Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/24133
Title: Systematic improvement of approximations with smooth models of the Coulomb potential
Authors: Gonzalez Espinoza, Cristina Elizabeth
Advisor: Ayers, Paul W.
Savin, Andreas
Department: Chemistry and Chemical Biology
Keywords: Model potential;Method development;Range separation;Energy extrapolation
Publication Date: 2018
Abstract: Orbital-based methods for electronic-structure calculations are limited to atoms or molecules with up to about 50 electrons. This limitation comes from the requirement of a long expansion in basis functions to approximate correctly the wave function. Replacing the Coulomb interaction with a smooth model potential has two main consequences: first, the wave function becomes cuspless and the expansion in basis functions converges more rapidly, and second, the smooth potential describes a weaker interaction at the electronic coalescence point, which leads to the loss of accuracy. This work explores whether one can construct models with smooth, non-singular, potentials, but without compromising accuracy. The key idea is to use extrapolation procedures to predict the energy for the Coulomb interaction from a sequence of (cheaper) calculations for smooth potentials. By replacing the Coulomb electron-electron interaction with a smooth potential, using the semi-stochastic heat-bath configuration interaction method (SHCI) to select key configurations, and extrapolating to the limiting (non-smoothed) Coulomb potential, we were able to retain the accuracy of full configuration interaction (FCI) calculations, at reduced computational cost.
URI: http://hdl.handle.net/11375/24133
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
thesis.pdf
Open Access
3.94 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue