first set of background spectra taken, and 𝑆𝑏𝑖
′  are elements of the 

second set. There are 𝑘-number of spectra collected at each time constant. Figure 6.5 shows 𝑌𝑏 for 

spectra collected with a 1 ms and 1 s time constant. For the 1 ms time constant, there are 10 spectra 

in each background set, and for the 1 s time constant there is only 1. It is clear that background 

suppression is superior with the 1 ms time-constant. This provides justification for the 

measurement methodology that I have outlined in this section. That is, better background 

suppression is achieved by averaging several spectra taken with a short time constant, as opposed 

to taking data with long time constants. What is interesting is that it takes only 1 minute to collect 

all of the 1 ms data, and 25 minutes for the 1 s data. This is evidence that the signal in single-beam 

pump/probe experiments is affected more by drift than random noise. If random noise was the 

limiting factor then it is expected that the 1 s data would yield a lower measurement background 

than 1 ms data. The fact the 1 ms data is superior indicates that slow drift in the measurement 

apparatus is what limits measurements collected over a long time. In this experiment there may be 

several sources of drift. The first is drift in the output power of the laser. Perhaps the largest source 

is operating point of the electro-optic modulator that modulates the pump beam. The EOM uses a 

DC bias to control the ratio of AC to DC components of the pump power modulation. I have 

observed that this ratio can change by several percent throughout the day. 
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Figure 6.6: Imaginary component background for 1 ms and 10 ms time constants. Both data sets include 10 spectra. The total 

measurement time for the ‘1 ms’ and ‘1 s’ data are 1 minute, and 3 minutes, respectively. 

Figure 6.5 shows that the 1 ms time constant is clearly superior to 1 s. However, at low frequencies 

there is a significant amount of variation in the 1 ms background data, which exceeds that of the 1 

s data. This can be explained by the fact that noise tends to increase towards low frequencies due 

to 1/f noise. Figure 6.6 compares 1 ms and 10 ms time constants. In this case both datasets include 

10 spectra each. The 10 ms data takes about 3 minutes to collect. It is clear that a 10 ms time 

constant provides superior background suppression at low frequencies than 1 ms. Though the 10 

ms data takes a longer time to collect, it takes about the same amount of time to collect as the dual-

beam data used in this work. 

Since the single-beam technique measures both the pump and probe contributions simultaneously, 

the measurement apparatus requires a wide dynamic range. For signals digitized by an analog-to-

digital converter (ADC), the ADC must be able to simultaneously digitize the small FCA 
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component of the signal as well as the pump, while not being saturated. The lock-in amplifier used 

in this experiment has a 14 bit resolution which limits the resolvable free-carrier signal to 1 part in 

214 of the pump beam (i.e. the minimum FCA signal is 6.1 𝑥 10−5 of the pump). The practical 

detection limit is expected to be somewhat higher due to random noise in the measurement. The 

data shown in Figure 6.5 and Figure 6.6 demonstrate that the detection floor of the single-beam 

technique approaches the limit set by the ADC. For example, the amplitude of the 10 ms 

background spectrum is < 10−4, which shows that single-beam pump/probe measurements are 

able to approach the detection floor. 

The detection floor can be written in terms of the lifetime and the pump intensity. This will allow 

one to estimate the range of practical lifetimes that may be measured. Let 𝑓𝑓𝑐𝑎 be the fractional 

FCA signal, which from Equation (6.9) is given by: 

 𝑓𝑓𝑐𝑎 = 8ℜ휂𝜉(𝜔) 

 

(6.28) 

For simplicity I will assume that the beam radius is sufficiently large that radial diffusion can be 

neglected, and that the surface recombination is 0. In this case 𝜉 is given by Equation (5.35): 

 

 
𝑓𝑓𝑐𝑎 =

1

4
ℜ휂𝜎𝐹𝐶𝐴𝑔0(1 − 𝑒

−𝛼𝜂𝑊)
𝜏

1 + 𝑖𝜔𝜏
 

 

 

(6.29) 

Substituting in the value for 𝑔0 (Equation (D.10)): 
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𝑓𝑓𝑐𝑎 =

1

4
ℜ휂𝜎𝐹𝐶𝐴

2𝑃0𝜆

𝜋𝑤2ℎ𝑐

1 − 𝑅

1 − 𝑅𝑒−𝛼𝜂𝑊
(1 − 𝑒−𝛼𝜂𝑊)

𝜏

1 + 𝑖𝜔𝜏
 

 

(6.30) 

Note that the factor 
1−𝑅

1−𝑅𝑒−𝛼𝜂𝑊
(1 − 𝑒−𝛼𝜂𝑊) is the fraction of power absorbed in wafer 𝑓𝑎 (Equation 

(I.19)): 

 
𝑓𝑓𝑐𝑎 =

1

2
ℜ휂𝜎𝐹𝐶𝐴

𝑃0𝜆

𝜋𝑤2ℎ𝑐
𝑓𝑎

𝜏

1 + 𝑖𝜔𝜏
 

 

(6.31) 

For simplicity it can be assumed that 휂 = 1 (normally incident light). The reflectance of bare 

silicon at 1064 nm is about 𝑅 = 0.3. Using the band-to-band absorption coefficient 𝛼 =

9.85 cm−1 and assuming the wafer has a thickness of 300 microns, ℜ ≈ 1.1. For simplicity I will 

just assume that ℜ = 1. The fractional signal is then given by: 

 
𝑓𝑓𝑐𝑎 =

1

2
𝜎𝐹𝐶𝐴

𝑃0𝜆

𝜋𝑤2ℎ𝑐
𝑓𝑎

𝜏

1 + 𝑖𝜔𝜏
 

 

(6.32) 

Letting the modulation frequency go to 0, and collecting 𝑃0/𝜋𝑤
2 into the pump intensity 𝐼𝑝𝑢: 

 
𝑓𝑓𝑐𝑎 =

1

2
𝜎𝐹𝐶𝐴𝐼𝑝𝑢

𝜆

ℎ𝑐
𝑓𝑎𝜏 

 

 

(6.33) 
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Rearranging, the lifetime-intensity product can be written in terms of 𝑓𝑓𝑐𝑎: 

 
𝐼𝑝𝑢𝜏 =

2ℎ𝑐

𝜆

1

𝜎𝐹𝐶𝐴𝑓𝑎
 𝑓𝑓𝑐𝑎 

 

(6.34) 

With the intensity-lifetime product known, one can set the intensity required to achieve a particular 

lifetime measurement sensitivity. Using the pump wavelength 𝜆 = 1064 nm, FCA cross section23 

𝜎𝐹𝐶𝐴 = 8x10−10 μm2, 𝑓𝑎 = 1, and 𝑓𝑓𝑐𝑎 = 6.10x10−5 the intensity-lifetime product is 

2.85 x 10−2
W⋅s

m2 . The intensity used for the study in Figure 6.3 is 14,120 W/m2, so the minimum 

measureable lifetime is estimated to be 𝜏 = 2 μs. Lifetimes on the order of microseconds represent 

the lower limit of recombination lifetimes in silicon [6], so if the single-beam pump/probe 

technique is sensitive to lifetimes this low, it is practical for general silicon lifetime metrology. 

The minimum detectable lifetime decreases with increasing intensity since higher intensity light 

results in a greater amount of FCA of the laser, leading to a higher signal. 

6.5 Power Dependence of Single Beam Signal and measurement of 𝜎𝐹𝐶𝐴 

One way to further validate the single-beam pump/probe technique is to verify that the signal 

amplitude given by Equation (6.11) exhibits a linear dependence with incident power. The raw 

FCA signal as given by Equation (6.6) is quadratic with incident power because both the free-

carrier population and the beam that probes it grow linearly with power. One of these power 

dependences is removed during the normalization procedure, hence why the final signal is linear 

with power. In this section I explore that dependence and show how the free-carrier absorption 

cross section 𝜎𝐹𝐶𝐴 can be measured. The cross section is in the range of values found in the 

                                                 

23 This is approximately the value for 𝜎𝐹𝐶𝐴 experimentally measured in 6.5.  
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literature, which shows quantitative agreement between the signal-beam pump/probe model and 

experimental results. 

I have examined the power dependence experimentally on the thick wafer. The pump beam 

diameter is set to 7.5 mm to ensure that radial diffusion effects are negligible, and for simplicity it 

will be assumed that the surface recombination in the wafer is negligible. In this configuration 𝜉 

is given by Equation (5.35). Substituting this into Equation (6.9): 

 
𝒮 = 1 − 8ℜ휂

1

16
𝜎𝐹𝐶𝐴𝑔0(1 − 𝑒

−𝛼𝜂𝑊)
𝜏

1 + 𝑖𝜔𝜏
 

 

(6.35) 

The imaginary component of 𝒮 contains exclusively the FCA signal: 

 
𝑌 = Im[𝒮] = ℜ휂

1

2
𝜎𝐹𝐶𝐴𝑔0(1 − 𝑒

−𝛼𝜂𝑊)𝜏2
𝜔

1 + 𝜔2𝜏2
 

 

(6.36) 

Substituting the value for 𝑔0 (Equation (D.10)): 

 
𝑌 = ℜ휂

1

2
𝜎𝐹𝐶𝐴 [

2𝑃0𝜆

𝜋𝑤2ℎ𝑐

1 − 𝑅

1 − 𝑅𝑒−𝛼𝜂𝑊
] (1 − 𝑒−𝛼𝜂𝑊)𝜏2

𝜔

1 + 𝜔2𝜏2
 

 

(6.37) 

 

 𝑌 = 𝑌𝑎
𝜔

1 + 𝜔2𝜏2
 

 

(6.38) 
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where 𝑌𝑎 is the imaginary amplitude, given by: 

 
𝑌𝑎 = ℜ휂𝜎𝐹𝐶𝐴

𝑃0𝜆

𝜋𝑤2ℎ𝑐
𝑓𝑎𝜏

2 

 

(6.39) 

where I have used the fact that the fraction of power absorbed in the wafer 𝑓𝑎 is given by 𝑓𝑎 =

1−𝑅

1−𝑅𝑒−𝛼𝜂𝑊
(1 − 𝑒−𝛼𝜂𝑊) (Equation (I.19)). Substituting in the value for ℜ (equations (5.8), (5.11) 

& (5.12)): 

 
𝑌𝑎 = [

1 + 𝑅2𝑒−2𝜂𝛼𝑊

1 − 𝑅2𝑒−2𝜂𝛼𝑊
] 휂𝜎𝐹𝐶𝐴

𝑃0𝜆

𝜋𝑤2ℎ𝑐
𝑓𝑎𝜏

2 

 

 

(6.40) 

 

 𝑌𝑎 = 𝐾𝜏
2𝜎𝐹𝐶𝐴𝑃0 

 

(6.41) 

where 𝐾 is a proportionality constant given by: 

 
𝐾 = [

1 + 𝑅2𝑒−2𝜂𝛼𝑊

1 − 𝑅2𝑒−2𝜂𝛼𝑊
] 휂

𝜆

𝜋𝑤2ℎ𝑐
𝑓𝑎 

 

(6.42) 
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Figure 6.7: Plot of Ya/Kτ
2 vs average incident power on Thick Sample. The trend is linear as predicted by Equation (6.41). Inset: 

Same plot but with the line of best-fit forced through 0. 

According to (6.41) a plot of 𝑌𝑎/𝐾𝜏
2 vs incident power 𝑃0 should yield a straight line whose slope 

is 𝜎𝐹𝐶𝐴. An experiment was performed on the thick wafer to validate this relationship. The beam 

radius was set to 7.5 mm to eliminate the effect of radial diffusion. At each power the frequency 

spectrum is swept out and the imaginary component is fitted to Equation (6.38) to extract 𝑌𝑎 & 𝜏. 

The value of 𝐾 is computed using (6.42) and then the values of 𝑌𝑎/𝐾𝜏
2 are plotted vs the average 

incident power in Figure 6.7. The vertical error bars on the datapoints are too small to see, with 

most being below 1%. It is clear that the dependence is indeed linear with most of the datapoints 

falling on to the line of best-fit. There is a slight offset from 0. The spread of datapoints in Figure 

6.7 is indicative of an underlying uncertainty that has not been accounted for. One possible origin 

of the uncertainty is from the normalization procedure that divides the sample spectrum by the 

background spectrum (Equation (6.9)). The normalization procedure assumes that the power into 

the detector is identical when the sample and background spectra are taken. Deviations from this 
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assumption would result in an incomplete removal of the prefactor during normalization, changing 

the value of the amplitude. The FCA cross section, as measured by the slope of the line, is 𝜎𝐹𝐶𝐴 =

(4.2 ± 0.1) x 10−10 μm2. The error24 in 𝜎𝐹𝐶𝐴 arises from the spread of the datapoints about the 

straight line in Figure 6.7, as well as the uncertainty in the factor 𝐾. As will be discussed further 

in 7.4 there is a wide spread in 𝜎𝐹𝐶𝐴 values across the literature, with the values varying by about 

a factor of 5. Svantesson [64] measured a cross section of 𝜎𝐹𝐶𝐴 = 5.1 x 10
−10 μm2 at 1064 nm. 

Meitzner et al. [45] measured a cross section of 𝜎𝐹𝐶𝐴 = 16.9 x 10−10 μm2 at 1510 nm, which 

becomes 𝜎𝐹𝐶𝐴 = 8.39 x 10−10 μm2 when corrected to a value at 1064 nm using the 𝜆2 scaling of 

the FCA cross section [58]. The FCA cross section will be discussed further in 7.4. 

In Figure 6.7 the y-intercept of the line of best-fit was left as a fit parameter. This results in a non-

zero intercept in the main figure, which is unphysical since the signal amplitude must go to 0 when 

the power is 0. This implies some sort of systematic offset or that a straight line is not an 

appropriate fit to the data. As will be discussed in 7.5 the value of 𝜎𝐹𝐶𝐴 is not constant and actually 

increases with increasing injected carrier density. This would imply that 𝜎𝐹𝐶𝐴 is increasing with 

power in Figure 6.7. The inset of the figure shows the same plot with the line of best-fit forced 

through 0. For low powers the datapoints are below the line and at higher powers they are above, 

which is consistent with 𝜎𝐹𝐶𝐴 increasing as the power increases. Although 𝜎𝐹𝐶𝐴 changes with 

carrier density, Figure 6.7 provides evidence that this change is not significant. In any case the 

variation of 𝜎𝐹𝐶𝐴 only has consequences for the amplitude of the signal. The frequency-

dependence will not be affected by this variation unless the carrier density changes significantly 

                                                 

24 The values of 𝑌𝑎  & 𝜏 are measured at each power, while the factor 𝐾 is unchanged measurement-to-measurement. 

The uncertainty in slope arises from the statistical spread of 𝑌𝑎/𝜏, and from the uncertainty in the factor 𝐾. To compute 

the uncertainty of 𝜎𝐹𝐶𝐴, 𝑌𝑎/𝜏 is plotted vs power and the slope uncertainty is extracted from the square root of the 

covariance. 𝜎𝐹𝐶𝐴 is then computed by dividing 𝑌𝑎/𝜏 by 𝐾, and the uncertainty is computed by propagating the 

uncertainty. 
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in a measurement. Since this is an AC measurement, the change in carrier density can be kept 

small by tuning the modulation depth 𝑚. 

6.6 Validation of Radial Diffusion 

In 6.3 I demonstrated that the single beam pump/probe technique extracts the same lifetime value 

as dual-beam pump/probe in the limit where the beam radius is large enough to mitigate radial 

diffusion effects. In this section I will examine the more general case where both recombination 

and carriers escaping the beam via radial diffusion affect the frequency-response of the FCA 

signal. As discussed above, it is the imaginary component of the signal that is extracted 

experimentally. This signal is given by substituting the 𝜉 factor from Equation (6.2) into Equation 

(6.11): 

 
𝑌 = −8ℜ휂𝜎𝐹𝐶𝐴𝜏𝐷𝑔0𝛼휂𝑒

−
𝛼𝜂𝑊
2 𝐴1

𝑙𝑐 Im [𝑒
2𝜏𝐷
𝜏1
′
Γ(0,

2𝜏𝐷
𝜏1
′  )] 

 

(6.43) 

To simplify the discussion, I have used only the first term of the series over 𝑛 in (6.43), which is 

justified when the absorption coefficient is low (𝛼𝑊~1) as discussed in 3.3.2. Next, the expression 

for 𝜏1
′  is substituted, which contains the frequency dependent terms (Equation (5.25)): 

 
𝑌 = 𝑌0 Im [𝑒

2𝜏𝐷
𝜏
(1+𝑖𝜔𝜏)Γ (0,

2𝜏𝐷
𝜏
(1 + 𝑖𝜔𝜏) )] 

 

(6.44) 

Here I have bundled together the prefactor into a constant 𝑌0. All of the frequency dependent terms 

are contained within the imaginary component of the exponential and incomplete Gamma function 

terms.  



Ph.D Thesis-Kevin M.W. Boyd  McMaster University-Engineering Physics 

116 

 

 

I will validate (6.44) experimentally by comparing the lifetime measured by the single and dual-

beam methods when the pump beam is smaller than the diffusion length of free-carriers. I have 

performed this experiment on the thick wafer (see Table I for specifications). The beam radius is 

set with a lens by moving the position of the lens with respect to the sample holder. The lens has 

a long focal length (~5 cm) so the beam radius changes slowly as it the beam propagates. The 

wafer under study has a thickness of 1.5 mm, so the beam radius will not change appreciably when 

propagating through the wafer. This condition is necessary since the model assumes that 𝑤 is 

constant along the 𝑧 axis of the wafer. The beam radius is measured by the Nanoscan beam-

profiler, which measures an average radius of 46 μm (see Figure K.2). 

 

Figure 6.8: Comparison of Y for single and dual-beam techniques at a pump-beam radius of  46 μm. Markers represent experimental 

datapoints and solid lines represent fits. Single and dual-beam data are fit to the frequency dependence in Equations (6.44) and 

(3.30), respectively. Single-beam data is given in absolute units, whereas dual-beam data is arbitrarily scaled for comparison. 

Figure 6.8 plots the single and dual-beam frequency spectra for a pump radius of 46 μm. The 

single-beam data is given in absolute units, and the dual-beam data is arbitrarily scaled for 
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comparison. The effective lifetime measured by the peak of the dual-beam data is 111 μs, which 

corresponds to a diffusion length of √𝐷𝜏 = 421 μm if 𝐷 = 16 cm2/s. Therefore the beam radius 

is about nine times smaller than the diffusion length. As discussed in 6.2.2 (Figure 6.1 in particular) 

when the beam radius is small with respect to the diffusion length the measured lifetime is shorter 

than the effective recombination lifetime since there is a competing radial diffusion process by 

which carriers escape the probe beam. Experimentally this manifests as a shift towards high 

frequencies, as well as a broadening of the peak from the imaginary component of the measured 

signal. This behavior can be seen in Figure 6.8 in the single-beam frequency-spectrum. The peak 

frequency has shifted from 1.43 kHz to 20.7 kHz and the peak is significantly broader. The lifetime 

measured by the peak of the single-beam spectrum is 7.68 μs, which is about 7% of the effective 

recombination lifetime. According to Equation (6.12), this corresponds to a radial lifetime of 𝜏𝑟 =

8.25 μs. Clearly the lifetime is now dominated by radial diffusion effects, and not the 

recombination lifetime.  

From Figure 6.8 it can be seen that the single-beam data is fitted well to Equation (6.44). 

Quantitatively, the single-beam fit yields an effective recombination lifetime of 𝜏𝑆𝐵 = 112.7 ±

1.4 μs and the dual-beam data yields 𝜏𝐷𝐵 = 111.4 ± 0.5 μs. Thus the single-beam technique 

measures lifetimes that are consistent with the dual-beam method, even when radial diffusion 

effects are dominant. Since radial diffusion effects are now in play, information about the diffusion 

coefficient 𝐷 can be directly inferred from the fit parameter 𝜏𝐷, which is given by 𝑤2/8𝐷. The 

fitted value is 𝜏𝐷 = 54 ± 3 ns. The average beam radius was measured25 to be 𝑤 = 46 ± 6 μm. 

From this average radius and the fitted diffusion time constant 𝜏𝐷, I calculate that the diffusion 

coefficient should be 𝐷 = 49 ± 14 cm2/s. This is too high for crystalline silicon, where the 

                                                 

25 The beam radius is measured by the Nanoscan beam profiler (see Figure K.2 for the beam profile). The profiler 

showed an eccentricity of 1.32 between the x and y components of the beam. For calculations, the beam radius is taken 

as the average of the radius of the x and y components, and the uncertainty is taken as the standard deviation of the 

values. 
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maximum ambipolar diffusion coefficient is about 𝐷 = 16 cm2/s [81]. The beam radius that has 

been experimentally measured clearly does not yield a consistent diffusion coefficient from the 

fitted 𝜏𝐷. One hypothesis for this is that the fit of 𝜏𝐷 & 𝜏 is not unique, and the least-squares fitting 

method converged on a local minimum instead of the global minimum around the true values of 

𝜏𝐷 & 𝜏. Since Equation (6.44) has a different functional dependence on 𝜏 than 𝜏𝐷 it appears 

unlikely that different pairs of 𝜏𝐷 & 𝜏 would properly fit the experimental dataset. 

 

Figure 6.9: Fitting single-beam data with constrained τD. τD is constrained to be within +- 10% of the value that it should be based 

on the measured beam radius and estimated diffusion coefficient. 

One way to demonstrate the uniqueness of the fit in Figure 6.8 is to constrain 𝜏𝐷 to be close to its 

true value, and then fit for 𝜏. If the fit in Figure 6.8 is not unique, then it is expected that the fitting 

algorithm will find a curve that matches experimental data well, but gives a spurious value for 𝜏. 

Figure 6.9 shows this fit, with 𝜏𝐷 constrained to be within 10% of the calculated value 

(𝜏𝐷 = 165 ns). The fitted lifetime is now 𝜏 = 90 ± 4 μs, which is inconsistent with the dual-beam 

lifetime 𝜏𝐷𝐵 = 111.4 ± 0.5 μs. Clearly the quality of the fit has degraded dramatically when 𝜏𝐷 is 
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constrained, which shows that the fit in Figure 6.8 is indeed unique. Since the fit to the single-

beam data in Figure 6.8 extracts the correct effective recombination lifetime, it is likely that the 

𝜏𝐷 value I have calculated is incorrect. It is possible that the beam radius that was measured is 

erroneous. Using a diffusion coefficient of 𝐷 = 16 cm2/s and the fitted value for 𝜏𝐷, I calculate 

that the beam radius should be 𝑤 = 26 μm. This is about a factor of √3 smaller than the radius 

that I measured. Assuming the beam waist is equal to 26 μm, the beam radius will expand26 to 

46 μm over a distance of 4.2 mm from the beam waist. The positioning of the beam profiler was 

performed by eye, and it is quite possible that there is at least a 4 mm discrepancy between the 

plane of the profiler and the plane of the sample holder. This could easily explain the discrepancy 

in the 𝜏𝐷 I determine from fitting, and the one I calculate from beam radius measurements. Further 

investigation is required in order to conclusively determine whether or not the fitted 𝜏𝐷 is accurate. 

 

                                                 

26 The beam radius as a function of propagation distance for a Gaussian beam is given by 𝑤 = 𝑤0√1 + (
𝑧

𝑧𝑅
)
2

, where 

𝑤0 is the beam waist, and 𝑧𝑅 = 𝜋𝑤0
2/𝜆 is the Rayleigh length. 
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Figure 6.10: Comparison of Y for single and dual-beam techniques at a pump-beam radius of 72 μm. Markers represent 

experimental datapoints and solid lines represent fits. Single and dual-beam data are fit to the frequency dependence in Equations 

(6.44) and (6.25), respectively. Single-beam data is given in absolute units, whereas dual-beam data is arbitrarily scaled for 

comparison. 

To show that the results of Figure 6.8 were not just a coincidence I performed the same 

measurement at a beam radius of 72 μm. The comparison of the single and dual-beam techniques 

for this pump radius is shown in Figure 6.10. There is a greater spread in high frequency datapoints, 

which suggests some sort of noise effect. I am not sure what the origin of this is since the same 

effect is not seen at low-frequency datapoints, which would be more susceptible to noise anyways. 

In any case, the lifetimes fitted by the single and dual beam techniques are 𝜏𝑆𝐵 = 109 ± 19 μs and 

𝜏𝐷𝐵 = 108.8 ± 0.9 μs, respectively. Again the effective recombination lifetime measured by the 

single and dual beam techniques is the same to within the measurement precision. This time the 

fitted value of the diffusion time constant is 𝜏𝐷 = 1.53 ± 0.38 μs. The longer diffusion time 

constant than the previous dataset is consistent with the larger beam radius. Using the measured 

beam radius of 𝑤 = 72 ± 5 μm and the fitted value for 𝜏𝐷  leads to a diffusion coefficient of 𝐷 =
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4.2 ± 1.2 cm2/s. This value is within the realm of possibility for silicon and suggests a high level 

of carrier injection. The injected carrier density can be calculated via Equation (3.16). In this case 

the generation rate can be estimated by dividing the total photon flux absorbed in the wafer 

(𝑃0𝜆𝑓𝑎/ℎ𝑐) by the cylindrical volume the carriers occupy after diffusion. This is just the total 

number of photons absorbed in the wafer, divided by a cylinder of volume 𝜋𝐿2𝑊, where 𝐿 = √𝐷𝜏 

is the diffusion length and 𝑊 is the wafer thickness. The estimate for the carrier density is then 

given by: 

 
𝑛 =

𝑃0𝜆𝑓𝑎/ℎ𝑐

𝜋𝐿2𝑊
𝜏 =

𝑃0𝜆𝑓𝑎
ℎ𝑐𝜋𝐷𝑊

 
(6.45) 

For the data displayed in Figure 6.10, the average power is 𝑃0 = 32 mW and the fraction of power 

absorbed in the wafer is about 𝑓𝑎 = 0.65. Using the diffusion coefficient of 𝐷 = 4.2 cm2/𝑠 and 

the wafer thickness 𝑊 = 1470 μm, the injected carrier density is estimated to be 𝑛 =

5.74x1016 cm−3. According to Refs [81] the diffusion coefficient should be greater27 than 

10 cm2/s. Again, one possibility for this is that the beam radius used for the calculations is 

incorrect. Further experimental work is required in order to answer this question. 

Regardless of the discrepancies between the calculated and fitted 𝜏𝐷 factors in Figure 6.8 and 

Figure 6.10, the effective lifetime measured by single-beam pump/probe is the same as dual-beam 

pump/probe to within experimental precision for both of these datasets. This is an important result 

because it shows that even when the beam radius is very small with respect to the diffusion length, 

the true effective recombination lifetime can still be measured. In fact, it is quite remarkable that 

this is the case. As shown in the discussion of the dataset in Figure 6.8, the lifetime measured by 

the peak of the single-beam spectrum is 𝜏3𝐷 = 7.68 μs whereas the radial lifetime is determined 

                                                 

27 It is self-referential to use the diffusion coefficient to estimate the carrier density, which is then used to estimate the 

diffusion coefficient. This is valid here since the diffusion coefficient varies slowly (by a factor <10) while 𝑛 varies 

over orders of magnitude. 
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to be 𝜏𝑟 = 8.25 μs. Since the effective recombination lifetime is about 𝜏 = 109 μs, the dataset in 

Figure 6.8 is clearly diffusion-limited. However, the true effective lifetime can still be determined 

by fitting of the curve. This section has demonstrated that the beam radius isn’t required for 

measuring the effective recombination lifetime, and even in the case when the radius is small and 

the lifetime is diffusion limited, the recombination lifetime can be determined. 

6.7 Additional Considerations 

In this section I discuss some additional considerations about the single-beam technique. The first 

is the range of viable sample thicknesses that can be studied. In order to measure the transmitted 

pump beam, a non-negligible fraction of the laser beam must be transmitted through the wafer. For 

1064 nm radiation whose absorption coefficient in silicon is 9.85 cm−1, the maximum wafer 

thickness such that 1% of the pump beam transmits through the wafer is about 4.7 mm (𝑒−𝛼𝑊 =

0.01). This is sufficient for most applications since silicon wafers are usually on the order of 

hundreds of microns in thickness. For example, photovoltaic applications typically use wafer 

thicknesses on the order of 200 μm. For thinner wafers the fraction of power absorbed at 1064 nm 

becomes smaller due to the poor absorption of this wavelength. At 𝑊 = 100 μm, only 10% of the 

beam will be absorbed. For thinner samples then, it might be useful to use shorter wavelength 

radiation where the absorption coefficient is higher. 

Another consideration is the interplay between band-to-band absorption and free-carrier 

absorption. It has been assumed that the band-to-band absorption which generates the free-carriers 

and the FCA which probes them are independent of each other. This is valid when the FCA is 

much smaller than band-to-band absorption. However, when the carrier density is high enough 

that FCA and band-to-band absorption are comparable, the FCA will lead to a saturation of band-

to-band absorption. The rate of band-to-band absorption will be limited by FCA. I have neglected 

this effect in this work, which I will justify with the following analysis. In general, the interplay 

between band-to-band and FCA can be accounted for by modifying the generation term of the 

continuity equation. The 1D continuity equation accounting for free-carrier absorption is given by: 
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 𝜕𝑛

𝜕𝑡
= 𝐷

𝜕2𝑛

𝜕𝑧2
−
𝑛

𝜏
+ 𝐺0(𝑡)𝑒

−(𝛼𝑧+∫ 𝛼𝐹𝐶𝐴(𝑡)𝑑𝑧
𝑧
0

) 
(6.46) 

 

where 𝛼𝐹𝐶𝐴(𝑡) is the FCA coefficient, given by: 

 𝛼𝐹𝐶𝐴 = 𝜎𝐹𝐶𝐴𝑛(𝑧, 𝑡) (6.47) 

 

Using a first order Taylor expansion on the FCA exponential and substituting in 𝛼𝐹𝐶𝐴: 

 𝜕𝑛

𝜕𝑡
= 𝐷

𝜕2𝑛

𝜕𝑧2
−
𝑛

𝜏
+ 𝐺0(𝑡)𝑒

−𝛼𝑧 (1 − ∫ 𝜎𝐹𝐶𝐴𝑛(𝑧
′, 𝑡)𝑑𝑧′

𝑧

0

) 
(6.48) 

 

The last term in Equation (6.48) is the volumetric rate of free-carrier generation. It can be seen that 

the effect of FCA is to reduce the magnitude of the generation rate. This is intuitive of course, 

since FCA results in intraband transitions that do not contribute to the number of free-carriers. 

Equation (6.48) is an integro-differential equation. I have not been able to find an analytic solution 

to this equation. However, it can be easily shown that the FCA correction is negligible for the 

carrier densities reached in this work. First, assume that the equation is in steady state so that the 

time dependences drop out. Next, assume that 𝑛(𝑧) is uniform in 𝑧. Then the generation rate at the 

back side of the wafer is given by: 

 𝐺 = 𝐺0𝑒
−𝛼𝑧(1 − 𝜎𝐹𝐶𝐴𝑛𝑊) (6.49) 

 

The fraction of the generation rate that is band-to-band absorption is simply: 
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𝑓 =

𝐺

𝐺0𝑒−𝛼𝑧
= 1 − 𝜎𝐹𝐶𝐴𝑛𝑊 

(6.50) 

 

In this thesis I measure a value of 𝜎𝐹𝐶𝐴 = 8x10
−10 μm2. If the wafer thickness is 300 μm, then: 

 𝑓 = 1 − 2.4x10−19𝑛 (6.51) 

 

where 𝑛 has units of cm−3. In this work the injected carrier densities do not exceed 1017 cm−3 so 

the band-to-band absorption is at least 97.6% of the total absorption. 

6.8 Summary 

In this chapter I have developed single-beam pump/probe, which is a technique for measuring the 

recombination lifetime of semiconductors in which the pump and probe are the same beam. In 

6.2.1 I use the generalized pump/probe equation (Equation (5.29)) to derive the model behind this 

technique. Since the pump and probe beam are the same, this is as straightforward as dropping all 

of the subscripts specific to pump and probe beams. In 6.2.2 I use this model to explore the 

consequences that beam diameter has on the measurement of lifetime, from a theoretical point of 

view. In the limit when the beam diameter is large with respect to the diffusion length, the model 

reduces to the solution of the 1D continuity equation. In this case the lifetime measured is the 

effective recombination lifetime that contains information about the bulk and surface 

recombination. When the beam diameter is small with respect to the diffusion length, the full 3D 

model is required to describe the measured lifetime. In this case, the lifetime contains bulk and 

surface recombination effects, as well as effects due to radial diffusion out of the probed volume. 

I discuss a numerical method for extracting the 1D effective lifetime for an arbitrary beam diameter 

from the peak of the imaginary component of the signal. In 6.3 I provide experimental 

demonstration of the single-beam technique in the case where the beam diameter is large with 
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respect to diffusion length. The results are compared with the dual-beam technique, and are 

consistent. In 6.4 I discuss the specifics of how single-beam pump/probe data is actually acquired 

and how experimental drift, and not random noise, degrades single-beam data. I implement a 

strategy for eliminating the drift effects and show that the detection floor is comparable to the bit-

resolution on the instrument that digitizes the signal. In 6.5 I show that the amplitude of the signal 

is quantitatively consistent with the model I have derived. Using the power dependence of the 

signal I am able to extract the free-carrier absorption cross section 𝜎𝐹𝐶𝐴 of silicon, which is 

consistent with values from the literature. In 6.6 I demonstrate a more general application of single-

beam pump/probe where the radius is small enough for radial diffusion, as well as bulk and surface 

recombination, to affect the measured lifetime. In the case where beam radius is very small with 

respect to the diffusion length, I show that the single-beam frequency spectrum is shifted towards 

higher frequencies and significantly broadened, as is expected from theory. The mathematical 

model fits the experimental data well, and the effective recombination lifetime that is measured is 

identical to that of the dual-beam technique, to within experimental precision. The diffusion time 

constants 𝜏𝐷 that are measured are not consistent with calculated values, which I attribute to 

erroneous measurements of the beam radius; further experimental work is required in order to 

verify this. Based on the results of this chapter, I have demonstrated for the first time a single-

beam pump/probe technique that is capable of extracting the same recombination lifetime as the 

traditional dual-beam technique. This cements single-beam pump/probe as a viable alternative to 

the state-of-the-art pump/probe technique. 
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7 Quasi-Steady State Free-Carrier Absorption 

7.1 Overview 

In this section I introduce Quasi-Steady State Free Carrier Absorption (QSS-FCA), a new QSS 

technique for measuring lifetime based on free-carrier absorption. This technique employs the 

same dual-beam pump/probe geometry used in time or frequency-resolved FCA lifetime 

techniques, but improves upon these techniques by reducing the measurement of lifetime to a 

single data point acquired at low frequency. As was detailed in Chapter 3, the advantage of steady-

state/quasi-steady state over transient/roll-off techniques is that the measurement is performed at 

low frequencies, so the experimental apparatus only requires a modest bandwidth. The 

disadvantage is that signal must be resolved in absolute units, which often requires calibration of 

the measurement apparatus. The industry standard QSS technique, QSSPC, was reviewed in 

Chapter 2 along with other QSS techniques such as ILM and CDI. Both QSSPC and CDI use 

reference wafers of known conductivity for their calibration. The reference wafer establishes the 

relationship between the signal measured from the apparatus and the free-carrier density in the 

wafer. With this calibration, the excess free-carrier density of an arbitrary wafer can be measured, 

and converted to a lifetime using Equation (3.16). There are several issues with this calibration 

procedure that are overcome with the QSS technique that I develop here. In QSS-FCA, the 

relationship between the signal measured by the apparatus and the recombination lifetime is 

established directly, without using a reference sample with specified electronic properties. The 

calibration constant is the free-carrier cross section 𝜎𝐹𝐶𝐴, which is a material constant. This is in 

contrast to QSSPC where the calibration constant contains geometrical factors related to the 

position of the sample with respect to the photoconductivity sensor. Since the calibration constant 

for QSS-FCA is a material constant, once it is established it needn’t ever be measured again and 

is valid for any experimental configuration. This provides an experimenter with much greater 

flexibility in building a QSS-FCA apparatus as opposed to a QSSPC system. 
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In 7.2 I use the generalized pump/probe theory I developed in 5.3 to derive a mathematical model 

describing QSS-FCA. This theory is validated experimentally in 7.3 on two n-type silicon wafers 

and a value for the free-carrier absorption cross section 𝜎𝐹𝐶𝐴 is measured. In 7.4 I compare my 

value of 𝜎𝐹𝐶𝐴 with values from the literature, which reveals a discrepancy. Reasons for the 

discrepancy are proposed as well as how to reconcile them. The underlying physics of 𝜎𝐹𝐶𝐴 and 

how it relates to my work and other work are also discussed. In 7.5 I discuss the dependence of 

𝜎𝐹𝐶𝐴 on the free-carrier density, having previously treated 𝜎𝐹𝐶𝐴 as a constant in 7.3. I find that this 

dependence is described reasonably well by the classical Drude model, which has not been 

demonstrated elsewhere as far as I am aware. In 7.6 I discuss how to account for the dependence 

of 𝜎𝐹𝐶𝐴 on free-carrier density so that lifetime may still be measured unambiguously under QSS 

conditions.  

7.2 Quasi-Steady State Free-Carrier Absorption-Theoretical Description 

The recommended geometry for two-beam pump/probe studies in silicon is to use a pump beam 

with diameter much larger than that of the probe beam, and large enough that radial diffusion 

effects can be neglected (𝜏𝐷
𝑝𝑢 ≫ 𝜏𝑛

′ ) [38]. This is Case 2 of 𝜉 given in 5.4. This ensures that the 1-

dimensional continuity equation holds28, and that the probe beam examines an area of uniform 

illumination, mitigating effects of radial diffusion. Experimentally it is the change in transmitted 

probe power due to FCA that is measured, and this is related to the recombination lifetime. The 

equation describing the probe transmission as a function of time can be derived from Equation 

(5.29), which is the generalized pump/probe equation. In QSS-FCA the pump beam is modulated 

harmonically at angular frequency 𝜔, (i.e. 𝜔𝑝𝑢 = 𝜔), while the probe beam is unmodulated 

(𝑚𝑝𝑟 = 0).  Using the generalized pump/probe equation (5.29), the transmitted probe power is: 

                                                 

28 Reference [38] states that “Only if the illuminating spot has a diameter more than five times the sample thickness is 

the simplification valid”. This is given without any justification. According to my model, the only condition required 

for the 1D continuity equation to be valid is for (𝜏𝑝𝑢 + 𝜏𝑝𝑟) ≫ 𝜏𝑛
′ . 
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�̃�𝑡𝑟 =

𝑇𝑝𝑟
2

1 − 𝑅𝑝𝑟2
𝑃𝑝𝑟(1 − 8ℜ𝑝𝑟휂𝑝𝑟𝑚𝑝𝑢𝜉(𝜔)𝑒

𝑖𝜔𝑡) 

 

(7.1) 

Note that the primes in the 𝑃𝑝𝑟 and 𝑅𝑝𝑟 terms have been dropped. This is because the probe beam 

has energy below the bandgap of the semiconductor and so the band-to-band absorption factor 𝛽𝑏𝑏 

in Equations (5.10) & (5.11) is 0. Since the probe radius is very small compared to the pump, and 

the pump beam is sufficiently large, 𝜉 simplifies. This case is given by Equation (5.33) (𝜏𝐷
𝑝𝑢 ≫

𝜏𝐷
𝑝𝑟): 

 
𝜉 = 𝜎𝐹𝐶𝐴𝑔0𝛼휂𝑒

−
𝛼𝜂𝑊
2 ∑

𝜏

1 + 𝑖𝜔𝜏
𝐴𝑛
𝑙𝑐

𝑛

 

 

(7.2) 

Substituting in the value for 𝑔0 (Equation (D.10)): 

 
𝜉 = 𝜎𝐹𝐶𝐴 [

2𝑃𝑝𝑢𝜆𝑝𝑢

𝜋𝑤𝑝𝑢2 ℎ𝑐

1 − 𝑅𝑝𝑢

1 − 𝑅𝑝𝑢𝑒−𝛼𝜂𝑊
] 𝛼휂𝑒−

𝛼𝜂𝑊
2 ∑

𝜏

1+ 𝑖𝜔𝜏
𝐴𝑛
𝑙𝑐

𝑛

 

 

 

(7.3) 

Multiply the top and bottom of (7.3) by 8(1 − 𝑒−𝛼𝜂𝑊) and use the fact that the fraction of pump 

power absorbed in the wafer is given by 𝑓𝑎 =
(1−𝑅)(1−𝑒−𝛼𝜂𝑊)

1−𝑅𝑒−𝛼𝜂𝑊
 (Equation (I.19)): 
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𝜉 = 𝜎𝐹𝐶𝐴
2𝑃𝑝𝑢𝜆𝑝𝑢

𝜋𝑤𝑝𝑢2 ℎ𝑐

𝑓𝑎
8
 [
8𝛼휂𝑒−

𝛼𝜂𝑊
2

1 − 𝑒−𝛼𝜂𝑊
 ∑

𝜏𝑛
1 + 𝑖𝜔𝜏𝑛

𝑛

𝐴𝑛
𝑙𝑐] 

 

(7.4) 

The factor in the square brackets is 𝔗 from Chapter 3 (Equation (3.30)), where 𝔗 ≡ 𝑁(𝜔)/𝐺(𝜔). 

Recall that Equation (3.30) is the general solution to the 1D diffusion equation in the frequency 

domain, neglecting the radial diffusion. This is expected of course since the pump beam diameter 

is large enough to neglect radial diffusion effects. The expression for 𝔗 is relatively complicated 

and includes the bulk lifetime, surface recombination velocity and diffusion coefficient, among 

other parameters. However, as described in Chapter 3, regardless of the values of the bulk lifetime 

and surface recombination velocity, the shape of 𝔗 is still Lorentzian unless both the absorption 

coefficient and surface recombination velocity is very high. Since this experiment uses a pump 

laser with wavelength very close to the band edge of silicon, the absorption coefficient is small 

and it is expected that 𝔗 is Lorentzian in shape. Another way of saying this is that only the first 

term in the series in Equation (7.4) is dominant (see discussion of Figure 3.7). Rewriting with only 

the first term: 

 

𝜉 = 𝜎𝐹𝐶𝐴
2𝑃𝑝𝑢𝜆𝑝𝑢

𝜋𝑤𝑝𝑢2 ℎ𝑐

𝑓𝑎
8
 [
8𝛼휂𝑒−

𝛼𝜂𝑊
2

1 − 𝑒−𝛼𝜂𝑊
 

𝜏

1 + 𝑖𝜔𝜏
𝐴1
𝑙𝑐] 

 

 

(7.5) 

Recall that by definition, 𝔗(0) = 𝜏𝑞𝑠𝑠, where 𝜏𝑞𝑠𝑠 is the quasi-steady state lifetime. Since the term 

in square brackets in Equation (7.5) is 𝔗 then 𝜏𝑞𝑠𝑠 is given by: 



Ph.D Thesis-Kevin M.W. Boyd  McMaster University-Engineering Physics 

130 

 

 

 

𝜏𝑞𝑠𝑠 =
8𝛼휂𝑒−

𝛼𝜂𝑊
2

1 − 𝑒−𝛼𝜂𝑊
 𝐴1
𝑙𝑐𝜏 

 

(7.6) 

In the limit where the pump absorption coefficient is low (𝛼𝑊~1), 𝜏𝑞𝑠𝑠~𝜏, as discussed in Chapter 

3 (Figure 3.8). For the sake of generality I will keep the symbol 𝜏𝑞𝑠𝑠 and not substitute 𝜏. However, 

unless otherwise specified, they can be treated as equivalent for the remaining discussion. 

Substituting 𝜏𝑞𝑠𝑠 into (7.5): 

 
𝜉 = 𝜎𝐹𝐶𝐴

2𝑃𝑝𝑢𝜆𝑝𝑢

𝜋𝑤𝑝𝑢2 ℎ𝑐

𝑓𝑎
8
 
𝜏𝑞𝑠𝑠

1 + 𝑖𝜔𝜏
 

 

(7.7) 

Substituting 𝜉 back into (7.1): 

 
�̃�𝑡𝑟 =

𝑇𝑝𝑟
2

1 − 𝑅𝑝𝑟2
𝑃𝑝𝑟 (1 − ℜ𝑝𝑟휂𝑝𝑟𝑚𝑝𝑢𝜎𝐹𝐶𝐴

2𝑃𝑝𝑢𝜆𝑝𝑢

𝜋𝑤𝑝𝑢2 ℎ𝑐
𝑓𝑎

𝜏𝑞𝑠𝑠

1 + 𝑖𝜔𝜏
𝑒𝑖𝜔𝑡) 

 

 

(7.8) 

To simplify the interpretation of the experiment, the probe is p-polarized and brought into the 

sample at Brewster’s angle. This results in zero reflectance from the front and back surfaces (i.e. 

𝑇𝑝𝑟 = 1, 𝑅𝑝𝑟 = 0, and ℜ = 1): 

 
�̃�𝑡𝑟 = 𝑃𝑝𝑟 (1 − 휂𝑝𝑟𝑚𝑝𝑢𝜎𝐹𝐶𝐴

2𝑃𝑝𝑢𝜆𝑝𝑢

𝜋𝑤𝑝𝑢2 ℎ𝑐
𝑓𝑎

𝜏𝑞𝑠𝑠

1 + 𝑖𝜔𝜏
𝑒𝑖𝜔𝑡) 

(7.9) 
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Taking the real part of (7.9) yields the transmitted probe power that is measured experimentally: 

 

 
𝑃𝑝𝑟 = 𝑃𝑝𝑟 (1 − 휂𝑝𝑟𝑚𝑝𝑢𝜎𝐹𝐶𝐴

2𝑃𝑝𝑢𝜆𝑝𝑢

𝜋𝑤𝑝𝑢2 ℎ𝑐
𝑓𝑎

𝜏𝑞𝑠𝑠

1 + 𝜔2𝜏2
 (cos𝜔𝑡 + 𝜔𝜏 sin𝜔𝑡)) 

(7.10) 

Experimentally, the power is transduced onto a detector and the resultant signal is demodulated on 

a lock-in amplifier at the frequency 𝜔. From Equation (7.10) it can be seen that the signal consists 

of in-phase and out-of-phase components, given by the coefficients of the cos𝜔𝑡 and sin𝜔𝑡 terms, 

respectively. The signal can be written in terms of a complex number 𝒮(𝜔) where the real and 

imaginary components correspond to the in-phase and out-of-phase components of the signal: 

 
𝒮(𝜔) = 휁(𝜔)휂𝑝𝑟𝑚𝑝𝑢𝜎𝐹𝐶𝐴

2𝑃𝑝𝑢𝜆𝑝𝑢

𝜋𝑤𝑝𝑢2 ℎ𝑐
𝑓𝑎

𝜏𝑞𝑠𝑠

1 + 𝑖𝜔𝜏
 

 

(7.11) 

where 휁(𝜔) is the transimpedance transfer function of the detector. The signal is represented as a 

complex number since it is has a component that is in-phase and a component that is out-of-phase 

with the detector. The real and imaginary parts of the term after 휁(𝜔) are the prefactors of the 

cos𝜔𝑡 and sin𝜔𝑡 terms in Equation (7.11). Equation (7.11) states that the signal measured as a 

function of frequency follows a Lorentzian frequency dependence like the one shown in Figure 

3.5. The QSS region is defined by the flat region of the roll-off curve when the modulation 

frequency is small compared to the inverse effective lifetime. From the measurement of this 

amplitude, the lifetime 𝜏𝑞𝑠𝑠 may be measured. 

In the quasi-steady state limit (𝜔𝜏 ≪ 1) Equation (7.11) reduces to:  
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𝒮𝑞𝑠𝑠 = 휁(0)휂𝑝𝑟𝑚𝑝𝑢𝜎𝐹𝐶𝐴

2𝑃𝑝𝑢𝜆𝑝𝑢

𝜋𝑤𝑝𝑢2 ℎ𝑐
𝑓𝑎𝜏𝑞𝑠𝑠 

 

(7.12) 

From Equation (7.11) it is clear that the lifetime may be extracted in two ways. By sweeping the 

modulation frequency 𝜔 from low to high values the Lorentzian decay is swept out (see Figure 

3.5) and may be fitted to find 𝜏. This of course is how lifetime is measured using the MFCA 

technique. Alternatively, in the quasi-steady state limit (𝜔𝜏 ≪ 1) 𝒮(𝜔) becomes linearly 

proportional to 𝜏𝑞𝑠𝑠. If the proportionality constant is known, then a direct measurement of 𝒮𝑞𝑠𝑠 

yields the lifetime. This is the basis of the Quasi-Steady State Free-Carrier Absorption technique. 

The signal from the probe detector has an AC and DC component. The AC component is due to 

the modulation of excess free-carriers by the pump beam. The DC component is due to 

unmodulated transmission of the CW probe laser, which is given by 𝒮𝐷𝐶 = 휁(0)𝑃𝑝𝑟. Dividing the 

QSS signal by the DC signal yields the reduced signal 𝓈: 

 
𝓈 ≡

𝒮𝑞𝑠𝑠

𝒮𝐷𝐶
= 휂𝑝𝑟𝑚𝑝𝑢𝜎𝐹𝐶𝐴

2𝑃𝑝𝑢𝜆𝑝𝑢

𝜋𝑤𝑝𝑢2 ℎ𝑐
𝑓𝑎𝜏𝑞𝑠𝑠 

 

(7.13) 

Bundling experimental factors into a proportional constant 𝐾: 

 𝓈 = 𝐾𝜎𝐹𝐶𝐴𝜏𝑞𝑠𝑠 

 

(7.14) 

 

where 𝐾 is given by: 
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𝐾 = 휂𝑝𝑟𝑚𝑝𝑢

2𝑃𝑝𝑢𝜆𝑝𝑢

𝜋𝑤𝑝𝑢2 ℎ𝑐
𝑓𝑎 

 

(7.15) 

The reduced signal 𝓈 can also be written in terms of the excess carrier density 𝑛. This formulation 

will be useful later on. In steady-state, the excess carrier density 𝑛 is given by Equation (3.16). 

The generation rate 𝐺 is just the average photon-flux density absorbed inside the wafer divided by 

the wafer thickness. The average photon flux density for a Gaussian beam is 2𝑃𝑝𝑢/𝜋𝑤
2ℎ𝑐. Thus 

the average generation rate is given by: 

 
𝐺 =

1

𝑊

2𝑃𝑝𝑢𝜆𝑝𝑢

𝜋𝑤𝑝𝑢2 ℎ𝑐
𝑓𝑎 

 

(7.16) 

Using Equation (3.16) and (7.16) the AC excess carrier density 𝑛𝐴𝐶29 is given by: 

 
𝑛𝐴𝐶 =

1

𝑊

2𝑃𝑝𝑢𝑚𝑝𝑢𝜆𝑝𝑢

𝜋𝑤𝑝𝑢2 ℎ𝑐
𝑓𝑎𝜏𝑞𝑠𝑠 

 

(7.17) 

 

                                                 

29 The subscript ‘AC’ is used here to differentiate the excess carrier density extracted via an AC measurement to the 

average excess carrier density. The DC excess carrier density is given by 𝑛𝐴𝐶/𝑚𝑝𝑢 where 𝑚𝑝𝑢 is the modulation depth 

of the laser. 
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Note that the power term 𝑃𝑝𝑢 is multiplied by the pump modulation depth 𝑚𝑝𝑢. This is because 

Equation (7.17) describes the AC free-carrier density, which is due to the AC power 𝑃𝑝𝑢𝑚𝑝𝑢. 

Using just the DC pump power 𝑃𝑝𝑢, the average excess carrier density is given by: 

 
𝑛 =

1

𝑊

2𝑃𝑝𝑢𝜆𝑝𝑢

𝜋𝑤𝑝𝑢2 ℎ𝑐
𝑓𝑎𝜏𝑞𝑠𝑠 

 

(7.18) 

𝒮𝑞𝑠𝑠 can now be written in terms of the excess carrier density: 

 𝒮𝑞𝑠𝑠 = 휁(0)𝜎𝐹𝐶𝐴𝑛𝐴𝐶𝑊 

 

(7.19) 

Dividing 𝒮𝑞𝑠𝑠 by the DC probe signal 𝒮𝐷𝐶 = 휁(0)𝑃𝑝𝑟 and substituting 𝑛𝐴𝐶 = 𝑚𝑝𝑢𝑛 the reduced 

signal written in terms of 𝑛 is given by: 

 𝓈 = 𝑚𝑝𝑢𝜎𝐹𝐶𝐴𝑛𝑊 

 

(7.20) 

Equation (7.14) demonstrates that the ratio of the AC to DC component of the probe signal in the 

QSS limit is linearly proportional to lifetime. If the proportionality constant is known, then the 

lifetime can be determined simply via a measurement of the AC and DC components of the probe 

signal. This is a significant simplification of the traditional MFCA technique since only a single 

low-frequency measurement of the probe signal is required to extract the lifetime. This eliminates 

the requirement of sweeping the modulation frequency and extracting lifetime from the frequency-

response of the free-carrier population. The factor 𝐾 contains only experimental constants and 

easily measured quantities, so its determination is straightforward. The factor 𝜎𝐹𝐶𝐴 is a material 

constant for silicon, which in principle means that it is well known and can simply be looked up. 
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In practice however, the value for 𝜎𝐹𝐶𝐴 varies widely across the literature, and has a high 

uncertainty [71]. Therefore it is advisable to first determine a value for 𝜎𝐹𝐶𝐴 so that it can be used 

in subsequent measurements. 𝜎𝐹𝐶𝐴 can be measured directly using Equation (7.14) if 𝜏𝑞𝑠𝑠 is known 

a priori. Of course 𝜏𝑞𝑠𝑠 can be measured independently using the MFCA! 

7.3 Experimental Validation of Quasi-Steady State Free-Carrier Absorption 

 

Figure 7.1: Plot of experimentally signal 𝒮(ω) as a function of modulation frequency (dots). The data is fitted to the frequency 

dependence in Equation (7.11) (solid line). Data is from El-Cat 2_9 sample at 650 mW of incident power. An arrow shows the 

quasi-steady state amplitude 𝒮qss. The fitted lifetime is 69 μs. 

In this section I will provide experimental validation of Equation (7.14) by examining the 

dependence of 𝒮𝑞𝑠𝑠 on 𝜏. This requires several datapoints with a variety of lifetime values. This is 

accomplished here by examining two different samples, and measuring the lifetime at a variety of 

power levels, ranging from 10 to 650 mW. Due to the injection-level dependence of lifetime (see 

3.2.3), the lifetime for each sample will be different at different powers. These measurements 
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provide a wide enough spread of lifetimes to convincingly validate Equation (7.14). A dual-beam 

configuration is used as described in Chapter 4, with the pump and probe diameters set to 6 mm, 

and 50 microns, respectively. As described in 7.2, this pump/probe configuration ensures that 

radial diffusion effects are negligible and the experiment is adequately described by the 1D 

recombination model. For each sample at each power level, the true lifetime is determined by 

measuring the amplitude of the free-carrier population as a function of frequency, then fitting to 

the frequency dependence of Equation (7.11). The amplitude of the fit yields 𝒮𝑞𝑠𝑠. An example of 

this measurement is shown in Figure 7.1. 

 

Figure 7.2: Plot of normalized signal vs roll-off lifetime for El-Cat 2_9 sample (dataset on the left) and for the thick wafer (dataset 

on the right). Straight line is best-fit line through zero.  The highest injected carrier density in the El-Cat 2_9 and the thick wafer 

data are 1.62x1016cm−3 and 2.62x1015cm−3, respectively. Inset: Normalized signal vs roll-off lifetime over a wider range of 

injected carrier densities. The highest injected carrier density in the El-Cat 2_9 and the thick wafer data are 2.19x1016cm−3 and 

1.19x1016cm−3, respectively. 

For each lifetime that is measured, the QSS signal 𝒮𝑞𝑠𝑠 is divided by 𝐾 to form the normalized 

signal. The normalized signals are plotted as a function of roll-off frequency in Figure 7.2. 
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Equation (7.14) predicts a linear trend of  𝓈/𝐾 with 𝜏, which is confirmed in Figure 7.2. The slope 

of best-fit line is the FCA cross section, which I measure to be 𝜎𝐹𝐶𝐴 = (4.71 ±

0.25) x 10−10 μm2. The value of this cross section and how it compares to values from the 

literature is discussed in 7.4. In essence, the plot in Figure 7.2 is a calibration procedure for the 

QSS-FCA technique, where the slope of the line of best-fit is the calibration coefficient. 

Alternatively, the value of 𝜎𝐹𝐶𝐴 can be determined by a single datapoint measurement. Once the 

calibration coefficient has been measured, the lifetime of an arbitrary wafer can be measured in 

quasi-steady state. To do this the experimenter measures the AC and DC amplitude of the probe 

signal and forms the reduced signal 𝓈, and then calculates the value of the experimental factor 𝐾. 

Then using the calibration coefficient 𝜎𝐹𝐶𝐴, the lifetime is computed as 𝜏𝑞𝑠𝑠 = 𝓈/𝐾𝜎𝐹𝐶𝐴. This is a 

single datapoint measurement acquired at low frequency. If the factors in 𝐾 do not change between 

measurements then 𝐾 remains constant and does not need to be recomputed. 𝐾 depends on 

parameters set by the experimenter, which can be held fixed, and depends on the optical properties 

of the wafer under test (𝑓𝑎 in Equation (7.15)), which can vary if different types of wafers are 

examined. It is reasonable to expect that wafers on a production line will have identical optical 

properties and thickness, so 𝐾 will remain unchanged. If 𝐾 remains fixed from measurement to 

measurement, then it can be bundled together with 𝜎𝐹𝐶𝐴 during calibration. The advantage of this 

is that the factors that go into 𝐾 would not need to be explicitly known. 

One feature that distinguishes QSS-FCA from other QSS techniques like QSSPC and ILM/CDI is 

that calibration unambiguously resolves the relationship between the quasi-steady state amplitude, 

and the lifetime. Calibration with the other techniques does not involve an actual lifetime 

measurement, but a measurement of free-carrier density on a reference wafer. The reference wafer 

has a known free-carrier density and is used to calibrate the measurement apparatus to be able to 

measure the free-carrier density in absolute units. Then to measure the lifetime of an arbitrary 

wafer, the free-carrier density 𝑛 of the wafer under optical injection is measured and knowing the 

optical generation rate 𝐺, the lifetime is given by 𝜏 = 𝑛/𝐺 (Equation (3.16)). This reason why this 

reference wafer is required is because the QSSPC and ILM/CDI measurement apparatuses do not 

have a secondary means of measuring lifetime. QSS-FCA on the other hand is basically the MFCA 
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technique, except the lifetime is extracted from the amplitude and not the roll-off curve. A MFCA 

frequency sweep simultaneously determines the QSS amplitude and roll-off lifetime (Figure 7.1), 

so the amplitude can be directly related to the true lifetime. This ensures that lifetimes measured 

by the QSS-FCA technique are accurate. It is reasonable to question why calibration is required at 

all since 𝜎𝐹𝐶𝐴 is a material constant that can be looked up. It turns out that values of 𝜎𝐹𝐶𝐴 from the 

literature are unreliable, and it is more practical to measure 𝜎𝐹𝐶𝐴 directly as I have done in Figure 

7.2. This is discussed further in 7.4. It has also been assumed that 𝜎𝐹𝐶𝐴 is a constant. The inset of 

Figure 7.2 shows datapoints collected at higher injected carrier densities (beyond 1.62x1016cm−3 

for El-Cat 2_9 wafer and 2.62x1015cm−3 for the thick wafer). It is clear that at higher carrier 

densities 𝓈/𝐾 vs 𝜏 begins deviating from linearity. The explanation for this is that the free-carrier 

absorption cross section is not a constant, but actually varies with injected carrier density. This 

effect and how to correct for it will be addressed in 7.6. 

Another point to address is the fact that QSS-FCA requires an initial measurement of the frequency 

dependence of the probe signal in order to determine lifetime and calibrate the apparatus (see 

Figure 7.1). I have mentioned a few times now that an advantage of QSS-FCA over the MFCA 

technique is that the apparatus does not require the high bandwidth necessary to map out the 

frequency-dependence. However, high-bandwidth is required in this work as can be seen in Figure 

7.1 where a modulation bandwidth on the order of 100 kHz has been used to measure the 

frequency-dependence. In practice one only needs to map out a portion of the roll-off curve, say 

up to the 3dB point, in order to extract the lifetime. At the 3dB point, 𝑓3𝑑𝐵 = 1/2𝜋𝜏. The lifetime 

from the dataset in Figure 7.1 is about 69 μs which corresponds to a 3dB frequency of 2.31 kHz. 

One could use a wafer with a long recombination lifetime for calibration instead. If the wafer has 

a lifetime of 1 ms, then 𝑓3𝑑𝐵 = 159 Hz. Thus even though I have used a wide measurement 

bandwidth in this work to demonstrate QSS-FCA, wide measurement bandwidth would not be 

required in a practical QSS-FCA apparatus, preserving the technique’s low-frequency advantage. 
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7.4 The Free-Carrier Absorption Cross Section 

The parameter 𝜎𝐹𝐶𝐴 is dependent on probe wavelength, carrier density, carrier type, the ratio of 

free-electrons and holes, and electronic mobility, among other factors [58]. This is a wide 

parameter space which is accompanied by a wide variation in values for 𝜎𝐹𝐶𝐴 across the literature. 

Baker-Finch et al. [71] summarized several parameterizations for 𝜎𝐹𝐶𝐴30 from various authors. 

They use a model where 𝜎𝐹𝐶𝐴 is constant with carrier density and parameterized by the probe 

wavelength and two empirically determined constants. Using this parameterization, the total cross 

section due to electrons and holes is: 

 𝜎𝐹𝐶𝐴 = 𝐶𝑒𝜆
𝛾𝑒 + 𝐶ℎ𝜆

𝛾ℎ (7.21) 

 

where 𝐶𝑖  &𝛾𝑖 are empirically determined constants. The subscripts ‘e’ and ‘h’ denote constants 

derived for electrons and holes, respectively. A summary of these constants is given in Table I of 

their work, which is recreated here in Table II.  

 

 

 

 

                                                 

30 The cross-section parameter 𝜎𝐹𝐶𝐴 does not explicitly appear in Refs [71], and in fact it does not appear in most free-

carrier absorption literature. A related parameter, the free-carrier absorption coefficient 𝛼𝐹𝐶𝐴 is what is usually used 

in the literature. 𝛼𝐹𝐶𝐴 is related to cross section 𝜎𝐹𝐶𝐴 and the free-carrier density 𝑛 via 𝛼𝐹𝐶𝐴 = 𝜎𝐹𝐶𝐴𝑛. 
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Table II: Free Carrier Absorption Coefficient Parameters from across the literature. 

Reference C Parameter (p-

type, n-type) 

𝜸 

parameter 

𝝀 

range 

(𝛍𝐦) 

𝑵 range 

(𝐜𝐦−𝟑) 

𝝈𝑭𝑪𝑨(𝐱𝟏𝟎
−𝟏𝟎 𝛍𝐦𝟐) 

[58] 2.7x10−10 

1𝑥10−10 

2 

2 

>4 < 1019 8.89 

[88] 2.6x10−10 

2.7𝑥10−6 

2 

3 

>2.5 ~1018 16.3 

[89] 1.04𝑥10−8 

4.52x10−8 

2.4 

2.6 

1-2 1017 − 1020 13.1 

[90] 3.2𝑥10−6 

3.0x10−6 

3 

3 

1-1.2 1017 − 1020 23.1 

[71] (1.80 ±

0.83)x10−9 

(1.68 ±

0.62)x10−6 

2.18

± 0.01 

2.88

± 0.08 

1-1.5 ~1018

− 5x1020 

26.8 ± 14.8 

 

Table II shows 𝐶𝑒,ℎ & 𝛾𝑒,ℎ parameters derived from the work of several different publications. The 

range of wavelengths 𝜆 and carrier density 𝑁 over which the parameters are acquired is also listed. 
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Examining the last three rows of Table II, it can be seen that the 𝐶 parameter varies across orders 

of magnitude between different authors, even though the wavelength and doping range are similar. 

The corresponding 𝜎𝐹𝐶𝐴 for electrons and holes is shown in the right column of Table II, which 

shows a factor of 3 difference between the lowest and highest values for 𝜎𝐹𝐶𝐴. Baker-Finch 

hypothesized that the reason for the spread of 𝜎𝐹𝐶𝐴 values across the literature is due to high 

experimental uncertainty. Indeed their work was the first to quantify the precision of their 

apparatus and they show high uncertainty in the empirically derived parameters. Using error 

propagation I estimate the uncertainty of 𝜎𝐹𝐶𝐴 from their measurements to be about 55% (with a 

95% confidence interval). All of the other 𝜎𝐹𝐶𝐴 values shown in Table II fall within this range, 

except for Refs [58]. However, if the uncertainty in 𝜎𝐹𝐶𝐴 from Refs [58] was as high as Baker-

Finch then their cross-section would fall within the range of Baker-Finch’s value too. The origin 

of the high uncertainty is due to the nature of how FCA is measured in Table II, as well as the fact 

that FCA is very weak. In Refs [58], [71], [89], [90] the FCA coefficient is measured on lightly-

doped wafers with front and/or backside diffusions of n and p-type dopants. Assuming that the 

peak carrier density is 1020cm−3, and the cross section 𝜎𝐹𝐶𝐴 = 10 𝑥 10
−10 μm2, the FCA 

coefficient calculated by Equation (3.2) is 𝛼𝐹𝐶𝐴 = 1000 cm
−1. This is actually quite large31, but 

since the width of diffused profiles is so small the total attenuation due to FCA is small. If the 

width of the profile is 100 nm (consider Figure 3 of Refs [89]), the attenuation due to FCA at 1550 

nm would be about 1% of the full power of the beam32. FCA is measured experimentally by 

determining the total reflectance 𝑅 and transmittance 𝑇 of a monochromatic light source incident 

upon the wafer, with the absorption given by 1 − (𝑅 + 𝑇). Since 𝑅 + 𝑇~1 it is difficult to extract 

a precise value for the FCA cross-section from this difference measurement. Another issue is that 

since the measurements are carried out on samples with diffused dopants, the dopant profile is 

                                                 

31 For reference, the band-to-band absorption coefficient of silicon at 1064 nm is only 9.85 cm−1. 

32 The attenuation is estimated using the Beer Lambert Law, which gives the fraction of power remaining as 𝑒−𝜎𝐹𝐶𝐴𝑛𝑊 

where 𝑊 is the width of the diffused dopant profile. 
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required in order to determine the average FCA coefficient and thus cross-section. This is because 

in order to determine 𝛼𝐹𝐶𝐴 the carrier concentration and width of the profile are required. 

Uncertainty in the shape and magnitude of the profile will contribute to the overall uncertainty of 

the FCA coefficient measurement [71]. 

It is interesting to note that in this work I am able to determine 𝜎𝐹𝐶𝐴 to a much higher degree of 

precision than the works shown in Table II. One of the reasons for this is the fundamental 

difference between how FCA is measured in Table II and how I measure FCA. The Table II 

measurements are carried out on samples with fixed dopant concentrations, and is determined 

based on the difference between two quantities (the incident power, and the reflected and 

transmitted powers) which are within a few percent of each other. In my work, the carriers are 

injected periodically and the resultant FCA signal is demodulated on a lock-in amplifier. The signal 

is only sensitive to the periodic change in the FCA population due to injection. This permits the 

extraction of the FCA cross-section to a much higher degree of precision. 

All of the FCA cross sections from Table II are higher than the value of 4.71 x 10−10 μm2  that I 

measure in 7.3. This can perhaps be explained by the fact that the cross-section depends on the 

carrier density [45], [46], [58]. In Table II most of the cross-sections are determined for carrier 

concentrations in excess of 1018 cm−3 whereas for the data in Figure 7.2 the maximum carrier 

density is about 1016 cm−3. Another reason for the discrepancy is that the measurements in Table 

II are performed on samples with fixed carrier concentrations where the carriers originate from 

dopants. In my work the carriers originate from dopants and from optical injection. As far as I am 

aware no one has explicitly studied the difference in the FCA cross section due to dopant-carriers 

and optically-injected carriers, though it has been hinted at [45]. It has been suggested offhandedly 

that the absorption is equivalent between these two cases [91]. I do not believe that this is correct, 

however. The process of light absorption by free-carriers is facilitated by carrier scattering since 

intraband transitions are only permitted alongside a momentum-conserving scattering event. Thus 

the magnitude of the FCA cross-section must depend in some way on the underlying scattering 

mechanism affecting the free-carriers. The relevant scattering mechanisms for silicon in the range 
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of carrier densities under investigation here and Table II are lattice scattering, ionized impurity 

scattering, and electron-hole scattering [69]. Ionized impurity scattering is due to carriers 

interacting with charged donor and acceptor impurity atoms, whereas electron-hole scattering are 

free-carriers interacting with each other. It is discussed by Klaassen that the scattering cross-

sections for impurity-scattering are a few times higher than electron-hole scattering [69]. From this 

it is expected that the FCA cross section in heavily doped samples is fundamentally different than 

heavily-injected samples with modest or intrinsic doping. In the former the primary scattering 

mechanism will be impurity scattering, and in the latter the mechanism will be electron-hole 

scattering. A simplified model for the variation of 𝜎𝐹𝐶𝐴 with injected carrier density 𝑛 is presented 

in 7.5, which is partially validated in 7.6. This model predicts33 that 𝜎𝐹𝐶𝐴 should be a factor of 6.13 

times smaller at 1016 cm−3 than 1018 cm−3. If it is assumed that the Baker-Finch parameterization 

is correct, this correction leads to 𝜎𝐹𝐶𝐴 = (4.37 ± 2.41) x 10
−10 μm2 which falls within the range 

of the value I computed for measurements where 𝑛~1016 cm−3. 

It is clear that quantitative values of the free-carrier absorption cross section from the literature are 

not reliable. Therefore it advisable that the FCA cross section constant be determined empirically. 

In the ILM/CDI lifetime measurement techniques (discussed in Chapter 2), the free-carrier 

absorption cross section is measured by calibrating the experimental apparatus using wafers of 

known carrier density. For example, Isenberg et al. use p-type silicon wafers to establish a 

calibration curve and extract the free-carrier absorption coefficient [6]. Since this value is only 

applicable to holes, it must be corrected to account for FCA by electrons and holes. In their work 

they use a proportionality factor from Refs [58] to make this correction. This correction is not well 

motivated, however. In their work the probe is a blackbody source with a distribution of 

wavelengths. Their correction assumes that the ratio of the electron to hole FCA cross section is 

                                                 

33 I used the model to compute 𝜎𝐹𝐶𝐴 at 𝑛 = 1018 cm−3 assuming that the free-carrier population is entirely due donors 

and acceptors. This value of 𝜎𝐹𝐶𝐴 is divided by 𝜎𝐹𝐶𝐴 computed at 𝑛 = 1016 cm−3, where the free-carrier population 

is due entirely to optical-injection. 
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constant as a function of wavelength, which is not supported by empirical evidence [91]. This 

brings into question the accuracy of ILM/CDI lifetime measurements. These accuracy concerns 

are not applicable to QSS-FCA where the relationship between measured signal and the true 

lifetime is determined directly. 

The plot in Figure 7.2 illustrates the calibration methodology of QSS-FCA. The reduced signal 𝓈 

divided by the experimental factor 𝐾 is measured directly and plotted against the lifetime measured 

by the roll-off technique. The slope of this line is the FCA cross section 𝜎𝐹𝐶𝐴 via Equation (7.14), 

which can then be used to determine the QSS lifetime for a sample with unknown lifetime. This 

calibration methodology is superior to ILM/CDI since it directly establishes the relationship 

between the signal measured in QSS and the lifetime. As far as I am aware, no other QSS lifetime 

technique is calibrated in such a way. Other techniques calibrate the measurement apparatus to 

measure the free-carrier density, and then hope that the free-carrier density measured on arbitrary 

wafers is accurate. 

7.5 Injection Level Dependence of Free-Carrier Absorption Cross Section 

The use of Equation (7.14) to measure lifetime assumes that the FCA cross section is constant with 

varying excess carrier density 𝑛. However from both a theoretical and empirical point of view this 

is not correct. Higher carrier densities lead to an increase in carrier scattering which leads to an 

increase in the absorption cross section. The FCA absorption coefficient as given by the Drude 

model is given by Equation (3.1). It predicts the absorption coefficient for a free electron and hole 

population of 𝑛 & 𝑝, respectively. Using the fact that 𝜎𝐹𝐶𝐴 = 𝛼𝐹𝐶𝐴/𝑛 and that under optical 

injection 𝑛 = 𝑝, the FCA cross section predicted by the Drude model is given by: 

 
𝜎𝐹𝐶𝐴 =

𝑞3𝜆2

4𝜋2휀0𝑐3𝓃
[

1

𝑚𝑛
∗2𝜇𝑛

+
1

𝑚𝑝
∗2𝜇𝑝

] 

 

(7.22) 
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The carrier concentration dependence of 𝜎𝐹𝐶𝐴 is due to the charge carrier mobilities 𝜇𝑛 & 𝜇𝑝. As 

discussed in 3.1, the underlying physics behind free-carrier absorption is the absorption of light by 

electrons or holes and an accompanying momentum-conserving scattering event. The scattering 

mechanisms are lattice scattering, electron-hole scattering, and ionized impurity scattering [69]. 

Charge carrier mobility is a function of scattering, so it is reasonable for the 𝜎𝐹𝐶𝐴 to depend on 

mobility. As carrier concentration increases, so does the scattering rate which leads to a decrease 

in electron and hole mobility and an increase in 𝜎𝐹𝐶𝐴. To model 𝜇𝑛 & 𝜇𝑝 I have used a general 

mobility model by Klaassen [69]. This model calculates the electron and hole mobilities for an 

arbitrary charge carrier and doping concentration. In this way the total mobility due to dopant 

impurities and optically injected carriers can be accounted for. Accounting for optical injection is 

not possible in simpler formulations such as the Caughey-Thomas model where the charge carrier 

concentration is fixed to the dopant concentration, and the difference between electron-hole 

scattering and ionized impurity scattering is not considered [92]. 

From Equation (7.14) it is clear that the FCA cross section can be measured directly if 𝓈, 𝐾 & 𝜏𝑞𝑠𝑠 

are known. This measurement was performed on El-Cat 2_9 and the thick wafer as a function of 

free-carrier density. The free-carrier density is controlled by the setting the incident power of the 

pump. Data is collected with an average power ranging from about 10-650 mW for each sample. 
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Figure 7.3: Injection level dependent free-carrier absorption cross section for El-Cat 2_9 (a) and Thick wafer (b). The continuous 

line is a plot of the variation in σFCA predicted by the Drude model. Note that this curve is scaled to overlap with the experimental 

data, since the Drude model itself does not quantitatively predict σFCA. It does however predict the trend of σFCA with n. 

Figure 7.3 shows a plot of 𝜎𝐹𝐶𝐴 vs 𝑛 for the El-Cat 2_9 (a) and Thick (b) wafers. The AC injected 

carrier density 𝑛𝐴𝐶  is computed using Equation (7.17) then corrected to the DC carrier density 𝑛 

by dividing by the modulation depth of the pump, 𝑚𝑝𝑢. Overlaid on both 𝜎𝐹𝐶𝐴 vs 𝑛 curves is the 

variation in 𝜎𝐹𝐶𝐴 predicted by the Drude model (Equation (7.22)). The curves are scaled using one 

of the empirically derived 𝜎𝐹𝐶𝐴 values from each dataset, since the Drude model underestimates 

the true value of the FCA cross section [71]. Using Equation (7.22) I calculate a value of 𝜎𝐹𝐶𝐴 =

0.962 x 10−10 μm2 when 𝑛 = 1015 cm−3 and 𝑁𝑑 = 3.2𝑥1015 cm−3 (donor density of El-Cat 2_9 

wafer). This is about 4.8 times smaller than the value determined experimentally in Figure 7.3 a). 

However, the relative value of 𝜎𝐹𝐶𝐴 does appear to be well-described by the Drude model as 

evidenced in Figure 7.3 a). There is reasonable overlap between the Drude curve and the 

experimental data in Figure 7.3 b), though the experimental values are rising more rapidly at higher 

carrier densities. Further investigation is required to understand this discrepancy. 
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One reason for the quantitative discrepancy between the model and the experiment is that the 

Drude model is purely classical and assumes that the energy of the light undergoing FCA is small 

with respect to the average thermal energy 𝑘𝑇 [72], which is about 25 meV at room temperature. 

This condition is obviously violated at 1550 nm where the energy is 0.8 eV. It is assumed in the 

derivation of the model that the charge-carriers in the semiconductor have a parabolic dispersion 

relationship between energy and momentum. When the energy of the light is comparable to the 

bandgap, the non-parabolicity of the energy bands needs to be accounted for [73] as well as 

intervalley transitions [93]. It is reasonable to question whether or not the Drude model is actually 

useable at 1550 nm. The relative values of 𝜎𝐹𝐶𝐴  from the model match the experimentally derived 

values quite well for the El-Cat 2_9 wafer, but don’t agree as well for the thick wafer. It is possible 

that the agreement for the El-Cat 2_9 sample is simply a coincidence. Further investigation is 

required in order to elucidate the true nature of FCA near the bandgap of silicon and the appropriate 

model in which to describe it. This is beyond the scope of this work. However, this work provides 

a very good starting point since QSS-FCA allows for the precise experimental measurement of 

𝜎𝐹𝐶𝐴! 

7.6 Accounting for the Variation in 𝜎𝐹𝐶𝐴 

In Figure 7.2 I plotted data for the El-Cat 2_9 and thick wafer which was taken at various pump 

powers, and thus different injected carrier densities. Each datapoint in the figure is collected at a 

different power, and has a different lifetime due to the injection-level dependent lifetime of silicon. 

I intentionally cut off datapoints taken at higher powers due to the breakdown in linearity in the 

plot. The same plot with all of the datapoints in place is shown in the inset of Figure 7.2. Clearly 

there is a breakdown in linearity, especially for the thick sample, which I attribute to the non-

constancy of 𝜎𝐹𝐶𝐴. This complicates the use of QSS-FCA for extracting lifetime since it can no 

longer be assumed that the relationship between 𝒮𝑞𝑠𝑠/𝐾 and 𝜏 is linear if 𝜎𝐹𝐶𝐴 is not constant. The 

carrier concentration dependence of 𝜎𝐹𝐶𝐴 must be accounted for. Examining Equation (7.20), the 

goal is to determine the injected carrier density 𝑛 so that the recombination lifetime can be 

measured via Equation (7.18). The problem now is that 𝜎𝐹𝐶𝐴 itself is a function of 𝑛 so how can 𝑛 
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be isolated from a measurement of 𝑆𝑞𝑠𝑠? First, rewrite this equation in terms of the free-carrier 

absorption coefficient, 𝛼𝐹𝐶𝐴, which is simply 𝜎𝐹𝐶𝐴𝑛: 

 𝓈 = 𝑚𝑝𝑢𝛼𝐹𝐶𝐴(𝑛)𝑊 

 

(7.23) 

Since 𝜎𝐹𝐶𝐴 is monotonically increasing with 𝑛, 𝛼𝐹𝐶𝐴(𝑛) is a unique function of 𝑛 (i.e. 𝛼𝐹𝐶𝐴 takes 

on a unique value for each value of 𝑛). Thus if the relationship 𝛼𝐹𝐶𝐴(𝑛) is known a priori, the 

value of 𝑛 can be determined from the experimental measurement of 𝛼𝐹𝐶𝐴(𝑛). As discussed in 7.5, 

the relative (but not absolute) value of 𝜎𝐹𝐶𝐴 as a function of 𝑛 can be predicted with Drude theory. 

This means that the relative value of 𝛼𝐹𝐶𝐴(𝑛) may also be described by Drude theory. Thus if the 

absolute value of 𝛼𝐹𝐶𝐴(𝑛) is known at some point 𝑛0, then 𝛼𝐹𝐶𝐴 can be predicted quantitatively 

for any arbitrary 𝑛.  

Let 𝛼𝐷𝑟(𝑛, 𝑁𝑑, 𝑁𝑎) be the FCA coefficient predicted by Equation (3.1), which of course is a 

function of the injected and background doping carrier densities. Since only the relative value of 

𝛼𝐷𝑟 is reliable, an absolute value is required in order to scale the 𝛼𝐷𝑟 curve to the absolute 𝛼𝐹𝐶𝐴 

curve. To do this 𝛼𝐹𝐶𝐴 is directly measured at some point 𝑛0. The scaling factor 𝑘 to convert 𝛼𝐷𝑟 

to 𝛼𝐹𝐶𝐴 is then given by: 

 
𝑘 =

𝛼𝐹𝐶𝐴(𝑛0)

𝛼𝐷𝑟(𝑛0, 𝑁𝑑, 𝑁𝑎)
 

(7.24) 

 

In order to compute the scaling factor, both 𝛼𝐹𝐶𝐴(𝑛0) and 𝑛0 must be known. Of course 𝛼𝐹𝐶𝐴(𝑛0) 

can be measured directly from the signal’s quasi-steady state amplitude using Equation (7.23). 𝑛0 

is measured using Equation (7.18), which requires that the lifetime be known. The lifetime is 

measured in situ using the traditional MFCA approach. With 𝑘 known the absolute value FCA 

coefficient curve is given by: 
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 𝛼𝐹𝐶𝐴(𝑛) = 𝑘𝛼𝐷𝑟(𝑛0, 𝑁𝑑 , 𝑁𝑎) (7.25) 

 

With 𝛼𝐹𝐶𝐴 determined, the lifetime can now be measured in quasi-steady state. 𝒮𝑞𝑠𝑠 is measured 

experimentally and used to determine 𝛼𝐹𝐶𝐴(𝑛) via Equation (7.23). Since 𝛼𝐹𝐶𝐴(𝑛) is known for 

all 𝑛 after calibration, the experimentally measured 𝛼𝐹𝐶𝐴 can be inverted to determine 𝑛. Once 𝑛 

is known the lifetime is extracted using Equation (7.18). 

 

Figure 7.4: Steady-state lifetime measured via Equation (7.20) vs roll-off lifetime for El-Cat 2_9 wafer (left data set) and thick 

wafer (right dataset). The solid line has unity slope 

I have analyzed the data from the inset of Figure 7.2 using the new procedure outlined in this 

section. The scaling factor 𝑘 is determined for each wafer using a single experimental point in 

Figure 7.3. Once the scaling factor is known, the lifetime can be predicted from a quasi-steady 

state measurement of the FCA signal using the procedure described in this section. The lifetime 
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determined in the quasi-steady state is plotted vs the roll-off lifetime in Figure 7.4. The ordinate 

of the straight-line in the figure is the roll-off lifetime. Clearly there is excellent agreement between 

the lifetimes measured in quasi-steady state and using the traditional MFCA technique. This 

demonstrates that even in the case where 𝜎𝐹𝐶𝐴 is a function of carrier density, the lifetime may still 

be measured! It worth reiterating here that each datapoint’s position along the x-axis in Figure 7.4 

is determined by a roll-off measurement which requires sweeping the modulation frequency from 

low to high frequencies in order to map out the roll-off curve. This requires multiple datapoints 

and bandwidth comparable to the inverse of the recombination lifetime. Each datapoint’s position 

along the y-axis is determined by a single, low frequency measurement. Thus QSS-FCA can be 

applied even if 𝜎𝐹𝐶𝐴 is changing. Generally if the injected carrier density is small or even 

comparable to the doping level, it is expected that 𝜎𝐹𝐶𝐴 will remain constant and the analysis 

applied in 7.2 should be sufficient for extracting the lifetime. When the injected carrier density is 

swept from values lower than to values greater than the doping density, it is expected that 𝜎𝐹𝐶𝐴 

will change and this change should be accounted for using the analysis of this section. 

7.7 Summary 

In this chapter I have developed Quasi-Steady State Free-Carrier Absorption for measuring 

recombination lifetime in semiconductors. The theory for the technique is derived in 7.2. In 7.3 I 

validate the model over a range of injected carrier densities that are ≤ 1016cm−3. In this range the 

calibration factor 𝜎𝐹𝐶𝐴, the free-carrier absorption cross-section, may be treated as constant. The 

model predicts a linear dependence between the QSS-FCA signal and recombination lifetime, 

which is demonstrated. The slope of this relationship is the FCA cross section, which is determined 

from the plot. Once this is known, arbitrary lifetimes may be measured with a single measurement 

of the QSS-FCA amplitude. In 7.4 I discuss the FCA cross section that I have measured, and 

compare it to other values in the literature. 𝜎𝐹𝐶𝐴 values from the literature exhibit a significant 

amount of variation which is due to poor experimental precision [71], which is at least in excess 

of 50%. In my work QSS-FCA is measured to within a precision of about 5%. The higher precision 

in my measurements is due to a fundamental difference in how FCA is measured in my work, and 
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in the literature. In my work the measured signal is due to the AC modulation of free-carriers and 

the signal arises entirely from FCA, with minimal background effects. In the literature, FCA is 

measured on wafers with a fixed doping concentration and is extracted by separating the power 

that is incident upon the wafer from the power that is reflected and transmitted. Since these powers 

are very close to another (typically within 1%), there is a large uncertainty after subtracting them. 

In 7.5 I explore the injected-carrier dependence of the FCA cross-section 𝜎𝐹𝐶𝐴. To my knowledge 

this has never actually been demonstrated experimentally for optical injection. I find that this 

dependence can be modelled with the Drude model. Though the Drude model underestimates the 

magnitude of FCA, a feature that is well-known in the literature [71], the relative free-carrier 

dependence of 𝜎𝐹𝐶𝐴 that it predicts matches experiment reasonably well. In 7.6 I show how to 

generalize the technique described in 7.3 to account for an injection-dependent 𝜎𝐹𝐶𝐴, and 

demonstrate that the lifetime measured in quasi-steady state matches the lifetime measured with 

the traditional MFCA technique. This proves that QSS-FCA can measure the recombination 

lifetime under quasi-steady state conditions, and with the advantages offered by its superior 

calibration it could compete with QSSPC, the most popular commercial apparatus for measuring 

lifetime. 
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8 Conclusion and Future Work 

In this dissertation I have developed new and improved techniques for the measurement of 

recombination lifetime in semiconductors, particularly silicon. The first technique, single-beam 

pump/probe, is the first of its kind capable of measuring lifetime in silicon using only a single laser 

as both pump and probe beam. Though single-beam pump/probe techniques have been reported 

elsewhere [59], [60], they were extremely limited in their scope and to my knowledge were never 

explored further from their original publications. These techniques required splitting the laser 

beam so that a portion could be used in a feedback loop to suppress stray background signals. This 

is not required in my implementation, making it fundamentally simpler and exemplifying that the 

technique is truly a single beam technique. The significance of being able to remove the second 

beam cannot be overstated. There are several issues associated with dual-beam pump/probe 

techniques that are simplified, reduced, or completely eliminated with single-beam pump/probe. 

Alignment is one of the most challenging issues when implementing a pump/probe experiment. 

Both pump and probe beam have to be guided to the sample under study and aligned so that they 

overlap on the sample. In silicon lifetime measurements where the pump beam diameter is on the 

order of millimeters [3], the alignment must be very precise. If the pump and probe beams are 

guided over a long distance, lasers and optical components with high pointing stability are a 

necessity since small angular deviations translate into large displacements at the sample. Another 

issue is that both pump and probe beams will need separate supporting optics in order to condition 

the beams before striking the sample. Power, polarization, and beam width are all parameters that 

an experimenter might need to control with supporting optics. In addition to this, these 

components, including both pump and probe sources, take up valuable space on a laboratory bench. 

A single-beam pump/probe apparatus eliminates the alignment of a second beam, reduces the 

number of components required to implement the experiment, and occupies less real-estate than 

its dual-beam counterpart. In addition to this, single-beam pump/probe will almost always be less 

costly to implement since fewer components are needed. In this work I have demonstrated that the 

results obtained with single-beam pump/probe are consistent with its dual-beam counterpart. This 
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is proof-of-concept demonstration that single-beam pump/probe can supersede dual/beam 

pump/probe as a lifetime characterization tool for semiconductors. 

Beyond what has been presented here, the most obvious application for single-beam pump/probe 

is for in situ semiconductor process monitoring. Ellipsometry [94], [95], x-ray diffraction [96], 

[97], electron-microscopy [98], [99], and Fourier-Transform Infrared Spectroscopy (FTIR) [100], 

[101] have all been used to study film growth in situ in Chemical Vapor Deposition (CVD) or 

Atomic-Layer Deposition (ALD) reaction chambers. Using these techniques it is possible to 

elucidate information about the growth kinetics, stoichiometry, electronic properties, and crystal 

structure of films being grown in real-time. What these techniques all have in common is that they 

study the film being grown, and not the substrate it is being grown on. Single-beam pump/probe 

is uniquely suited to measuring the substrate, in particular its electronic properties. By probing the 

substrate it is possible to study the interface between the substrate and film. As discussed in 3.3.2, 

the effective lifetime of a semiconductor is a function of the surface recombination velocity at the 

semiconductor’s surface, which is affected by the electronic quality34 of the interface between 

substrate and film [9], [43], [102]. Therefore with single-beam pump/probe an experimenter can 

now probe additional information about the CVD process, which can be used for process 

optimization. For photovoltaic devices, very high quality interfaces between semiconductor and 

dielectric films are required to reduce recombination and achieve high energy conversion 

efficiency. There has been an extensive amount of work devoted to studying and optimizing the 

interface quality of these dielectric layers [103]–[111]. All of the optimization studies that I have 

encountered in the literature perform measurements of surface recombination velocity ex situ after 

the deposition of the film is complete. For CVD-deposited films, there are typically a great number 

of process parameters that can be tuned. For plasma-assisted CVD, parameters such as RF power, 

gas flow rate, gas flow ratios, deposition temperature, and deposition pressure can all affect the 

                                                 

34 In this case ‘quality’ refers to the density of electrically-active trap states at the surface, with higher quality interfaces 

have a lower density. 
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quality of an interface [109]. Optimization of this wide parameter space can be very costly in terms 

of time and resources, especially when measurements of the interface quality are taken after the 

sample is removed from the CVD chamber. With single-beam pump/probe, the lifetime of the 

wafer can be measured in situ and information about the semiconductor-dielectric interface can be 

extracted in real-time. Real-time information of the interface quality could be used as feedback for 

optimizing process conditions. An annealing step follows the deposition of silicon nitride, with the 

annealing time and temperature also affecting the interface quality [109]. In this case the quality 

as a function of time is assessed at discrete times since the wafer has to be removed from the 

annealing furnace before it can be measured. With single-beam pump/probe, the quality as a 

function of time could be easily measured in situ. 

Though there are several commercial tools available for in-line measurement of lifetime on a 

photovoltaic production line (see Footnote 4), I am not aware of any tools that can measure the 

lifetime of a wafer undergoing CVD in situ. One reason for this is that it is impractical to 

incorporate lifetime measurement into a CVD reaction chamber using the current technologies 

available. Commercial lifetime technologies like QSSPC and μ-PCD use RF and microwave-based 

physics for measuring the photoconductivity of silicon. It is not clear if the plasma in a CVD 

chamber would interfere with these measurements. Since the plasma is charged, it is likely to 

screen the silicon wafer from RF/microwave-based probes. In addition to this both techniques 

require that the wafer be in close proximity to the measurement apparatus, which would be quite 

invasive to the CVD reaction chamber. Dual-beam pump/probe is also impractical due to the 

alignment challenges of overlapping the pump and probe beams inside the reaction chamber. 

Camera-based techniques such as ILM/CDI could potentially be used, but they require imaging 

optics which could be impractical to place within a CVD chamber. Single-beam pump/probe seems 

uniquely suited for in situ lifetime measurements. As long as there is a line of sight between the 

laser source, wafer, and detector, single-beam pump/probe can be implemented. 

The second technique that I have developed, Quasi-Steady State Free-Carrier Absorption, 

measures lifetime in quasi-steady state and simplifies the traditional frequency-resolved MFCA 
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technique. Where MFCA requires sweeping the pump modulation frequency from low to high 

values and recording data over that range, QSS-FCA requires a single datapoint measured at low 

frequency in order to extract the recombination lifetime. The advantage of this is that it relaxes the 

bandwidth constraints of frequency-resolved measurements. This reduces the complexity and cost 

of the QSS-FCA apparatus35 since bandwidth comparable to the inverse lifetime of the wafer is 

not required. QSS-FCA improves upon competing QSS techniques such as QSSPC and ILM/CDI 

in several ways. Firstly, QSS-FCA is able to establish a direct relationship between the QSS signal 

and the lifetime since the true lifetime can be measured in situ with the QSS measurement using 

MFCA. This is in contrast to the QSSPC and ILM/CDI methods which use a reference wafer to 

calibrate the instrument to measure free-carrier density, which is then used to measure lifetime. 

Independent verification of the lifetime using another experimental apparatus is required in order 

to assess the accuracy of the calibration. In QSS-FCA, the relationship between quasi-steady state 

and the true lifetime can be measured directly. The calibration factor for QSS-FCA is the FCA 

cross section, which is a material constant. Once calibrated, the QSS-FCA apparatus needn’t ever 

be calibrated again. This is in contrast to QSSPC where the calibration factor is composed of 

geometrical factors relating to the positioning of the wafer with respect to the photoconductivity 

sensor. This means that wafers under test must be positioned in precisely the same position relative 

to the apparatus’ photoconductivity sensor as the reference wafer was during calibration, in order 

for the calibration to hold. Another advantage of QSS-FCA over QSSPC is that since QSS-FCA 

is entirely optical, there is no restriction as to where the pump/probe sources and the probe detector 

can be positioned relative to the sample under test. As long as the pump and probe light can be 

overlapped on the sample and the probe light collected by a detector, QSS-FCA can measure 

                                                 

35 I designed and built the first QSS-FCA apparatus for a course project. The instructions were to build an optical 

device to perform some kind of measurement, so I decided to build a discount version of my Ph.D research. I used a 

DVD laser diode for the pump, an incandescent flashlight for the probe, and an InGaAs photodiode for the detector. 

A custom circuit was built to drive the laser and amplify the photodiode signal. The laser was driven by and data was 

collected on an MSP432 microcontroller and fed to a computer. This apparatus was able to measure a signal 

proportional to the effective recombination lifetime, and only cost $150 to build. 
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lifetime. This provides more flexibility when building a QSS-FCA apparatus.  In QSSPC, the 

photoconductivity sensor must be placed in close proximity (on the order of centimeters) to the 

wafer.  

Beyond lifetime measurement applications, QSS-FCA can be used to measure the free-carrier 

absorption cross section of silicon directly, and to a higher precision than has been reported in the 

literature. As I have discussed in 7.4, 𝜎𝐹𝐶𝐴 values found in the literature vary considerably. One of 

the reasons for this is that the FCA is very small (the power absorbed due to FCA is about 1 part 

per thousand of the total probe power) so the experimental error arising from a DC measurement 

of the absorption is high, as deduced by Baker-Finch et al. [71]. The QSS-FCA technique allows 

𝜎𝐹𝐶𝐴 to be measured to a high degree of precision since it is an AC measurement and can take 

advantage of lock-in detection. This permits measurements of 𝜎𝐹𝐶𝐴 at low carrier densities 

(< 1016 cm−3). There is a lot of underlying physics that goes into 𝜎𝐹𝐶𝐴 such as several scattering 

mechanisms  (acoustic and optical phonon scattering, as well as inter-carrier and ionized impurity 

scattering), as well as specifics about the band-structure and transition of carriers inside and 

between energy bands. There are many models in the literature that account for these effects in 

isolation, but to my knowledge a general theory consolidating all effects, including experimental 

validation, has never been presented. Since QSS-FCA can make precise measurements of 𝜎𝐹𝐶𝐴, it 

is the perfect tool for experimentally validating a general FCA theory. 

QSS-FCA can also be used to make absolute measurements of the injected free-carrier density 𝑛 

in an arbitrary wafer via Equation (7.20). Indeed this is the principle behind QSS-FCA lifetime 

measurements! Another way of looking at this is that measurement of 𝑛 is an alternative way of 

quantifying the total amount of optical absorption in a silicon wafer since 𝑛 results directly from 

optical absorption. One application where this is useful is for studying the effectiveness of 

plasmonic light-trapping structures on silicon. Plasmonic light-trapping involves metal 

nanoparticles placed on top of a silicon wafer (or on top of a thin dielectric spacer on silicon) that 
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enhance light absorption in the wafer36[112]–[116]. These metal nanoparticles capture light that is 

incident on the silicon wafer by coupling it into quantized oscillations of the free-electrons in the 

metal (plasmons). This energy is then coupled into silicon in either the near or far-field, producing 

electron-hole pairs that can be harnessed for photocurrent. A drawback of plasmonic nanoparticles 

is that some of the energy of the light is lost in the metal itself as heat. This parasitic absorption 

hampers the effectiveness of the plasmonic structures for light-trapping and they must be designed 

to minimize it. It is difficult to experimentally measure and separate the absorption in the silicon 

wafer from the parasitic absorption in the plasmonic particles using optical measurements alone. 

Traditionally, the total optical absorption in a structure can be measured using an integrating sphere 

configured to capture all of the light reflected from and transmitted through a sample. Any energy 

deficit between the incident light and the light coupled out of the sphere is due to absorption in the 

structure. An integrating sphere measurement deduces the total absorption from the silicon wafer 

and plasmonic particles, but it does not discriminate between the two. The absorption contributions 

can be decoupled with a separate measurement of 𝑛 which determines the absorption in the silicon 

wafer alone. 

To support my experimental techniques I have developed a general mathematical model that can 

be used to predict the signal measured from a semiconductor wafer with arbitrary electronic 

properties, measured using an apparatus of arbitrary configuration. The solution, provided in 

Appendix C, predicts the free-carrier concentration 𝑛(𝑟, 𝑧, 𝑡) within a semiconductor as a function 

of space and time. The solution is highly general, describing three-dimensional carrier transport 

and recombination within the semiconductor, both in the bulk and at the surface of the wafer. There 

is no assumption made about the bulk recombination lifetime, surface recombination velocity, 

diffusion coefficient, or thickness of the wafer. The solution is also completely analytic, and 

relatively simple from an algebraic point of view. The only part of the solution that is not closed 

                                                 

36 Typical nanoparticle diameters are 10-100 nm, and the dielectric spacing layer is on the order of 10s of nm. 
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form are two transcendental equations of the form tan 𝑥 = 𝑎𝑥 and cot 𝑥 = 𝑎𝑥, which are easily 

solved numerically using a computer. I have not seen a solution to the 3D continuity equation 

presented in a form as simple and succinct as I have presented it here. Though I have not found 

this particular solution elsewhere, it would not be surprising if it does exist in this form. Using my 

3D solution for 𝑛(𝑟, 𝑧, 𝑡), I developed a general equation to predict the probe power that transmits 

through a silicon wafer and into a detector for a given modulation of 𝑛(𝑟, 𝑧, 𝑡) via a pump source. 

The transmitted power is modulated by 𝑛(𝑟, 𝑧, 𝑡) due to free-carrier absorption, and information 

about 𝑛 and the recombination dynamics of the wafer can be determined by isolating this 

modulation term. This pump/probe equation is also highly general, completely analytic and 

relatively succinct. It also reveals a very elegant symmetry between the pump and probe beams. It 

is applicable to a very broad range of pump/probe experiments involving semiconductors. No 

assumption is made about the wavelength, power, beam radius, or reflectance and transmittance 

of the pump or probe beams, nor about the recombination and transport properties of the wafer 

being investigated. In addition to this, the equation is derived under the assumption that the beam 

has a Gaussian shape. This makes it applicable to any pump/probe studies involving single-mode 

lasers, which covers a vast range of applications. From this theory I was able to derive the complete 

models behind single-beam pump/probe and QSS-FCA with just a few variable substitutions. This 

equation should be very useful to authors studying charge carrier transport and recombination in 

semiconductors. Certainly I would have found this equation useful before I derived it, instead of 

equations that take an entire page [42] just to write down! 

The experimental techniques that I have developed in this work are promising. Single-beam 

pump/probe opens up a wide range of possibilities for in situ process monitoring that would be 

impractical with dual-beam techniques. I have proposed several ideas of where single-beam 

pump/probe could be applied. It cannot be overstated how much single-beam pump/probe 

simplifies traditional pump/probe measurements in terms of time, space and cost. QSS-FCA has 

been demonstrated to be superior to other quasi-steady state measurement techniques in several 

ways such as guaranteed accuracy, and flexibility in implementation. QSS-FCA also provides a 

mechanism for measuring the free-carrier absorption cross section to a much greater precision (at 
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least 10 times) than has been reported elsewhere [71]. Being able to measure this cross-section 

provides experimenters with a means of probing the underlying physics of carrier scattering and 

intraband transitions in a semiconductor. There is no unified theory of free-carrier absorption in 

silicon that accounts for all of the underlying physics consolidated into a single equation. QSS-

FCA is the tool to validate such a theory experimentally. 
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Appendix A Writing Luke and Cheng Solution in 

terms of 𝔗 

According to Luke and Cheng [51] the solution to (3.18) subject to the boundary conditions (3.22) 

& (3.23) for a temporal impulse excitation 𝑔(𝑧, 𝑡) is: 

 

𝑛(𝑡) = 𝜙0
(1 − 𝑅)

1 − 𝑅𝑒−𝛼𝜂𝑊
8𝛼휂𝑒−

𝛼𝜂𝑊
2

𝑊
 X  

∑
sin (

𝛼𝑛𝑊
2 )

((𝛼휂)2 + 𝛼𝑛2)(𝛼𝑛𝑊 + sin𝛼𝑛𝑊)
[𝛼휂 sinh (

𝛼휂𝑊

2
) cos (

𝛼𝑛𝑊

2
)

∞

𝑛=1

+ 𝛼𝑛 cosh (
𝛼휂𝑊

2
) sin (

𝛼𝑛𝑊

2
)] 𝑒

−
𝑡
𝜏𝑛 

 

 

(A.1) 

The frequency-domain representation of this equation is just the Fourier transform of 𝑛(𝑡): 

 
𝑁(𝜔) = ∫ 𝑛(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡

∞

0

 

 

(A.2) 

The Fourier transform limits are from 0 to infinity and not negative to positive infinity, since 

Δ𝑛(𝑡) = 0 for 𝑡 < 0. The time-dependent term in 𝑒−𝑡/𝜏𝑛 which has the Fourier transform 𝜏𝑛/(1 +

𝑖𝜔𝜏𝑛). Therefore: 
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𝑁(𝜔) = 𝜙0
(1 − 𝑅)

1 − 𝑅𝑒−𝛼𝜂𝑊
8𝛼휂𝑒−

𝛼𝜂𝑊
2

𝑊
 X 

∑
sin (

𝛼𝑛𝑊
2 )

((𝛼휂)2 + 𝛼𝑛2)(𝛼𝑛𝑊+ sin 𝛼𝑛𝑊)
[𝛼휂 sinh (

𝛼휂𝑊

2
) cos (

𝛼𝑛𝑊

2
)

∞

𝑛=1

+ 𝛼𝑛 cosh (
𝛼휂𝑊

2
) sin (

𝛼𝑛𝑊

2
)]

𝜏𝑛
1 + 𝑖𝜔𝜏𝑛

 

 

(A.3) 

For an excitation source with absorption coefficient 𝛼, and an initial photon flux 𝜙0
′  entering the 

wafer, the photon flux inside the wafer is given by: 

 𝜙(𝑥) = 𝜙0
′  𝑒−𝛼𝑥 

 

(A.4) 

 The volumetric generation rate 𝐺 is then given by: 

 
𝐺(𝑥, 𝜔) = 𝐴(𝜔) [−

𝑑𝜙

𝑑𝑥
] 

 

(A.5) 

where 𝐴(𝜔) is the amplitude of the modulation. In this experiment 𝐴(𝜔) is flat across all of the 

frequencies of interest, so 𝐴(𝜔) = 1. The average volumetric generation rate is given by 

1

𝑊
∫ 𝐺(
𝑊/2

−𝑊/2
𝑥, 𝜔)𝑑𝑥, so: 

 
𝐺(𝜔) =

1

𝑊
[𝜙(−𝑊/2) − 𝜙(𝑊/2)] 

(A.6) 
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The factor in square brackets is just the photon flux absorbed into the wafer, which is 𝜙0𝑓𝑎. 

Therefore the average generation rate, in terms of the incident photon flux, is: 

 
𝐺(𝜔) =

𝜙0𝑓𝑎
𝑊

 

 

(A.7) 

where 𝑓𝑎 is the fraction of incident light absorbed into the wafer, which is given by (Appendix I): 

 
𝑓𝑎 = (1 − 𝑅)

1 − 𝑒−𝛼𝜂𝑊

1 − 𝑅𝑒−𝛼𝜂𝑊
  

 

(A.8) 

 

. 𝔗 is defined as 𝑁(𝜔)/𝐺(𝜔) (Equation (3.19)), so the 𝔗 factor for the Luke and Cheng solution 

is given by: 

 

𝔗 =
8𝛼휂𝑒−

𝛼𝜂𝑊
2

1 − 𝑒−𝛼𝜂𝑊
 ∑

sin (
𝛼𝑛𝑊
2 )

((𝛼휂)2 + 𝛼𝑛2)(𝛼𝑛𝑊 + sin𝛼𝑛𝑊)
[𝛼휂 sinh (

𝛼휂𝑊

2
) cos (

𝛼𝑛𝑊

2
)

∞

𝑛=1

+ 𝛼𝑛 cosh (
𝛼휂𝑊

2
) sin (

𝛼𝑛𝑊

2
)]

𝜏𝑛
1 + 𝑖𝜔𝜏𝑛

 

 

(A.9) 
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Appendix B Writing Sanii Solution in Terms of 

𝔗 

According to Sanii et.al., amplitude of the excess carrier density 𝑁(𝜔) is given by (Equation 22 in 

Refs  [8] ): 

 

 
𝑁(𝜔) =

𝜙0
𝑊𝐷(𝛼2𝐿2 − 1)

𝐿2[𝛼𝐿𝐶1(1 − 𝑒
−𝑥) − 𝛼𝐿𝐶2(1 − 𝑒

𝑥) − (1 − 𝑒−𝛼𝑊)] 

 

(B.1) 

 

where 𝜙0 is the incident photon flux density, 𝐷 is the diffusion coefficient, 𝐶1 & 𝐶2 are coefficients, 

𝑥 is a factor given by 𝑊/𝐿,  and 𝐿 is the effective diffusion length. The 𝐶 coefficients and 𝐿 are 

given by: 

 

𝐶1 =
1

2

[(𝛼𝐷 + 𝑆𝑓) (
𝐷
𝐿 − 𝑆𝑟) −

(𝛼𝐷 − 𝑆𝑟) (
𝐷
𝐿 + 𝑆𝑓) 𝑒

−𝛼𝑊𝑒𝑥]

(
𝐷2

𝐿2
+ 𝑆𝑓𝑆𝑟) sinh 𝑥 +

𝐷
𝐿 (𝑆𝑓 + 𝑆𝑟) cosh 𝑥

 

 

 

(B.2) 
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𝐶2 =
1

2

[(𝛼𝐷 + 𝑆𝑓) (
𝐷
𝐿 + 𝑆𝑟) −

(𝛼𝐷 − 𝑆𝑟) (
𝐷
𝐿 − 𝑆𝑓) 𝑒

−𝛼𝑊𝑒−𝑥]

(
𝐷2

𝐿2
+ 𝑆𝑓𝑆𝑟) sinh 𝑥 +

𝐷
𝐿 (𝑆𝑓 + 𝑆𝑟) cosh 𝑥

 

 

 

(B.3) 

 

 

 

𝐿 = √
𝐷𝜏𝑏

1 + 𝑖𝜔𝜏𝑏
 

 

(B.4) 

 

 

Note that the lifetime appearing in 𝐿 is the bulk lifetime, and not an effective lifetime. The 

generation rate is given by Equation (A.7) (Appendix A), so by dividing (B.4) by (A.7) we get 𝔗: 

 
𝔗 =

1

𝐷(𝛼2𝐿2 − 1)(1 − 𝑒−𝛼𝑊)
𝐿2[𝛼𝐿𝐶1(1 − 𝑒

−𝑥) − 𝛼𝐿𝐶2(1 − 𝑒
𝑥) − (1 − 𝑒−𝛼𝑊)]

=
𝐿2

𝐷(𝛼2𝐿2 − 1)(1 − 𝑒−𝛼𝑊)
Γ 

 

(B.5) 
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where we have written the terms in square brackets in (B.5) as a factor Γ: 

 Γ = [𝛼𝐿𝐶1(1 − 𝑒
−𝑥) − 𝛼𝐿𝐶2(1 − 𝑒

𝑥) − (1 − 𝑒−𝛼𝑊)] 

 

(B.6) 

 

We now simplify the factor Γ. Rearranging (B.6) we get: 

 Γ = −𝛼𝐿(𝐶2 − 𝐶1) + 𝛼𝐿(𝐶2𝑒
𝑥 − 𝐶1𝑒

−𝑥) − (1 − 𝑒−𝛼𝑊) 

 

(B.7) 

 

Examine the factor (𝐶2𝑒
𝑥 − 𝐶1𝑒

−𝑥). Expand the exponentials into their Taylor series: 

 (𝐶2𝑒
𝑥 − 𝐶1𝑒

−𝑥)

= 𝐶2 (1 + 𝑥 +
𝑥2

2!
+
𝑥3

3!
+
𝑥4

4!
…) − 𝐶1(1 − 𝑥 +

𝑥2

2!
−
𝑥3

3!
+
𝑥4

4!

− ⋯) 

 

(B.8) 

 

 (𝐶2𝑒
𝑥 − 𝐶1𝑒

−𝑥)

= (𝐶2 − 𝐶1) + (𝐶2 + 𝐶1) [𝑥 +
𝑥3

3!
+ ⋯ ]

+ (𝐶2 − 𝐶1) [
𝑥2

2!
+
𝑥4

4!
+ ⋯ ] 

(B.9) 
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The first series in square brackets is that of sinh 𝑥, and the second is cosh 𝑥 − 1: 

 (𝐶2𝑒
𝑥 − 𝐶1𝑒

−𝑥) = (𝐶2 − 𝐶1) + (𝐶2 + 𝐶1) sinh 𝑥 + (𝐶2 − 𝐶1)(cosh 𝑥 − 1) 

 

(B.10) 

 (𝐶2𝑒
𝑥 − 𝐶1𝑒

−𝑥) = (𝐶2 + 𝐶1) sinh 𝑥 + (𝐶2 − 𝐶1) cosh 𝑥 

 

(B.11) 

 

Now we evaluate the expressions for 𝐶2 ± 𝐶1. Assume that the front and rear surface 

recombination velocities are identical (i.e. 𝑆 = 𝑆𝑓 = 𝑆𝑟). 

 

𝐶2 + 𝐶1 =
1

2

[
2𝐷
𝐿
(𝛼𝐷 + 𝑆) − (𝛼𝐷 − 𝑆)𝑒−𝛼𝑊 [(

𝐷
𝐿 + 𝑆) 𝑒

𝑥 + (
𝐷
𝐿 − 𝑆) 𝑒

−𝑥] ]

(
𝐷2

𝐿2
+ 𝑆2) sinh 𝑥 + 2𝑆

𝐷
𝐿 cosh 𝑥

 

 

(B.12) 

 

 

𝐶2 + 𝐶1 =
1

2

[
2𝐷
𝐿
(𝛼𝐷 + 𝑆) − (𝛼𝐷 − 𝑆)𝑒−𝛼𝑊 [

2𝐷
𝐿 cosh 𝑥 + 2𝑆 sinh 𝑥] ]

(
𝐷2

𝐿2
+ 𝑆2) sinh 𝑥 + 2𝑆

𝐷
𝐿 cosh 𝑥

 

 

 

(B.13) 
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𝐶2 + 𝐶1 =

𝐷
𝐿
(𝛼𝐷 + 𝑆) − (𝛼𝐷 − 𝑆)𝑒−𝛼𝑊 [

𝐷
𝐿 cosh 𝑥 + 𝑆 sinh 𝑥]

(
𝐷2

𝐿2
+ 𝑆2) sinh 𝑥 + 2𝑆

𝐷
𝐿 cosh 𝑥

 

 

 

(B.14) 

 

 

𝐶2 − 𝐶1 =
1

2

[2𝑆(𝛼𝐷 + 𝑆) − (𝛼𝐷 − 𝑆)𝑒−𝛼𝑊 [(
𝐷
𝐿 − 𝑆) 𝑒

−𝑥 − (
𝐷
𝐿 + 𝑆) 𝑒

𝑥]]

(
𝐷2

𝐿2
+ 𝑆2) sinh 𝑥 + 2𝑆

𝐷
𝐿 cosh 𝑥

 

 

(B.15) 

 

 

𝐶2 − 𝐶1 =
1

2

[2𝑆(𝛼𝐷 + 𝑆) + (𝛼𝐷 − 𝑆)𝑒−𝛼𝑊 [
2𝐷
𝐿 sinh 𝑥 + 2𝑆 cosh 𝑥]]

(
𝐷2

𝐿2
+ 𝑆2) sinh 𝑥 + 2𝑆

𝐷
𝐿 cosh 𝑥

 

 

 

(B.16) 
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𝐶2 − 𝐶1 =
𝑆(𝛼𝐷 + 𝑆) + (𝛼𝐷 − 𝑆)𝑒−𝛼𝑊 [

𝐷
𝐿 sinh 𝑥 + 𝑆 cosh 𝑥]

(
𝐷2

𝐿2
+ 𝑆2) sinh 𝑥 + 2𝑆

𝐷
𝐿 cosh 𝑥

 

 

 

(B.17) 

 

Substitute the final expressions for 𝐶2 ± 𝐶1 into Equation (B.11): 

 (𝐶2𝑒
𝑥 − 𝐶1𝑒

−𝑥)

= [

𝐷
𝐿
(𝛼𝐷 + 𝑆) − (𝛼𝐷 − 𝑆)𝑒−𝛼𝑊 [

𝐷
𝐿 cosh 𝑥 + 𝑆 sinh 𝑥]

(
𝐷2

𝐿2
+ 𝑆2) sinh 𝑥 + 2𝑆

𝐷
𝐿 cosh 𝑥

] sinh 𝑥

+ [
𝑆(𝛼𝐷 + 𝑆) + (𝛼𝐷 − 𝑆)𝑒−𝛼𝑊 [

𝐷
𝐿 sinh 𝑥 + 𝑆 cosh 𝑥]

(
𝐷2

𝐿2
+ 𝑆2) sinh 𝑥 + 2𝑆

𝐷
𝐿 cosh 𝑥

] cosh 𝑥 

 

 

(B.18) 

Group the denominator into a factor 𝛾: 

 (𝐶2𝑒
𝑥 − 𝐶1𝑒

−𝑥)

=
1

𝛾
[(𝛼𝐷 + 𝑆) (

𝐷

𝐿
sinh 𝑥 + 𝑆 cosh𝑥)

+ (𝛼𝐷 − 𝑆)𝑒−𝛼𝑊[𝑆(cosh2 𝑥 − sinh2 𝑥)]] 

(B.19) 
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(𝐶2𝑒
𝑥 − 𝐶1𝑒

−𝑥) =
[(𝛼𝐷 + 𝑆) (

𝐷
𝐿 sinh 𝑥 + 𝑆 cosh 𝑥) + 𝑆

(𝛼𝐷 − 𝑆)𝑒−𝛼𝑊]

(
𝐷2

𝐿2
+ 𝑆2) sinh 𝑥 + 2𝑆

𝐷
𝐿 cosh𝑥

 

 

 

(B.20) 

Let’s condense the above expressions by introducing some dimensionless parameters 𝜇 & 𝜈: 

 
𝜇 ≡

𝛼𝐷

𝑆
 

 

(B.21) 

 

 
𝜈 ≡

𝐷

𝐿𝑆
 

 

(B.22) 

 

Divide the top and bottom of 𝐶2 − 𝐶1 by 𝑆2: Now 𝐶2 − 𝐶1 becomes: 



Ph.D Thesis-Kevin M.W. Boyd  McMaster University-Engineering Physics 

180 

 

 

 

𝐶2 − 𝐶1 =
(
𝛼𝐷
𝑆 + 1) + (

𝛼𝐷
𝑆 − 1) 𝑒−𝛼𝑊 [

𝐷
𝐿𝑆 sinh 𝑥 + cosh 𝑥]

(
𝐷2

𝐿2𝑆2
+ 1) sinh 𝑥 + 2

𝐷
𝐿𝑆 cosh 𝑥

 

 

 

(B.23) 

 

 
𝐶2 − 𝐶1 =

(𝜇 + 1) + (𝜇 − 1)𝑒−𝛼𝑊[𝜈 sinh 𝑥 + cosh 𝑥]

(𝜈2 + 1) sinh 𝑥 + 2𝜈 cosh 𝑥
 

 

 

(B.24) 

Dividing the top and bottom of (𝐶2𝑒
𝑥 − 𝐶1𝑒

−𝑥) by 𝑆2: 

 

(𝐶2𝑒
𝑥 − 𝐶1𝑒

−𝑥) =
[(
𝛼𝐷
𝑆 + 1) (

𝐷
𝐿𝑆 sinh 𝑥 + cosh 𝑥) + (

𝛼𝐷
𝑆 − 1) 𝑒−𝛼𝑊]

(
𝐷2

𝐿2𝑆2
+ 1) sinh 𝑥 + 2

𝐷
𝐿𝑆 cosh 𝑥

 

 

(B.25) 

 

 
(𝐶2𝑒

𝑥 − 𝐶1𝑒
−𝑥) =

[(𝜇 + 1)(𝜈 sinh 𝑥 + cosh 𝑥) + (𝜇 − 1)𝑒−𝛼𝑊]

(𝜈2 + 1) sinh 𝑥 + 2𝜈 cosh 𝑥
 

 

 

(B.26) 
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Letting 𝛾 = (𝜈2 + 1) sinh 𝑥 + 2𝜈 cosh 𝑥, substitute (B.24) and (B.26) into (B.7): 

 
Γ = −𝛼𝐿 [

(𝜇 + 1) + (𝜇 − 1)𝑒−𝛼𝑊(𝜈 sinh 𝑥 + cosh 𝑥)

𝛾
]

+ 𝛼𝐿 [
(𝜇 + 1)(𝜈 sinh 𝑥 + cosh 𝑥) + (𝜇 − 1)𝑒−𝛼𝑊

𝛾
] − (1 − 𝑒−𝛼𝑊) 

 

(B.27) 

 

 
Γ = −

𝛼𝐿

𝛾
[(𝜇 + 1) + (𝜇 − 1)𝑒−𝛼𝑊(𝜈 sinh 𝑥 + cosh 𝑥)

− (𝜇 + 1)(𝜈 sinh 𝑥 + cosh 𝑥) − (𝜇 − 1)𝑒−𝛼𝑊] − (1 − 𝑒−𝛼𝑊) 

 

 

(B.28) 

 

Let 𝛽 = (𝜈 sinh 𝑥 + cosh 𝑥) 

 
Γ = −

𝛼𝐿

𝛾
[(𝜇 + 1) + (𝜇 − 1)𝑒−𝛼𝑊𝛽 − (𝜇 + 1)𝛽 − (𝜇 − 1)𝑒−𝛼𝑊] − (1 − 𝑒−𝛼𝑊) 

 

(B.29) 
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Γ = −

𝛼𝐿

𝛾
[(𝜇 + 1) + (𝜇 − 1)𝑒−𝛼𝑊(𝛽 − 1) − (𝜇 + 1)𝛽] − (1 − 𝑒−𝛼𝑊) 

 

 

(B.30) 

 

 
Γ = −

𝛼𝐿

𝛾
[𝜇 + 1 + 𝜇𝑒−𝛼𝑊(𝛽 − 1) − 𝑒−𝛼𝑊(𝛽 − 1) − 𝜇𝛽 − 𝛽] − (1 − 𝑒−𝛼𝑊) 

 

 

(B.31) 

 

 
Γ = −

𝛼𝐿

𝛾
[𝜇(1 + 𝑒−𝛼𝑊(𝛽 − 1) − 𝛽) + (1 − 𝑒−𝛼𝑊(𝛽 − 1) − 𝛽] − (1 − 𝑒−𝛼𝑊) 

(B.32) 

 

 

 
Γ = −

𝛼𝐿

𝛾
[𝜇(1 − 𝑒−𝛼𝑊)(1 − 𝛽) + (1 + 𝑒−𝛼𝑊)(1 − 𝛽)] − (1 − 𝑒−𝛼𝑊) 

 

(B.33) 
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Γ =

𝛼𝐿

𝛾
(𝛽 − 1)[𝜇(1 − 𝑒−𝛼𝑊) + (1 + 𝑒−𝛼𝑊)] − (1 − 𝑒−𝛼𝑊) 

 

 

(B.34) 

Substitute Γ into Equation (B.5): 

 

𝔗 =
𝐿2

𝐷(𝛼2𝐿2 − 1)

𝛼𝐿
𝛾
(𝛽 − 1)[𝜇(1 − 𝑒−𝛼𝑊) + (1 + 𝑒−𝛼𝑊)] − (1 − 𝑒−𝛼𝑊)

(1 − 𝑒−𝛼𝑊)
 

 

 

(B.35) 

 

 
𝔗 =

𝐿2

𝐷(𝛼2𝐿2 − 1)
[
𝛼𝐿

𝛾
(𝛽 − 1) [𝜇 +

1 + 𝑒−𝛼𝑊

1 − 𝑒−𝛼𝑊
] − 1] 

 

(B.36) 

 

 
𝔗 =

𝐿2

𝐷(𝛼2𝐿2 − 1)
[
𝛼𝐿

𝛾
(𝛽 − 1) (𝜇 + coth

𝛼𝑊

2
) − 1] 

 

 

(B.37) 
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Let’s examine the factor 
𝛽−1

𝛾
. Substitute in the values for 𝛽 and 𝛾: 

 𝛽 − 1

𝛾
=

𝜈 sinh 𝑥 + cosh 𝑥

(𝜈2 + 1) sinh 𝑥 + 2𝜈 cosh 𝑥
 

 

(B.38) 

 

This simplifies to: 

 𝛽 − 1

𝛾
=

1

𝜈 + coth
𝑥
2

 

 

(B.39) 

 

Substituting this into (B.37) we get: 

 

𝔗 =
𝐿2

𝐷(𝛼2𝐿2 − 1)
[
𝜇 + coth

𝛼𝑊
2

𝜈 + coth
𝑥
2

𝛼𝐿 − 1] 

 

(B.40) 
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Appendix C Solution to 3D Continuity Equation 

In this appendix I derive a solution to the excess carrier density 𝑛(𝑟, 𝑧, 𝑡) as a function of 3D 

position and time for the case of an impulse-response optical generation rate with a Gaussian 

spatial distribution of power. This derivation is a generalization of the 1D solution given by Luke 

and Cheng [51]. The derivation uses separation of variables to separate the equation into two 

differential equations: one that depends only on the radial coordinate, and one that depends on the 

axial coordinate and time. The axial/time dependent equation is solved following the procedure 

used by Luke and Cheng. The resulting solution for 𝑛(𝑟, 𝑧, 𝑡) depends on the Luke and Cheng 

solution, as well as a radial component. 

The 3D continuity equation in cylindrical coordinates is given by: 

 𝜕𝑛

𝜕𝑡
= 𝐷

𝜕2𝑛

𝜕𝑟2
+
𝐷

𝑟

𝜕𝑛

𝜕𝑟
+ 𝐷

𝜕2𝑛

𝜕𝑧2
− 
𝑛

𝜏𝑏
 

 

(C.1) 

where 𝑛 is the excess carrier density, 𝜏𝑏 is the bulk recombination lifetime, and 𝐷 is the diffusion 

coefficient. The goal is to solve this equation in the time domain for an impulse-response 

generation, and then convert to the frequency-domain via Fourier transform. Let the solution be 

given by: 

 𝑛(𝑟, 𝑧, 𝑡) = Θ(𝑧, 𝑡)𝑅(𝑟) 

 

(C.2) 

Substituting into (C.2) into (C.1): 
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Θ𝑡 = 𝐷Θ𝑅𝑟𝑟 +

𝐷

𝑟
Θ𝑅𝑟 + 𝐷Θ𝑧𝑧𝑅 − 

Θ𝑅

𝜏𝑏
 

 

 

(C.3) 

 

 1

𝐷

Θ𝑡
Θ
=
𝑅𝑟𝑟
𝑅
+
1

𝑟

𝑅𝑟
𝑅
+
Θ𝑧𝑧
Θ
− 

1

𝐷𝜏𝑏
 

 

(C.4) 

 

 
[
1

𝐷

Θ𝑡
Θ
−
Θ𝑧𝑧
Θ
+

1

𝐷𝜏𝑏
] − [

𝑅𝑟𝑟
𝑅
+
1

𝑟

𝑅𝑟
𝑅
] = 0 

(C.5) 

 

 

The first term in square brackets in (C.5) depends only on 𝑧, 𝑡, whereas the second term only 

depends on 𝑟. Since these terms vary independently of each other, the only way for (C.5) to be 

satisfied is for each term to be equal to a constant −𝛾𝑚
2  (we incorporate the index 𝑚 since this term 

will be summed over later on). Let’s start with the first term: 

 1

𝐷

Θ𝑡
Θ
−
Θ𝑧𝑧
Θ
+

1

𝐷𝜏𝑏
= −𝛾𝑚

2  
(C.6) 
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 𝜕Θ

𝜕𝑡
= 𝐷

𝜕2Θ

𝜕𝑧2
− [

1

𝜏𝑏
+ 𝐷𝛾𝑚

2 ] Θ 

 

(C.7) 

 

 

According to Luke and Cheng [51], the solution to an equation of the form in (C.7) is given by: 

 
Θ(𝑧, 𝑡) = 𝑒

−𝑡(
1
𝜏𝑏
+𝐷𝛾𝑚

2 )
[𝐴𝑛𝑒

−𝛼𝑛
2𝐷𝑡 cos 𝛼𝑛𝑧 + 𝐵𝑛𝑒

−𝛽𝑛
2𝐷𝑡 sin 𝛽𝑛𝑧] 

 

(C.8) 

where 𝐴𝑛, 𝐵𝑛, 𝛼𝑛, & 𝛽𝑛 are constants determined by the boundary conditions. Now consider the 

second term in (C.5): 

 𝑅𝑟𝑟
𝑅
+
1

𝑟

𝑅𝑟
𝑅
= −𝛾2 

 

(C.9) 

  

 
𝑟2
𝜕2𝑅

𝜕𝑟2
+ 𝑟

𝜕𝑅

𝜕𝑟
+ 𝑟2𝛾2𝑅 = 0 

 

(C.10) 

 

The solution to this equation is given by: 
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 𝑅(𝑟) = 𝑐1𝐽0(𝛾𝑟) + 𝑐2𝑌0(𝛾𝑟) 

 

(C.11) 

where 𝑐1 & 𝑐2 are constants, and 𝐽0 & 𝑌0 are zeroth order Bessel functions of the first and second 

kind, respectively. Since the solution must be finite as 𝑟 → 0, we can take 𝑐2 as 0. We take 𝑐1 =

𝑐𝑚, since we will sum over the solution later on: 

 𝑅(𝑟) = 𝑐𝑚𝐽0(𝛾𝑚𝑟) 

 

(C.12) 

The total solution for 𝑛(𝑧, 𝑟, 𝑡) is: 

 
𝑛(𝑧, 𝑟, 𝑡) = 𝑒

−
𝑡
𝜏𝑏∑∑[𝐴𝑚𝑛𝑒

−𝛼𝑛
2𝐷𝑡 cos 𝛼𝑛𝑧 + 𝐵𝑚𝑛𝑒

−𝛽𝑛
2𝐷𝑡 sin 𝛽𝑛𝑧]

𝑛𝑚

𝑒−𝛾𝑚
2 𝐷𝑡𝐽0(𝛾𝑚𝑟) 

 

(C.13) 

where the 𝑐𝑚 coefficient in (C.12) has been bundled into the 𝐴𝑛 & 𝐵𝑛 coefficients which become 

𝐴𝑚𝑛 & 𝐵𝑚𝑛. The carrier density 𝑛(𝑟, 𝑧, 𝑡) is subject to two boundary conditions for the 𝑧 variable, 

two for the 𝑟 variable, and an initial condition for 𝑡 = 0. The boundary conditions along 𝑧 are for 

surface recombination: 

 
𝐷
𝜕𝑛

𝜕𝑧
|
−
𝑊
2

= 𝑆 𝑛 

 

(C.14) 
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𝐷
𝜕𝑛

𝜕𝑧
|
𝑊
2

= −𝑆 𝑛 

 

(C.15) 

where 𝑊 is the wafer thickness, and 𝑆 is the surface recombination velocity.  If the entire solution 

(C.13) satisfies the boundary conditions of (C.14) and (C.15) then each individual term will as 

well. Substituting the 𝑚𝑛𝑡ℎ term from (C.13) into (C.14) and (C.15) we get: 

 
𝐷 [𝐴𝑚𝑛𝑒

−𝛼𝑛
2𝐷𝑡𝛼𝑛 sin

𝛼𝑛𝑊

2
+ 𝐵𝑚𝑛𝑒

−𝛽𝑛
2𝐷𝑡𝛽𝑛 cos

𝛽𝑛𝑊

2
]

= 𝑆 [𝐴𝑚𝑛𝑒
−𝛼𝑛

2𝐷𝑡 cos
𝛼𝑛𝑊

2
− 𝐵𝑚𝑛𝑒

−𝛽𝑛
2𝐷𝑡 sin

𝛽𝑛𝑊

2
] 

 

(C.16) 

 
𝐷 [−𝐴𝑚𝑛𝑒

−𝛼𝑛
2𝐷𝑡𝛼𝑛 sin

𝛼𝑛𝑊

2
+ 𝐵𝑚𝑛𝑒

−𝛽𝑛
2𝐷𝑡𝛽𝑛 cos

𝛽𝑛𝑊

2
]

= −𝑆 [𝐴𝑚𝑛𝑒
−𝛼𝑛

2𝐷𝑡 cos
𝛼𝑛𝑊

2
+ 𝐵𝑚𝑛𝑒

−𝛽𝑛
2𝐷𝑡 sin

𝛽𝑛𝑊

2
] 

 

(C.17) 

Subtracting and adding (C.16) and (C.17) together yield conditions for the 𝛼𝑛 & 𝛽𝑛 coefficients, 

respectively. For the 𝛼𝑛 coefficient we get: 

 
2𝐷𝐴𝑚𝑛𝑒

−𝛼𝑛
2𝑡𝛼𝑛 sin

𝛼𝑛𝑊

2
= 2𝑆𝐴𝑚𝑛𝑒

−𝛼𝑛
2𝐷𝑡 cos

𝛼𝑛𝑊

2
 

 

(C.18) 

 𝛼𝑛𝐷

𝑆
= cot

𝛼𝑛𝑊

2
 

(C.19) 
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For the 𝛽𝑛 coefficient: 

 
2𝐷𝐵𝑚𝑛𝑒

−𝛽𝑛
2𝐷𝑡𝛽𝑛 cos

𝛽𝑛𝑊

2
= −2𝑆𝐵𝑚𝑛𝑒

−𝛽𝑛
2𝐷𝑡 sin

𝛽𝑛𝑊

2
 

 

(C.20) 

 𝛽𝑛𝐷

𝑆
= − tan

𝛽𝑛𝑊

2
 

 

(C.21) 

We define 𝛿𝑛1 & 𝛿𝑛2 as: 

 
𝛿𝑛1 =

𝛼𝑛𝑊

2
 

(C.22) 

 
𝛿𝑛2 =

𝛽𝑛𝑊

2
 

 

(C.23) 

Substituting 𝛿𝑛1 & 𝛿𝑛2 into (C.19) & (C.21), respectively, we get: 

 
cot 𝛿𝑛1 =

2𝐷

𝑆𝑊
𝛿𝑛1 

 

(C.24) 

 
tan 𝛿𝑛2 = −

2𝐷

𝑆𝑊
𝛿𝑛2 

(C.25) 
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Thus the coefficients 𝛼𝑛 & 𝛽𝑛 are solutions to the transcendental equations (C.24) & (C.25) . This 

is the exact result obtained by Luke and Cheng [51]. For the radial direction, we require that the 

solution goes to 0 as 𝑟 → ∞, and that the flux about 𝑟 = 0 is also 0, due to radial symmetry. Both 

of these conditions are satisfied by 𝐽0(𝛾𝑚𝑟). 

Now that 𝑛(𝑟, 𝑧, 𝑡) satisfies all of the boundary conditions, we can solve for the initial condition. 

For an impulse-response generation, the initial value of 𝑛(𝑟, 𝑧, 𝑡) is given by: 

 

 

𝑛(𝑟, 𝑧, 0) = [
2𝑃0𝜆

𝜋𝑤2ℎ𝑐
𝑒
−
2𝑟2

𝑤2 ] 𝛼휂
(𝑒−𝛼𝜂(𝑧+

𝑊
2
) + 𝑅𝑟𝑒𝑓𝑒

−𝛼𝜂𝑊𝑒−𝛼𝜂(−𝑧+
𝑊
2
))

1 − (𝑅𝑟𝑒𝑓𝑒−𝛼𝜂𝑊)
2   

 

(C.26) 

where 𝛼 is the band-to-band absorption coefficient of the pump, 𝑤 is the pump beam radius, and 

𝑅𝑟𝑒𝑓 is the reflectance at the air-silicon interface. The term in square brackets is the radial photon 

flux density, and the remaining term is due to band-to-band absorption of the laser in the wafer. 

Substituting in the solution (C.13) at 𝑡 = 0: 

 ∑∑[𝐴𝑚𝑛 cos 𝛼𝑛𝑧 + 𝐵𝑚𝑛 sin 𝛽𝑛𝑧]

𝑛𝑚

𝐽0(𝛾𝑚𝑟)

= 𝑔0
′′
(𝑒−𝛼𝜂(𝑧+

𝑊
2
) + 𝑅𝑟𝑒𝑓𝑒

−𝛼𝜂𝑊𝑒−𝛼𝜂(−𝑧+
𝑊
2
))

1 − (𝑅𝑟𝑒𝑓𝑒−𝛼𝜂𝑊)
2 𝑒

−
2𝑟2

𝑤2  

 

(C.27) 
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 ∑∑[𝐴𝑚𝑛 cos 𝛼𝑛𝑧 + 𝐵𝑚𝑛 sin 𝛽𝑛𝑧]

𝑛𝑚

𝐽0(𝛾𝑚𝑟) = 𝑔(𝑧)ℎ(𝑟) 

 

(C.28) 

where 𝑔0
′′ is given by: 

 
𝑔0
′′ = [

2𝑃0𝜆

𝜋𝑤2ℎ𝑐
] 𝛼휂 

 

(C.29) 

 

 

𝑔(𝑧) = 𝑔0
′′
(𝑒−𝛼𝜂(𝑧+

𝑊
2
) + 𝑅𝑟𝑒𝑓𝑒

−𝛼𝜂𝑊𝑒−𝛼𝜂(−𝑧+
𝑊
2
))

1 − (𝑅𝑟𝑒𝑓𝑒−𝛼𝜂𝑊)
2  

 

(C.30) 

 

 
ℎ(𝑟) = 𝑒

−
2𝑟2

𝑤2  

 

(C.31) 

 

To solve for the coefficients 𝐴𝑚𝑛 & 𝐵𝑚𝑛 we need to use the orthogonality of cos 𝛼𝑛𝑧  & 𝐽0(𝛾𝑚𝑧). 

The orthogonality relationship for Bessel functions on an infinite domain is given by: 

 



Ph.D Thesis-Kevin M.W. Boyd  McMaster University-Engineering Physics 

193 

 

 

 
∫ 𝑟𝐽0(𝛾𝑚 𝑟)𝐽0(𝛾𝑛 𝑟)𝑑𝑟
∞

0

=
𝛿(𝛾𝑚 − 𝛾𝑛)

𝛾𝑚
 

 

(C.32) 

 

where 𝛿 is the Dirac Delta Function. We determine 𝐴𝑚𝑛 by multiplying both sides of (C.27) by 

𝑟𝐽0(
𝜁𝑚

𝑎
 𝑟) and cos 𝛼𝑛𝑧 and integrating: 

 

∬ (∑∑[𝐴𝑚𝑛 cos 𝛼𝑛𝑧 + 𝐵𝑚𝑛 sin 𝛽𝑛𝑧]

𝑛𝑚

𝐽0(𝛾𝑚𝑟))

𝑟=∞,𝑧=
𝑊
2

𝑟=0,𝑧=−
𝑊
2

𝐽0(𝛾𝑚𝑟) cos 𝛼𝑛𝑧 𝑑𝑟𝑑𝑧

= ∬ ℎ(𝑟)𝑔(𝑧)𝑑𝑟𝑑𝑧

𝑟=∞,𝑧=
𝑊
2

𝑟=0,𝑧=−
𝑊
2

 

 

(C.33) 

 

 

Since cos 𝛼𝑛𝑧 & sin 𝛽𝑛𝑧 are orthogonal, the 𝐵𝑚𝑛 terms drops out. 

 
𝐴𝑚𝑛

1

𝛾𝑚
∫ cos2 𝛼𝑛𝑧 𝑑𝑧
𝑊/2

−𝑊/2

= [∫ 𝑟ℎ(𝑟)𝐽0(𝛾𝑚𝑟)
∞

0

𝑑𝑟] [∫ 𝑔(𝑧) cos 𝛼𝑛𝑧 𝑑𝑧
𝑊/2

−𝑊/2

] 

 

(C.34) 
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To isolate 𝐵𝑚𝑛 we multiply by 𝑟𝐽0(
𝜁𝑚

𝑎
 𝑟) and sin 𝛼𝑛𝑧 and integrate, which leads to: 

 
𝐵𝑚𝑛

1

𝛾𝑚
∫ sin2 𝛽𝑛𝑧 𝑑𝑧
𝑊/2

−𝑊/2

= [∫ 𝑟ℎ(𝑟)𝐽0(𝛾𝑚𝑟)
∞

0

𝑑𝑟] [∫ 𝑔(𝑧) sin 𝛽𝑛𝑧 𝑑𝑧
𝑊/2

−𝑊/2

] 

 

 

(C.35) 

We can write 𝐴𝑚𝑛 & 𝐵𝑚𝑛 in terms of the radial Bessel coefficient, and the axial Luke and Cheng 

coefficients: 

 𝐴𝑚𝑛 = 𝐴𝑚
𝐵𝑒𝑠𝐴𝑛

𝑎𝑥 

 

(C.36) 

 

 𝐵𝑚𝑛 = 𝐴𝑚
𝐵𝑒𝑠𝐵𝑛

𝑎𝑥 

 

(C.37) 

 

where 𝐴𝑚
𝐵𝑒𝑠, 𝐴𝑛

𝑎𝑥 and 𝐵𝑛
𝑎𝑥 are given by: 

 
𝐴𝑚
𝐵𝑒𝑠 = 𝛾𝑚∫ 𝑟ℎ(𝑟)𝐽0(𝛾𝑚𝑟)

∞

0

𝑑𝑟 = ∫ 𝑟𝑒
−
2𝑟2

𝑤2 𝐽0(𝛾𝑚 𝑟)𝑑𝑟
∞

0

 

 

(C.38) 
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𝐴𝑛
𝑎𝑥 =

∫ 𝑔(𝑧) cos 𝛼𝑛𝑧 𝑑𝑧
𝑊/2

−𝑊/2

∫ cos2 𝛼𝑛𝑧 𝑑𝑧
𝑊/2

−𝑊/2

=
4𝑔0

′𝛼𝑛𝑒
−
𝛼𝜂𝑊
2 (1 + 𝑅𝑟𝑒𝑓𝑒

−
𝛼𝜂𝑊
2 )

((𝛼휂)2 + 𝛼𝑛2)(𝛼𝑛𝑊+ sin 𝛼𝑛𝑊)
[𝛼휂 sinh (

𝛼휂𝑊

2
) cos (

𝛼𝑛𝑊

2
)

+ 𝛼𝑛 cosh (
𝛼휂𝑊

2
) sin (

𝛼𝑛𝑊

2
)]  

 

(C.39) 

 

 

 

 

 

𝐵𝑛
𝑎𝑥 =

∫ 𝑔(𝑧) sin 𝛽𝑛𝑧 𝑑𝑧
𝑊/2

−𝑊/2

∫ sin2 𝛽𝑛𝑧 𝑑𝑧
𝑊/2

−𝑊/2

=
−4𝑔0

′𝛼𝑛𝑒
−
𝛼𝜂𝑊
2 (1 − 𝑅𝑟𝑒𝑓𝑒

−
𝛼𝜂𝑊
2 )

((𝛼휂)2 + 𝛽𝑛2)(𝛼𝑛𝑊+ sin𝛽𝑛𝑊)
[𝛼휂 cosh (

𝛼휂𝑊

2
) sin (

𝛽𝑛𝑊

2
)

− 𝛽𝑛 sinh (
𝛼휂𝑊

2
) cos (

𝛽𝑛𝑊

2
)]  

 

(C.40) 
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where 𝑔0′ is a prefactor given by: 

 

 
𝑔0
′ =

𝜙0𝛼휂(1 − 𝑅𝑟𝑒𝑓)

1 − (𝑅𝑟𝑒𝑓𝑒
−𝛼𝜂𝑊)

2 

 

(C.41) 

 

where 𝜙0 is the incident photon flux per unit area and 𝑅𝑟𝑒𝑓 is the reflectance coefficient of the air-

semiconductor interface. 𝐴𝑛
𝑎𝑥  & 𝐵𝑛

𝑎𝑥 are the axial coefficients of the 3D solution, and are given by 

Equations 1d and 1e of [51]. Substitute (C.36) & (C.37) into (C.13), interchange the order of 

summation and isolate 𝑚 & 𝑛 terms: 

 
𝑛(𝑧, 𝑟, 𝑡) = 𝑒

−
𝑡
𝜏𝑏∑[𝐴𝑛

𝑎𝑥𝑒−𝛼𝑛
2𝐷𝑡 cos 𝛼𝑛𝑧

𝑛

+ 𝐵𝑛
𝑎𝑥𝑒−𝛽𝑛

2𝐷𝑡 sin 𝛽𝑛𝑧]∑𝐴𝑚
𝐵𝑒𝑠𝑒−𝛾𝑚

2 𝐷𝑡𝐽0(𝛾𝑚𝑟)

𝑚

 

 

 

(C.42) 

The Bessel coefficient is given by: 
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𝐴𝑚
𝐵𝑒𝑠 =

𝑤2𝛾𝑚
4

𝑒
−𝑤2𝛾𝑚

2

8  

 

 

(C.43) 

Substituting (C.43) into (C.42): 

 
𝑛(𝑧, 𝑟, 𝑡) = 𝑒

−
𝑡
𝜏𝑏∑[𝐴𝑛

𝑎𝑥𝑒−𝛼𝑛
2𝐷𝑡 cos 𝛼𝑛𝑧

𝑛

+ 𝐵𝑛
𝑎𝑥𝑒−𝛽𝑛

2𝐷𝑡 sin 𝛽𝑛𝑧]∑
𝑤2𝛾𝑚
4

𝑒
−𝑤2𝛾𝑚

2

8 𝑒−𝛾𝑚
2 𝐷𝑡𝐽0(𝛾𝑚𝑟)

𝑚

 

 

 

(C.44) 

The Bessel function orthogonality relationship imposes no conditions on the value of 𝛾𝑚, so we 

may use any real number for 𝛾𝑚. With this in mind, we convert the summation into an integration: 

 

∑𝑒−𝛾𝑚
2 𝐷𝑡

𝑤2𝛾𝑚
4

𝑒
−𝑤2𝛾𝑚

2

8 𝐽0(𝛾𝑚𝑟)

𝑚

= ∫ 𝑒−𝛾
2𝐷𝑡

𝑤2𝛾

4
𝑒
−𝑤2𝛾2

8 𝐽0(𝛾𝑟)𝑑𝛾

∞

0

 

 

(C.45) 
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∑𝑒−𝛾𝑚
2 𝐷𝑡

𝑤2𝛾𝑚
4

𝑒
−𝑤2𝛾𝑚

2

8 𝐽0(𝛾𝑚𝑟)

𝑚

=
𝑤2

4
∫ 𝛾𝑒

−𝛾2(𝐷𝑡+
𝑤2

8
)
𝐽0(𝛾𝑟)𝑑𝛾

∞

0

 

 

(C.46) 

 

Since the integral is over an odd function, we take the integral from 0 to infinity. If taken from 

negative to positive infinity, the result is 0 which is a trivial solution. This integral is given by: 

 

 
𝑤2

4
∫ 𝛾𝑒

−𝛾2(𝐷𝑡+
𝑤2

8
)
𝐽0(𝛾𝑟)𝑑𝛾

∞

0

=
𝑤2

8 (𝐷𝑡 +
𝑤2

8 )
𝑒

−
𝑟2

4(𝐷𝑡+
𝑤2

8
)
 

 

 

(C.47) 

 

 
𝑤2

4
∫ 𝛾𝑒

−𝛾2(𝐷𝑡+
𝑤2

8
)
𝐽0(𝛾𝑟)𝑑𝛾

∞

0

=
1

𝑡
𝜏𝐷
+ 1

𝑒

−
2𝑟2

𝑤2(
𝑡
𝜏𝐷
+1)

 

 

 

(C.48) 
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where 𝜏𝐷 is the diffusion time constant, given by: 

 
𝜏𝐷 =

𝑤2

8𝐷
 

 

(C.49) 

Substituting (C.48) into the summation over 𝑚 in (C.44), we arrive at the full solution to the 3D 

continuity equation: 

 

𝑛(𝑧, 𝑟, 𝑡) = 𝑒
−
𝑡
𝜏𝑏

1
𝑡
𝜏𝐷
+ 1

𝑒

−2𝑟2

𝑤2(
𝑡
𝜏𝐷
+1)

∑[𝐴𝑛
𝑎𝑥𝑒−𝛼𝑛

2𝐷𝑡 cos 𝛼𝑛𝑧 + 𝐵𝑛
𝑎𝑥𝑒−𝛽𝑛

2𝐷𝑡 sin 𝛽𝑛𝑧]

𝑛

 

 

 

(C.50) 

Equation (C.50) is a fully general solution to the 3D continuity equation in cylindrical coordinates 

for a Gaussian-shaped excitation beam. The solution was derived by assuming that the generation 

rate is a Dirac-Delta function in time. The solution for an arbitrary temporal generation rate may 

be computed by convolving (C.50) with the generation rate. This equation is fully general, 

accounting for the 3D transport of free-carriers in a semiconductor, as well as recombination in 

the bulk and at the surface. Furthermore, because the equation was solved for a Gaussian-shaped 

excitation it is applicable to any experiment employing single-mode lasers. 
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Appendix D Evaluation of Triple Integral over 

𝑛(𝑟, 𝑧, 𝑡) 

The following integral is evaluated in this Appendix: 

 

ℑ = ∫ ∫ ∫ 𝑟𝑒
−
2𝑟2

𝑤𝑝𝑟
2
𝑛(𝑟, 𝑧, 𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡

∞

𝑡=0

𝑑𝑧𝑑𝑟

𝑧=
𝑊
2

𝑧=−
𝑊
2

𝑟=∞

𝑟=0

 

 

(D.1) 

 

where 𝑛(𝑟, 𝑧, 𝑡) is given by: 

 

𝑛(𝑟, 𝑧, 𝑡) = 𝑒
−
𝑡
𝜏𝑏

1
𝑡
𝜏𝐷
+ 1

𝑒

−2𝑟2

𝑤𝑝𝑢
2 (

𝑡
𝜏𝐷
+1)

∑[𝐴𝑛
𝑎𝑥𝑒−𝛼𝑛

2𝐷𝑡 cos 𝛼𝑛𝑧 + 𝐵𝑛
𝑎𝑥𝑒−𝛽𝑛

2𝐷𝑡 sin 𝛽𝑛𝑧]

𝑛

 

 

(D.2) 

 

where 𝑤𝑝𝑢 is the radius of the pump beam and the diffusion time constant is given by 𝜏𝐷 =

𝑤𝑝𝑢
2 /8𝐷 The integral of the excess carrier density over the axial direction of the wafer is given by: 

 

𝑛2𝐷(𝑟, 𝑡) = ∫ 𝑛(𝑟, 𝑧, 𝑡)𝑑𝑧

𝑊/2

−𝑊/2

 

(D.3) 
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𝑛2𝐷(𝑟, 𝑡) = 𝑒
−
𝑡
𝜏𝑏

1
𝑡
𝜏𝐷
+ 1

𝑒

−2𝑟2

𝑤𝑝𝑢
2 (

𝑡
𝜏𝐷
+1)

∫ ∑[𝐴𝑛
𝑎𝑥𝑒−𝛼𝑛

2𝐷𝑡 cos 𝛼𝑛𝑧

𝑛

𝑊/2

−𝑊/2

+ 𝐵𝑛
𝑎𝑥𝑒−𝛽𝑛

2𝐷𝑡 sin 𝛽𝑛𝑧] 𝑑𝑧 

 

 

(D.4) 

 

Since the second term in square brackets is odd, it will not contribute to the integral and may be 

neglected: 

 

𝑛2𝐷(𝑟, 𝑡) = 𝑒
−
𝑡
𝜏𝑏

1
𝑡
𝜏𝐷
+ 1

𝑒

−2𝑟2

𝑤𝑝𝑢
2 (

𝑡
𝜏𝐷
+1)

∫ ∑𝐴𝑛
𝑎𝑥𝑒−𝛼𝑛

2𝐷𝑡 cos 𝛼𝑛𝑧

𝑛

𝑑𝑧

𝑊/2

−𝑊/2

 

 

 

(D.5) 

Multiply the top and bottom of (D.5) by the wafer thickness 𝑊 and bring the exponential time 

dependencies together: 
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𝑛2𝐷(𝑟, 𝑡) =
1

𝑡
𝜏𝐷
+ 1

𝑒

−2𝑟2

𝑤𝑝𝑢
2 (

𝑡
𝜏𝐷
+1)
𝑊

[
 
 
 
 
1

𝑊
∫∑𝐴𝑛

𝑎𝑥𝑒−(𝜏𝑏
−1+𝛼𝑛

2𝐷)𝑡 cos 𝛼𝑛𝑧

𝑛

𝑑𝑧

𝑊
2

−
𝑊
2 ]

 
 
 
 

 

 

 

(D.6) 

 

The term in square brackets is Equation 3a in Refs [51] (reproduced in Equation (3.24) in Chapter 

3). Substituting this into 𝑛2𝐷(𝑟, 𝑡) we get: 

 

𝑛2𝐷(𝑟, 𝑡) =
1

𝑡
𝜏𝐷
+ 1

𝑒

−2𝑟2

𝑤2(
𝑡
𝜏𝐷
+1)
𝑊  X 

[
8𝑔0𝛼휂𝑒

−
𝛼𝜂𝑊
2

𝑊
∑ 

sin (
𝛼𝑛𝑊
2 )

((𝛼휂)2 + 𝛼𝑛2)(𝛼𝑛𝑊 + sin 𝛼𝑛𝑊)
[𝛼휂 sinh (

𝛼휂𝑊

2
) cos (

𝛼𝑛𝑊

2
)

𝑛

+ 𝛼𝑛 cosh (
𝛼휂𝑊

2
) sin (

𝛼𝑛𝑊

2
)] 𝑒−(𝜏𝑏

−1+𝛼𝑛
2𝐷)𝑡] 

 

(D.7) 

 

 

𝑛2𝐷(𝑟, 𝑡) = 8𝑔0𝛼휂𝑒
−
𝛼𝜂𝑊
2

1
𝑡
𝜏𝐷
+ 1

𝑒

−2𝑟2

𝑤2(
𝑡
𝜏𝐷
+1)

 ∑𝑒−(𝜏𝑏
−1+𝛼𝑛

2𝐷)𝑡𝐴𝑛
𝑙𝑐

𝑛

 

(D.8) 
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where 𝐴𝑛
𝑙𝑐 is the Luke and Cheng coefficient, given by: 

 

𝐴𝑛
𝑙𝑐 =

sin (
𝛼𝑛𝑊
2 )

((𝛼휂)2 + 𝛼𝑛2)(𝛼𝑛𝑊+ sin𝛼𝑛𝑊)
[𝛼휂 sinh (

𝛼휂𝑊

2
) cos (

𝛼𝑛𝑊

2
)

+ 𝛼𝑛 cosh (
𝛼휂𝑊

2
) sin (

𝛼𝑛𝑊

2
)] 

 

(D.9) 

and 𝑔0 is: 

 
𝑔0 =

2𝑃𝑝𝑢𝜆𝑝𝑢

𝜋𝑤𝑝𝑢2 ℎ𝑐

1 − 𝑅𝑝𝑢

1 − 𝑅𝑝𝑢𝑒−𝛼𝜂𝑊
 

 

(D.10) 

where 𝑃𝑝𝑢 is the incident pump power, 𝑅𝑝𝑢 is the pump reflectance from the surface, and 𝛼𝑝𝑢 is 

the band-to-band absorption coefficient of the pump. 

The signal integral is now given by: 
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ℑ = 8𝑔0𝛼휂𝑒

−
𝛼𝜂𝑊
2  X 

∫ ∫ 𝑟𝑒
−
2𝑟2

𝑤𝑝𝑟
2
[

1
𝑡
𝜏𝐷
+ 1

𝑒

−2𝑟2

𝑤𝑝𝑢
2 (

𝑡
𝜏𝐷
+1)

 ∑𝑒−(𝜏𝑏
−1+𝛼𝑛

2𝐷)𝑡𝐴𝑛
𝑙𝑐

𝑛

] 𝑑𝑟𝑒−𝑖𝜔𝑡𝑑𝑡

𝑡=∞

𝑡=0

𝑟=∞

𝑟=0

 

 

 

(D.11) 

 
ℑ = 8𝑔0𝛼휂𝑒

−
𝛼𝜂𝑊
2  X 

∫ [
1

𝑡
𝜏𝐷
+ 1

∫ 𝑟𝑒
−2𝑟2[

1

𝑤𝑝𝑢
2 (

𝑡
𝜏𝐷
+1)

−1
+
1

𝑤𝑝𝑟
2 ]

𝑑𝑟

∞

0

 ∑𝑒−(𝜏𝑏
−1+𝛼𝑛

2𝐷)𝑡𝐴𝑛
𝑙𝑐

𝑛

] 𝑒−𝑖𝜔𝑡𝑑𝑡

𝑡=∞

𝑡=0

 

 

(D.12) 

 

 
ℑ = 8𝑔0𝛼휂𝑒

−
𝛼𝜂𝑊
2  X 

∫ [
1

𝑡
𝜏𝐷
+ 1

∫ 𝑟𝑒
−
2𝑟2

𝑤𝑝𝑟
2  [(

𝑤𝑝𝑟
𝑤𝑝𝑢

)
2

(
𝑡
𝜏𝐷
+1)

−1

+1]

𝑑𝑟

∞

0

 ∑𝑒−(𝜏𝑏
−1+𝛼𝑛

2𝐷)𝑡𝐴𝑛
𝑙𝑐

𝑛

] 𝑒−𝑖𝜔𝑡𝑑𝑡

𝑡=∞

𝑡=0

 

 

(D.13) 
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ℑ = 8𝑔0𝛼휂𝑒

−
𝛼𝜂𝑊
2  X 

∫

[
 
 
 
 

1

(
𝑡
𝜏𝐷
+ 1)

−
𝑤𝑝𝑟
2

4

(
𝑤𝑝𝑟
𝑤𝑝𝑢

)
2

(
𝑡
𝜏𝐷
+ 1)

−1

+ 1

𝑒
−
2𝑟2

𝑤𝑝𝑟
2  [(

𝑤𝑝𝑟
𝑤𝑝𝑢

)
2

(
𝑡
𝜏𝐷
+1)

−1

+1]

|

0

∞

∑𝑒−(𝜏𝑏
−1+𝛼𝑛

2𝐷)𝑡𝐴𝑛
𝑙𝑐

𝑛

]
 
 
 
 

𝑒−𝑖𝜔𝑡𝑑𝑡

𝑡=∞

𝑡=0

 

 

 

(D.14) 

 

 

 

 

ℑ = 𝑤𝑝𝑟
2 2𝑔0𝛼휂𝑒

−
𝛼𝜂𝑊
2 ∫

1

(
𝑡
𝜏𝐷
+ (1 +

𝑤𝑝𝑟2

𝑤𝑝𝑢2
) )

∑𝑒−(𝜏𝑏
−1+𝛼𝑛

2𝐷)𝑡𝐴𝑛
𝑙𝑐

𝑛

𝑒−𝑖𝜔𝑡𝑑𝑡

𝑡=∞

𝑡=0

 

 

 

(D.15) 

Now we can evaluate the integral over time: 

 

ℑ = 𝑤𝑝𝑟
2 2𝑔0𝛼휂𝑒

−
𝛼𝜂𝑊
2 ∑ ∫

1

(
𝑡
𝜏𝐷
+ (1 +

𝑤𝑝𝑟2

𝑤𝑝𝑢2
) )

𝑒−(𝜏𝑏
−1+𝛼𝑛

2𝐷+𝑖𝜔)𝑡𝐴𝑛
𝑙𝑐𝑑𝑡

𝑡=∞

𝑡=0 𝑛

 

 

(D.16) 
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Factor all of the exponential time terms into a parameter 𝜏𝑛
′  and isolate 𝑡 in the denominator: 

 

ℑ = 𝑤𝑝𝑟
2 2𝑔0𝛼휂𝑒

−
𝛼𝜂𝑊
2 ∫

𝜏𝐷

(𝑡 + 𝜏𝐷 (1 +
𝑤𝑝𝑟2

𝑤𝑝𝑢2
) )

𝑒
−
𝑡

𝜏𝑛
′
𝐴𝑛
𝑙𝑐𝑑𝑡

𝑡=∞

𝑡=0

 

 

 

(D.17) 

 

where 𝜏𝑛
′  is given by: 

 𝜏𝑛
′ = (𝜏𝑏

−1 + 𝛼𝑛
2𝐷 + 𝑖𝜔)−1 =

𝜏𝑛
1 + 𝜔𝑝𝑢𝜏𝑛

  

 

(D.18) 

 

The integral in (D.17) is given by the incomplete Gamma function: 

 

∫
1

(𝑡 + 𝑎)
𝑒−𝑏𝑡𝑑𝑡

∞

0

= 𝑒𝑎𝑏Γ(0, 𝑎𝑏) 

 

(D.19) 
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Thus the signal integral is: 

 

ℑ = 2𝑤𝑝𝑟
2 𝜏𝐷𝑔0𝛼휂𝑒

−
𝛼𝜂𝑊
2 ∑𝑒

𝜏𝐷
𝜏𝑛
′ (1+

𝑤𝑝𝑟
2

𝑤𝑝𝑢
2 )

Γ(0,
𝜏𝐷
𝜏𝑛′
(1 +

𝑤𝑝𝑟
2

𝑤𝑝𝑢2
) )𝐴𝑛

𝑙𝑐

𝑛

 

 

 

(D.20) 

Substituting in 𝜏𝐷 = 𝑤𝑝𝑢
2 /8𝐷 and then switching the symbol 𝜏𝐷to 𝜏𝐷

𝑝𝑢
: 

 

ℑ = 2𝑤𝑝𝑟
2 𝜏𝐷

𝑝𝑢𝑔0𝛼휂𝑒
−
𝛼𝜂𝑊
2 ∑𝑒

𝜏𝐷
𝑝𝑢
+𝜏𝐷

𝑝𝑟

𝜏𝑛
′

Γ(0,
𝜏𝐷
𝑝𝑢 + 𝜏𝐷

𝑝𝑟

𝜏𝑛′
 ) 𝐴𝑛

𝑙𝑐

𝑛

 

 

 

(D.21) 

where 𝜏𝐷
𝑝𝑢

 and 𝜏𝐷
𝑝𝑟

 are the pump and probe diffusion time constants, respectively. They are given 

by: 

 
𝜏𝐷
𝑝𝑢(𝑝𝑟)

=
𝑤𝑝𝑢(𝑝𝑟)
2

8𝐷
 

 

(D.22) 
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As a quick consistency check, we can verify that the units of (D.1) & (D.20) are the same. In (D.1) 

the carrier density 𝑛(𝑟, 𝑧, 𝑡) has units of 𝑚−3, which is then integrated over a volume and is thus 

dimensionless. In (D.20) the exponential and Gamma functions are dimensionless. 𝑔0 has units of 

𝑚−2𝑠−1, where the 𝑠−1 is cancelled by 𝜏𝐷 and 𝑚−2 is cancelled by 𝑤𝑝𝑟
2 . 𝛼 has units of 𝑚−1, and 

𝐴𝑛
𝑙𝑐 has units of 𝑚 so (D.21) is dimensionless, consistent with (D.1). 
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Appendix E Computing the Diffusive Factor  

Experimentally, the recombination lifetime measured in single-beam pump/probe is related to peak 

of the imaginary component of the signal via the following equation: 

 
𝜏 =

𝒟

𝜔𝑝
 

(E.1) 

 

In this section I derive an implicit equation that can be used for evaluating 𝒟. The frequency-

dependence of the signal in the pump/probe experiment is given by the factor ℱ: 

 
ℱ = 𝑒

2𝜏𝐷
𝜏′ Γ (0,

2𝜏𝐷
𝜏′
) 

 

(E.2) 

 

For simplicity I only consider the first term of the summation. This is justified in the limit when 

the surface recombination velocity is low. Substituting in the expression for 𝜏′: 

 
ℱ = 𝑒

2𝜏𝐷
𝜏
(1+𝑖𝜔𝜏)Γ(0,

2𝜏𝐷
𝜏
(1 + 𝑖𝜔𝜏)) 

 

 

(E.3) 
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We can rewrite the argument in as 𝑧: 

 
𝓏 ≡

2𝜏𝐷
𝜏′

=
2𝜏𝐷
𝜏
(1 + 𝑖𝜔𝜏) 

 

(E.4) 

 

Therefore (E.3) becomes: 

 ℱ = 𝑒𝓏Γ(0, 𝓏) 

 

(E.5) 

 

The derivative of (E.5) with respect to frequency is given by: 

 𝑑ℱ

𝑑𝜔
= 𝑒𝓏

𝑑𝓏

𝑑𝜔
 Γ(0, 𝓏) −

𝑒−𝓏

𝓏

𝑑𝓏

𝑑𝜔
 𝑒𝓏 

(E.6) 

 

 𝑑ℱ

𝑑𝜔
=
𝑑𝓏

𝑑𝜔
[𝑒𝓏 Γ(0, 𝓏) −

1

𝓏
 ] 

(E.7) 

 

 𝑑ℱ

𝑑𝜔
= 2𝜏𝐷𝑖 [𝑒

𝓏 Γ(0, 𝓏) −
1

𝓏
 ] 

(E.8) 
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The frequency spectrum of the imaginary component of (E.5) has a characteristic peak at the 

angular frequency 𝜔𝑝 which can be easily measured experimentally. The goal here is to establish 

the relationship between 𝜔𝑝 and the diffusive factor 𝒟 so that the effective lifetime can be 

determined. The peak position can be determined by finding the value 𝜔 that makes the imaginary 

component of (E.8) equal to 0. This means Equation (E.8) should be completely real at 𝜔𝑝, which 

means that the term in square brackets is completely imaginary. The component in square brackets 

is purely imaginary when the real parts of the individual terms are equal to each other: 

 
Re [𝑒𝓏(𝜔𝑝) Γ (0, 𝓏(𝜔𝑝))] = Re [

1

𝓏(𝜔𝑝)
] 

(E.9) 

 

The factor 
1

𝓏(𝜔𝑝)
 is given by: 

 1

𝓏(𝜔𝑝)
=

𝜏

2𝜏𝐷

1

1 + 𝑖𝜔𝑝𝜏
=

𝜏

2𝜏𝐷

1 − 𝑖𝜔𝑝𝜏

(1 + 𝜔𝑝2𝜏2)
 

 

(E.10) 

 

The real part of 1/𝓏(𝜔𝑝) is then given by: 

 
Re [

1

𝓏(𝜔𝑝)
] =

1

2𝜏𝐷
𝜏 (1 + 𝜔𝑝2𝜏2)

 

 

(E.11) 
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Substituting Equation (E.11) into Equation (E.9): 

 
Re [𝑒

2𝜏𝐷
𝜏
(1+𝑖𝜔𝑝𝜏) Γ (0,

2𝜏𝐷
𝜏
(1 + 𝑖𝜔𝑝𝜏))] =

1

2𝜏𝐷
𝜏 (1 + 𝜔𝑝2𝜏2)

 
(E.12) 

 

Multiply the top and bottom of all 
2𝜏𝐷

𝜏
 factors by 𝜔𝑝 and use the fact that the diffusive factor 𝒟 =

𝜔𝑝𝜏: 

 
Re [𝑒

2𝜏𝐷𝜔𝑝
𝒟

(1+𝑖𝒟) Γ (0,
2𝜏𝐷𝜔𝑝

𝒟
(1 + 𝑖𝒟))] =

1

2𝜏𝐷𝜔𝑝
𝒟

(1 + 𝒟2)
 

(E.13) 

 

Equation (E.13) is an equation that implicitly relates the diffusive factor 𝒟 to the factor 2𝜏𝐷𝜔𝑝. 

Given a specified value of 2𝜏𝐷𝜔𝑝, 𝒟 is the value that then satisfies (E.13). The factor 𝜏𝐷 is usually 

known a priori and the factor 𝜔𝑝 is easily measured experimentally. With 2𝜏𝐷𝜔𝑝 known, the 

diffusive factor can be determined and the lifetime 𝜏 extracted via Equation (E.1) 
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Figure E.1: Plot of diffusive factor 𝒟 vs 2τDωp 

Figure E.1 plots 𝒟 vs 2𝜏𝐷𝜔𝑝. Using this curve, and knowing the beam radius 𝑤 and diffusion 

coefficient 𝐷, the effective lifetime 𝜏𝑛 can be extracted given the experimentally measured peak 

frequency 𝜔𝑝. The algorithm for finding 𝜏𝑛 is simple: 

1.  𝜔𝑝 is measured and the product 2𝜏𝐷𝜔𝑝 is computed. 

2. The curve in Figure F.2 is used to find the diffusive factor 𝒟 

3. 𝜏𝑛 is determined by dividing 𝒟 by 𝜔𝑝 

The functional behavior of Figure E.1 can be explained as follows. When the beam radius is large, 

diffusion effects are negligible and 𝒟 = 1. This is the case corresponding to a simple Lorentzian 

roll-off, as is expected (see Chapter 3). A large beam radius corresponds to a large 2𝜏𝐷𝜔𝑝, hence 

the asymptotic region. When the beam radius is small, diffusion effects can no longer be neglected. 

Diffusion effects result in a faster carrier decay since carriers diffuse out the volume being probed. 
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The shorter time constant corresponds to a higher roll-off frequency and thus a higher 𝜔𝑝 value. 

This results in the product 𝒟 > 1. 
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Appendix F Mapping the Peak of the Imaginary 

Component of the Signal to the Effective 

Lifetime 

In the generalized equation for pump/probe experiments, the factor 𝜉 contains all of the physical 

information about recombination lifetime, surface recombination velocity, and diffusion. 𝜉 is a 

function of modulation frequency, and by sweeping the modulation frequency the relevant physical 

information in 𝜉 may be extracted. In particular, there is a characteristic peak in the imaginary 

spectrum of 𝜉(𝜔) at 𝜔𝑝 that is related to the lifetime and diffusion parameters of the pump/probe 

experiment. This relationship is given by: 

 
𝜏 =

𝔇

𝜔𝑝
 

 

(F.1) 

where 𝔇 is the diffusive factor, which is a dimensionless parameter that is always ≥ 1. In the limit 

where diffusion is negligible, 𝔇 → 1. In this Appendix, 𝔇 is determined numerically. 

Let 𝜉𝑛′ be a factor that contains only the terms related to lifetime and diffusion: 

 
𝜉𝑛
′ = 𝑒

2𝜏𝐷
𝜏𝑛
′
Γ (0,

2𝜏𝐷
𝜏𝑛′
) = 𝑒

𝑤2

4𝐿𝑛
2 (1+𝑖𝜔𝜏𝑛)

Γ(0,
𝑤2

4𝐿𝑛2
(1 + 𝑖𝜔𝜏𝑛)) 

 

 

(F.2) 
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where 𝑤 is the beam radius, 𝐿𝑛 is the effective diffusion length, 𝜏𝑛 is the effective lifetime, and 𝜔 

is the modulation frequency. Since 𝜉𝑛
′  is a complex number it may be written in terms of its real 

and imaginary components 𝜉𝑛,𝑟𝑒
′  & 𝜉𝑛,𝑖𝑚

′ , respectively: 

 𝜉𝑛
′ = 𝜉𝑛,𝑟𝑒

′ + 𝑖𝜉𝑛,𝑖𝑚
′   

 

(F.3) 

 

Taking the derivative with respect to 𝜔 and evaluating at the frequency where the imaginary 

component peaks 𝜔𝑝: 

 𝑑𝜉𝑛
′

𝑑𝜔
|
𝜔𝑝

=
𝑑𝜉𝑛,𝑟𝑒

′

𝑑𝜔
|
𝜔𝑝

+ 𝑖
𝑑𝜉𝑛,𝑖𝑚

′

𝑑𝜔
|
𝜔𝑝

=
𝑑𝜉𝑛,𝑟𝑒

′

𝑑𝜔
|
𝜔𝑝

 

 

(F.4) 

 

where 
𝑑𝜉𝑛,𝑖𝑚

′

𝑑𝜔
|
𝜔𝑝

= 0 since the imaginary component has a characteristic peak at 𝜔𝑝. Taking the 

derivative of (F.2) with respect to 𝜔 and evaluating at 𝜔𝑝: 

 



Ph.D Thesis-Kevin M.W. Boyd  McMaster University-Engineering Physics 

217 

 

 

 𝑑𝜉′

𝑑𝜔
|
𝜔=𝜔𝑝

=
𝑤2

4𝐿𝑛2
𝑖𝜏𝑛𝑒

𝑤2

4𝐿𝑛
2 (1+𝑖𝜔𝑝𝜏𝑛)

Γ(0,
𝑤2

4𝐿𝑛2
(1 + 𝑖𝜔𝑝𝜏𝑛))

−
𝑤2

4𝐿𝑛2
𝑖𝜏𝑛

𝑒
−
𝑤2

4𝐿𝑛
2 (1+𝑖𝜔𝑝𝜏𝑛)

𝑤2

4𝐿𝑛2
(1 + 𝑖𝜔𝑝𝜏𝑛)

𝑒
𝑤2

4𝐿𝑛
2 (1+𝑖𝜔𝑝𝜏𝑛)

 

 

(F.5) 

 
𝑤2

4𝐿𝑛2
𝜏𝑛𝑖 [ 𝑒

𝑤2

4𝐿𝑛
2 (1+𝑖𝜔𝑝𝜏𝑛)

Γ(0,
𝑤2

4𝐿𝑛2
(1 + 𝑖𝜔𝑝𝜏𝑛)) −

1

𝑤2

4𝐿𝑛2
(1 + 𝑖𝜔𝑝𝜏𝑛)

] = 𝐶 

 

 

(F.6) 

 

where 𝐶 is some constant. From Equation (F.4) it can be seen that 
𝑑𝜉′

𝑑𝜔
|
𝜔=𝜔𝑝

 (and thus 𝐶) is purely 

real. Therefore the function in square brackets in Equation (F.6) must be purely imaginary. Let 

this function be represented by 𝜌: 

 
𝜌 = 𝑒

𝑤2

4𝐿𝑛
2 (1+𝑖𝜔𝜏𝑛)

Γ(0,
𝑤2

4𝐿𝑛2
(1 + 𝑖𝜔𝜏𝑛)) −

1

𝑤2

4𝐿𝑛2
(1 + 𝑖𝜔𝜏𝑛)

 

 

(F.7) 

Let’s examine the function argument in (F.7): 
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𝓏 =

𝑤2

4𝐿𝑛2
(1 + 𝑖𝜔𝜏𝑛) 

 

(F.8) 

where 𝐿𝑛
2 = 𝐷𝜏𝑛. Multiplying this through we get: 

 
𝓏 =

𝑤2

4𝐿𝑛2
+ 𝑖

𝑤2

4𝐷
𝜔 

 

(F.9) 

 

 
𝓏 =

𝑤2

4𝐿𝑛2
+ 𝑖2𝜏𝐷𝜔 

 

 

(F.10) 

where 𝜏𝐷 = 𝑤2/8𝐷. Bundle the factors in (F.10) into a real and imaginary coefficients 𝒶 & 𝒷: 

 

 𝓏 = 𝒶 + 𝑖𝒷 

 

 

(F.11) 

where 𝒶 & 𝒷 are given by: 
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𝒶 =

𝑤2

4𝐿𝑛2
 

 

(F.12) 

 

 𝒷 = 2𝜏𝐷𝜔 

 

(F.13) 

 

Now 𝜌 becomes: 

 

 
𝜌 = 𝑒𝓏Γ(0, 𝓏) −

1

𝓏
 

 

(F.14) 
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Figure F.1: Plot of ρ in the complex plane. The curved arrow points along the direction of increasing imaginary component 𝒷 in 𝓏 

Figure F. shows a plot of 𝜌 in the complex plane as a function of 𝓏, where 𝒶 is kept fixed while 𝒷 

increases. This corresponds to the experimental case where 𝒶 is fixed by the sample and 

experimental parameters, and 𝒷 is swept from low to high values by increasing the modulation 

frequency 𝜔. The curved arrow points in the direction of increasing 𝒷. When 𝒷 = 0, 𝜌 is purely 

real. As 𝒷 increases 𝜌 takes on an imaginary component and eventually it crosses the imaginary 

axis. The value of 𝒷 where 𝜌 crosses the imaginary axis corresponds to 𝜔𝑝, where the imaginary 

component of 𝜉′ peaks. For a given 𝒶, the value of 𝒷, where 𝜌 crosses the imaginary axis is unique. 

Let this value be given by 𝒷𝑝, where 𝒷𝑝 = 2𝜏𝐷𝜔𝑝. Therefore, by establishing the relationship 

between 𝒶 and 𝒷𝑝 we relate the value 𝜔𝑝 to the experimental parameters 𝑤,𝐷 & 𝜏𝑛. I have not 

been able to determine an analytic relationship between 𝒶 & 𝒷𝑝, so this relationship is established 

numerically. To do this, a set of 𝒶 values are selected that correspond to a wide range of 
𝑤

𝐿𝑛
 values. 

For each 𝒶 in the set, 𝒷 is increased until 𝜌 crosses the imaginary axis. The value of 𝒷 where this 
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occurs is given by 𝒷𝑝. Since for each value of 𝒶 there is a corresponding 𝒷𝑝, then for each value 

𝒷𝑝 there is a unique 
𝒷𝑝

𝒶
. According to Equations (F.12) & (F.13) this ratio is given by: 

 
 
𝒷𝑝

𝒶
= 𝜔𝑝𝜏𝑛 = 𝔇𝑛 

 

(F.15) 

 

 

Figure F.2: Plot of 𝒟 vs 2τDωp 

Figure F.2 plots 𝔇𝑛 vs 2𝜏𝐷𝜔𝑝 (
𝒷𝑝

𝒶
 𝑣𝑠 𝒷𝑝). The 𝒶 values that are used in generating this curve 

vary from 10−4 − 102, which corresponds to a 𝑤/𝐿𝑛 range of 0.02 to 20. This covers three orders 

of magnitude of pump radius to diffusion length, and essentially all practical experimental 
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configurations. Using this curve, and knowing the beam radius 𝑤 and diffusion coefficient 𝐷, the 

effective lifetime 𝜏𝑛 can be extracted given the experimentally measured peak frequency 𝜔𝑝. The 

algorithm for finding 𝜏𝑛 is simple: 

4.  𝜔𝑝 is measured and the product 2𝜏𝐷𝜔𝑝 is computed. 

5. The curve in Figure F.2 is used to find the diffusive factor 𝔇𝑛 

6. 𝜏𝑛 is determined by dividing 𝔇𝑛 by 𝜔𝑝 

The functional behavior of Figure F.2 can be explained as follows. When the beam radius is large, 

diffusion effects are negligible and 𝔇𝑛 = 1. This is the case corresponding to a simple Lorentzian 

roll-off, as is expected (see Chapter 3). A large beam radius corresponds to a large 2𝜏𝐷𝜔𝑝, hence 

the asymptotic region. When the beam radius is small, diffusion effects can no longer be neglected. 

Diffusion effects result in a faster carrier decay since carriers diffuse out the volume being probed. 

The shorter time constant corresponds to a higher roll-off frequency and thus a higher 𝜔𝑝 value. 

This results in the product 𝔇𝑛 > 1. 
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Appendix G Background Removal Strategies for 

Single-Beam Pump/Probe 

The simplest way (conceptually) of decoupling pump and probe signals is to acquire a frequency 

spectra with and without a sample in place and then subtract the two. The acquisition of these 

spectra requires a serial sweep of modulation frequency where each data point is collected at a 

different point in time. This approach is at the mercy of non-idealities in the measurement 

equipment, and is extremely susceptible to experimental drift. For example, if the signal being 

measured is a factor < 10−3 of the pump signal then the pump signal itself must be stable to within 

this factor in order for subtraction to reliably decouple pump and probe. This is certainly not the 

case with the experimental setup used in this work, where the signal will wander by several percent 

over time. I used this approach in the earliest iterations of the single-beam experiment but to no 

avail. The next attempt to decouple the signals used a balanced-photodetector. The pump beam 

was split prior to illuminating the sample and one beam is passed through the silicon wafer while 

the other is used as reference beam. The balanced-photodetector subtracts the reference signal from 

the sample signal. In principle this technique should be more robust against drift since any variation 

in the pump beam (whether it originates in the laser power itself, the EOM or the drive signal) 

should occur equally in both reference and signal arms, which is then cancelled. Indeed the 

balanced photodetector that was used has a common mode rejection of 40 dB (or 1 part per 10−4) 

so this should provide sufficient rejection for the isolation of the probe signal. Unfortunately this 

too was subject to an unacceptably high level of drift and the desired signal could not be resolved. 

I believe the origin of the drift was the wandering of the beam position on the detector. 

The first strategy I used that was successful was a dual-frequency demodulation scheme. Taking 

advantage of the fact that the Zurich lock-in amplifier can modulate and demodulate several signals 

simultaneously, I impressed two sinusoidal signals on the pump beam. One signal was kept fixed 

at a frequency of 100 kHz, while the other frequency was swept from low to high frequencies to 

trace out the carrier decay curve. The fixed frequency signal played the role of a reference which 
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could be used to monitor the drift of the pump over time. Assuming that the drift in the sample 

signal and the reference signal were perfectly correlated, the reference signal could be used to 

correct for drift in the sample signal, allowing the FCA to be separated from a background 

spectrum without any sample in place. This strategy was somewhat successful and I was able to 

demonstrate agreement between single and dual beam pump/probe. Unfortunately the degree of 

correlation between sample signal and reference signal was not always 100%, and was not always 

repeatable. The result was that I could usually extract a roll-off curve similar to those in Figure 

3.5, but not consistently. 

I finally settled on the separation technique described in Equation (6.9) by observing that when the 

sample spectrum is divided by a background spectrum without FCA, the detector response is 

completely removed. This means that any imaginary component that remains is due to free-carrier 

absorption, from which the lifetime can be extracted. Another advantage of measuring the 

imaginary component is that there is a characteristic peak that corresponds to the lifetime. 
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Appendix H Special Cases of 𝜉 

The 𝜉 factor derived in Chapter 5 is given by: 

 

𝜉(𝜔𝑝𝑢) = 𝜎𝐹𝐶𝐴𝜏𝐷
𝑝𝑢𝑔0𝛼휂𝑒

−
𝛼𝜂𝑊
2 ∑𝑒

𝜏𝐷
𝑝𝑢
+𝜏𝐷

𝑝𝑟

𝜏𝑛
′

Γ(0,
𝜏𝐷
𝑝𝑢 + 𝜏𝐷

𝑝𝑟

𝜏𝑛′
 ) 𝐴𝑛

𝑙𝑐

𝑛

 

 

(H.1) 

 

 

where 𝑔0 is given by: 

 
𝑔0 =

2𝑃𝑝𝑢𝜆𝑝𝑢

𝜋𝑤𝑝𝑢2 ℎ𝑐

1 − 𝑅𝑝𝑢

1 − 𝑅𝑝𝑢𝑒−𝛼𝜂𝑊
 

 

(H.2) 

 

And 𝐴𝑛
𝑙𝑐 is given by: 

 

𝐴𝑛
𝑙𝑐 =

sin (
𝛼𝑛𝑊
2 )

((𝛼휂)2 + 𝛼𝑛2)(𝛼𝑛𝑊+ sin𝛼𝑛𝑊)
[𝛼휂 sinh (

𝛼휂𝑊

2
) cos (

𝛼𝑛𝑊

2
)

+ 𝛼𝑛 cosh (
𝛼휂𝑊

2
) sin (

𝛼𝑛𝑊

2
)] 

 

(H.3) 



Ph.D Thesis-Kevin M.W. Boyd  McMaster University-Engineering Physics 

226 

 

 

 

 

In this Appendix I will derive several special cases of 𝜉 for both single-beam and two-beam pump 

probe. First I will examine the case when the surface recombination velocity of the wafer is 0. In 

this case, 𝛼𝑛 → 0: 

 
lim
𝛼𝑛→0

𝐴𝑛
𝑙𝑐 =

1

4𝛼휂
sinh

𝛼휂𝑊

2
 

 

(H.4) 

 

Substituting this into Equation (H.1): 

 
𝜉(𝜔𝑝𝑢) = 𝜎𝐹𝐶𝐴𝜏𝐷

𝑝𝑢𝑔0𝛼휂𝑒
−
𝛼𝜂𝑊
2 𝑒

𝜏𝐷
𝑝𝑢
+𝜏𝐷

𝑝𝑟

𝜏′ Γ(0,
𝜏𝐷
𝑝𝑢 + 𝜏𝐷

𝑝𝑟

𝜏′
 ) [

1

4𝛼휂
sinh

𝛼휂𝑊

2
] 

 

 

(H.5) 

 

 
𝜉(𝜔𝑝𝑢) =

1

8
𝜎𝐹𝐶𝐴𝜏𝐷

𝑝𝑢𝑔0(1 − 𝑒
−𝛼𝜂𝑊)𝑒

𝜏𝐷
𝑝𝑢
+𝜏𝐷

𝑝𝑟

𝜏′ Γ(0,
𝜏𝐷
𝑝𝑢 + 𝜏𝐷

𝑝𝑟

𝜏′
 ) 

 

(H.6) 
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Here the lifetimes 𝜏𝑛
′   have been replaced by 𝜏′ since the summation over 𝑛 disappears in the limit 

of 0 surface recombination velocity. Thus for both single and dual-beam pump/probe experiments 

in the limit where surface recombination in the wafer is negligible, the 𝜉 factors are given by: 

 
𝜉𝑆𝐵 =

1

8
𝜎𝐹𝐶𝐴𝜏𝐷𝑔0(1 − 𝑒

−𝛼𝜂𝑊)𝑒
2𝜏𝐷
𝜏′ Γ (0,

2𝜏𝐷
𝜏′
 ) 

 

(H.7) 

 

 
𝜉𝐷𝐵 =

1

8
𝜎𝐹𝐶𝐴𝜏𝐷

𝑝𝑢𝑔0(1 − 𝑒
−𝛼𝜂𝑊)𝑒

𝜏𝐷
𝑝𝑢
+𝜏𝐷

𝑝𝑟

𝜏′ Γ(0,
𝜏𝐷
𝑝𝑢 + 𝜏𝐷

𝑝𝑟

𝜏′
 ) 

 

 

 

(H.8) 

 

I have used the fact that in the single beam experiment 𝜏𝐷
𝑝𝑢 = 𝜏𝐷

𝑝𝑟 = 𝜏𝐷. Another important case 

is when the pump or probe beam is much larger than the other beam. First, multiply the top and 

bottom of (H.1) by 𝜏𝐷
𝑝𝑟

: 

 

 

𝜉(𝜔𝑝𝑢) =
1

𝜏𝐷
𝑝𝑟 𝜎𝐹𝐶𝐴𝑔0𝛼휂𝑒

−
𝛼𝜂𝑊
2 𝜏𝐷

𝑝𝑢𝜏𝐷
𝑝𝑟∑𝑒

𝜏𝐷
𝑝𝑢
+𝜏𝐷

𝑝𝑟

𝜏𝑛
′

Γ(0,
𝜏𝐷
𝑝𝑢 + 𝜏𝐷

𝑝𝑟

𝜏𝑛′
 ) 𝐴𝑛

𝑙𝑐

𝑛

 

 

(H.9) 
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It is also assumed that 𝜏𝐷 ≫ 𝜏𝑛
′ . This is equivalent to saying that the beam is sufficiently large that 

radial diffusion can be neglected. Using the fact that lim
𝓏→∞

𝓏𝑒𝓏Γ(0, 𝓏) = 1 we can write expressions 

for the single and dual-beam case where the pump or probe is large enough for radial diffusion to 

be neglected: 

 

 
𝜉𝑆𝐵 =

1

2
𝜎𝐹𝐶𝐴𝑔0𝛼휂𝑒

−
𝛼𝜂𝑊
2 ∑

𝜏

1+ 𝑖𝜔𝜏
𝐴𝑛
𝑙𝑐

𝑛

 

 

(H.10) 

 

 

𝜉𝐷𝐵 =

{
 
 

 
 
𝜏𝐷
𝑝𝑢

𝜏𝐷
𝑝𝑟 𝜎𝐹𝐶𝐴𝑔0𝛼휂𝑒

−
𝛼𝜂𝑊
2 ∑

𝜏

1 + 𝑖𝜔𝜏
𝐴𝑛
𝑙𝑐

𝑛

, 𝜏𝐷
𝑝𝑟 ≫ 𝜏𝐷

𝑝𝑢

𝜎𝐹𝐶𝐴𝑔0𝛼휂𝑒
−
𝛼𝜂𝑊
2 ∑

𝜏

1 + 𝑖𝜔𝜏
𝐴𝑛
𝑙𝑐

𝑛

, 𝜏𝐷
𝑝𝑢 ≫ 𝜏𝐷

𝑝𝑟
 

 

(H.11) 

 

 

Here I used the fact that 𝜏′ =
𝜏

1+𝑖𝜔𝜏
. The limiting cases for 𝜏𝐷

𝑝𝑟 ≫ 𝜏𝐷
𝑝𝑢

 and 𝜏𝐷
𝑝𝑢 ≫ 𝜏𝐷

𝑝𝑟
 are 

functionally the same, though the prefactor is different. 
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Finally, we can examine the case when both the radial diffusion effects are negligible, and when 

surface recombination is negligible. The equations for single and dual beam cases are then: 

 

 
𝜉𝑆𝐵 =

1

16
𝜎𝐹𝐶𝐴𝑔0(1 − 𝑒

−𝛼𝜂𝑊)
𝜏

1 + 𝑖𝜔𝜏
 

 

 

 

(H.12) 

 

 

𝜉𝐷𝐵 =

{
 
 

 
 1

8

𝜏𝐷
𝑝𝑢

𝜏𝐷
𝑝𝑟 𝜎𝐹𝐶𝐴𝑔0(1 − 𝑒

−𝛼𝜂𝑊)
𝜏

1 + 𝑖𝜔𝜏
, 𝜏𝐷
𝑝𝑟 ≫ 𝜏𝐷

𝑝𝑢

1

8
𝜎𝐹𝐶𝐴𝑔0(1 − 𝑒

−𝛼𝜂𝑊)
𝜏

1 + 𝑖𝜔𝜏
, 𝜏𝐷
𝑝𝑢 ≫ 𝜏𝐷

𝑝𝑟

 

 

 

(H.13) 
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Appendix I Fraction of Pump Power Absorbed 

When light strikes a semiconductor interface, a fraction of the incident power is reflected while 

the rest is transmitted. If the absorption coefficient of the semiconductor is weak then the light that 

enters the semiconductor will bounce around inside multiple times, partially transmitting out of 

the semiconductor each time it reaches an interface. The total light that emerges from the front 

surface is the reflected light, while the total light that emerges from the back surface is the 

transmitted light. In this appendix I will quantify the reflection and transmitted power in the 

presence of multiple bounces through the wafer. This information will be used to derive a 

mathematical expression for the fraction of incident power absorbed in a wafer of arbitrary 

thickness and reflection coefficient, and to derive a correction factor to the amplitude measured in 

a pump/probe experiment. Note that this analysis is valid double-side polished silicon only, where 

all reflections are specular. For unpolished or textured silicon, the diffuse reflectance must be 

accounted for. 

The reflectance and transmittance of a slab is given by an infinite number of bounces. Each light 

ray that traverses the wafer is attenuated by a factor 𝑒−𝜂𝛽. Here 𝛽 is an absorption factor which in 

general has contributions from band-to-band and free-carrier absorption. 휂 is a factor describing 

the increase in pathlength through the wafer due to a non-normal angle of propagation. 휂 = sec 휃, 

where 휃 is the angle of propagation through the wafer. 

For an incident power of 𝑃0, the reflected power from the first surface is: 

 𝑃𝑟0 = 𝑅𝑃0 

 

(I.1) 

where 𝑅 is the interfacial reflection coefficient. The second reflected beam is given by: 
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 𝑃𝑟1 = 𝑇
2𝑅𝑒−2𝜂𝛽𝑃0 

 

(I.2) 

Here 𝑇 is the transmission coefficient, which is squared because the initial light ray has to transmit 

into the wafer, then transmit out again. The factor of ‘2’ in the attenuation factor accounts for two 

passes through the wafer. The next reflected beam is: 

 𝑃𝑟2 = 𝑇
2𝑅3𝑒−4𝜂𝛽𝑃0 

 

(I.3) 

Generalizing to the 𝑚𝑡ℎ reflected ray: 

 𝑃𝑟𝑚 = 𝑇2𝑅2𝑚−1𝑒−2𝑚𝜂𝛽𝑃0 

 

(I.4) 

 

where 𝑚 = 1, 2,…  

For the transmitted power: 

𝑃𝑡1 = 𝑇2𝑒−𝜂𝛽𝑃0 

𝑃𝑡2 = 𝑇
2𝑅2𝑒−3𝜂𝛽𝑃0 

𝑃𝑡𝑚 = 𝑇2𝑅2(𝑚−1)𝑒−(2𝑚−1)𝜂𝛽𝑃0 

The total reflection and transmission are then given by: 
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𝑃𝑟𝑒𝑓 = 𝑅𝑃0 +

𝑇2

𝑅
𝑃0 ∑[𝑅2𝑒−2𝜂𝛽]

𝑚
∞

𝑚=1

 

 

(I.5) 

 

 
𝑃𝑡𝑟𝑎𝑛𝑠 =

𝑇2

𝑅2𝑒−𝜂𝛽
𝑃0 ∑[𝑅2𝑒−2𝜂𝛽]

𝑚
∞

𝑚=1

 

 

(I.6) 

 

The summation is just that of a geometric series, where: 

∑ 𝑥𝑚
∞

𝑚=0

=
1

1 − 𝑥
 

 

Therefore: 

 
∑[𝑅2𝑒−2𝜂𝛽]

𝑚
∞

𝑚=1

= ∑[𝑅2𝑒−2𝜂𝛽]
𝑚

∞

𝑚=0

− 1 =
1

1 − 𝑅2𝑒−2𝜂𝛽
− 1 =

𝑅2𝑒−2𝜂𝛽

1 − 𝑅2𝑒−2𝜂𝛽
 

 

 

(I.7) 
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Therefore the total reflection and transmission become: 

 
𝑃𝑟𝑒𝑓 = 𝑅𝑃0 +

𝑇2𝑅𝑒−2𝜂𝛽

1 − 𝑅2𝑒−2𝜂𝛽
𝑃0 = 𝑅𝑃0 [1 +

𝑇2𝑒−2𝜂𝛽

1 − 𝑅2𝑒−2𝜂𝛽
] 

 

(I.8) 

 

 
𝑃𝑡𝑟𝑎𝑛𝑠 =

𝑇2𝑒−𝜂𝛽

1 − 𝑅2𝑒−2𝜂𝛽
𝑃0 

 

(I.9) 

 

The fraction of power absorbed in the wafer is defined as: 

 

 
𝑓𝑎 = 1 −

𝑃𝑟𝑒𝑓 + 𝑃𝑡𝑟𝑎𝑛𝑠

𝑃0
 

(I.10) 

 

 
𝑓𝑎 = 1 − (𝑅 +

𝑇2𝑒−2𝜂𝛽𝑅

1 − 𝑅2𝑒−2𝜂𝛽
+

𝑇2𝑒−𝜂𝛽

1 − 𝑅2𝑒−2𝜂𝛽
) 

(I.11) 

 

 
𝑓𝑎 = 1 − 𝑅 −

𝑇2𝑒−𝜂𝛽

1 − 𝑅2𝑒−2𝜂𝛽
(1 + 𝑅𝑒−𝜂𝛽) 

(I.12) 
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Factoring the denominator: 

 
𝑓𝑎 = 1 − 𝑅 −

𝑇2𝑒−𝜂𝛽

(1 − 𝑅𝑒−𝜂𝛽)(1 + 𝑅𝑒−𝜂𝛽)
(1 + 𝑅𝑒−𝜂𝛽) 

(I.13) 

 

 

 
𝑓𝑎 = 1 − 𝑅 −

𝑇2𝑒−𝜂𝛽

1 − 𝑅𝑒−𝜂𝛽
 

(I.14) 

 

Using the fact that the interfacial transmission coefficient is 𝑇 = 1 − 𝑅: 

 
𝑓𝑎 = 1 − 𝑅 −

(1 − 𝑅)2𝑒−𝜂𝛽

1 − 𝑅𝑒−𝜂𝛽
 

(I.15) 

 

 
𝑓𝑎 = (1 − 𝑅) [1 −

(1 − 𝑅)𝑒−𝜂𝛽

1 − 𝑅𝑒−𝜂𝛽
] 

(I.16) 

 

 
𝑓𝑎 =

1 − 𝑅

1 − 𝑅𝑒−𝜂𝛽
[1 − 𝑅𝑒−𝜂𝛽 − (1 − 𝑅)𝑒−𝜂𝛽] 

(I.17) 

 

 
𝑓𝑎 =

1 − 𝑅

1 − 𝑅𝑒−𝜂𝛽
(1 − 𝑒−𝜂𝛽) 

(I.18) 
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In general, 𝛽 = 𝛼𝑊 + 𝛽𝐹𝐶𝐴 where the former term quantifies absorption due to band-to-band 

absorption, and 𝛽𝐹𝐶𝐴 quantifies FCA. Since 𝛽𝐹𝐶𝐴 ≪ 𝛼𝑊, 𝛽 ≈ 𝛼𝑊. Therefore the fraction of 

power absorbed into the wafer is given by: 

 
𝑓𝑎 =

1 − 𝑅

1 − 𝑅𝑒−𝛼𝜂𝑊
(1 − 𝑒−𝛼𝜂𝑊) 

(I.19) 
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Appendix J Correction Factor from Multiple 

Reflection/Transmission 

In lifetime measurement experiments we measure the probe power that transmits through the 

wafer, and isolate the component due to FCA. According to Appendix I, the power transmitted 

through the wafer is given by: 

 
𝑃𝑡𝑟𝑎𝑛𝑠 =

𝑇2𝑒−𝜂𝛽

1 − 𝑅2𝑒−2𝜂𝛽
𝑃0 

 

(J.1) 

 

where 𝛽 is an absorption factor. In general, this factor is given by: 

 𝛽 = 𝛽𝑏𝑏 + 𝛽𝐹𝐶𝐴 (J.2) 

 

where 𝛽𝑏𝑏 is the contribution due to band-to-band absorption, and 𝛽𝐹𝐶𝐴 is the contribution to FCA. 

It is the 𝛽𝐹𝐶𝐴 factor that contains all of the lifetime information. Substitute Equation (J.2) into (I.9) 

and split the exponentials: 

 
𝑃𝑡𝑟𝑎𝑛𝑠 =

𝑇2

1 − 𝑅2𝑒−2𝜂𝛽𝑏𝑏𝑒−2𝜂𝛽𝐹𝐶𝐴
𝑃0𝑒

−𝜂𝛽𝑏𝑏𝑒−𝜂𝛽𝐹𝐶𝐴 

 

(J.3) 
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Bundle the band-to-band exponentials into the power and reflection terms: 

 
𝑃𝑡𝑟𝑎𝑛𝑠 =

𝑇2

1 − 𝑅′2𝑒−2𝜂𝛽𝐹𝐶𝐴
𝑃0
′𝑒−𝜂𝛽𝐹𝐶𝐴 

 

(J.4) 

 

Applying a first order Taylor approximation: 

 
𝑃𝑡𝑟𝑎𝑛𝑠 =

𝑇2

1 − 𝑅′2(1 − 2휂𝛽𝐹𝐶𝐴)
𝑃0
′(1 − 휂𝛽𝐹𝐶𝐴) 

 

(J.5) 

 

Rearranging the denominator: 

 

𝑃𝑡𝑟𝑎𝑛𝑠 =
𝑇2

1 − 𝑅′2 
[

1

1 +
2𝑅′2휂𝛽𝐹𝐶𝐴
1 − 𝑅′2 

] 𝑃0
′(1 − 휂𝛽𝐹𝐶𝐴) 

(J.6) 

 

Using the binomial approximation to flip the denominator into the numerator: 

 
𝑃𝑡𝑟𝑎𝑛𝑠 =

𝑇2

1 − 𝑅′2 
𝑃0
′ (1 −

2𝑅′2휂𝛽𝐹𝐶𝐴

1 − 𝑅′2 
) (1 − 휂𝛽𝐹𝐶𝐴) 

(J.7) 
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𝑃𝑡𝑟𝑎𝑛𝑠 =

𝑇2

1 − 𝑅′2 
𝑃0
′ (1 − 휂𝛽𝐹𝐶𝐴 −

2𝑅′
2
휂𝛽𝐹𝐶𝐴

1 − 𝑅′2 
+
2𝑅′2휂2𝛽𝐹𝐶𝐴

2

1 − 𝑅′2
) 

(J.8) 

 

The term that is second order in 𝛽𝐹𝐶𝐴 can be neglected since 𝛽𝐹𝐶𝐴 ≪ 1: 

 
𝑃𝑡𝑟𝑎𝑛𝑠 =

𝑇2

1 − 𝑅′2 
𝑃0
′

1

1 − 𝑅′2
(1 − 휂𝛽𝐹𝐶𝐴 + 𝑅

′2휂𝛽𝐹𝐶𝐴 − 𝑅
′2 − 2𝑅′

2
휂𝛽𝐹𝐶𝐴) 

(J.9) 

 

 
𝑃𝑡𝑟𝑎𝑛𝑠 =

𝑇2

1 − 𝑅′2 
𝑃0
′

1

1 − 𝑅′2
(1 − 휂𝛽𝐹𝐶𝐴 − 𝑅

′2 − 𝑅′
2
휂𝛽𝐹𝐶𝐴) 

(J.10) 

 

 

 
𝑃𝑡𝑟𝑎𝑛𝑠 =

𝑇2

1 − 𝑅′2 
𝑃0
′

1

1 − 𝑅′2
(1 − 𝑅′2 − (1 + 𝑅′

2
)휂𝛽𝐹𝐶𝐴) 

(J.11) 

 

 
𝑃𝑡𝑟𝑎𝑛𝑠 =

𝑇2

1 − 𝑅′2 
𝑃0
′ (1 −

1 + 𝑅′
2

1 − 𝑅′2
휂𝛽𝐹𝐶𝐴) 

(J.12) 

 

Letting  ℜ =
1+𝑅′

2

1−𝑅′2
 we get the final expression for the power transmitted in the presence of both 

band-to-band and free-carrier absorption: 
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𝑃𝑡𝑟𝑎𝑛𝑠 =

𝑇2

1 − 𝑅′2 
𝑃0
′(1 − ℜ휂𝛽𝐹𝐶𝐴) 

(J.13) 
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Appendix K Nanoscan Beam Profiles 

 

Figure K.1: Screenshot of Nanoscan Beam Profiler interface, showing the characteristics of the pump beam used in 6.3.2 
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Figure K.2: Screenshot of Nanoscan Beam Profiler interface, showing the characteristics of the pump beam used for the 46 micron 

radius dataset in 6.6.  
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Figure K.3: Screenshot of Nanoscan Beam Profiler interface, showing the characteristics of the pump beam used for the 72 micron 

radius dataset in 6.6. 
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