Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/24127
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorSaravanamuttu, Kalaichelvi-
dc.contributor.authorLin, Hao-
dc.date.accessioned2019-03-22T12:38:12Z-
dc.date.available2019-03-22T12:38:12Z-
dc.date.issued2018-
dc.identifier.urihttp://hdl.handle.net/11375/24127-
dc.description.abstractManipulating the flow of light is critical in the design and fabrication of light-based devices ranging from solar cells, smart cameras, liquid crystal display (LCD) screens, projectors and light emitting diodes (LEDs). Thin films configured with spatial patterns or modulations in refractive index exhibit strong and richly varied interactions with light beams. In this thesis, we show that embedding planar films with specific geometries of waveguide lattices allows precise control over the inflow and outflow of light. Specifically, we demonstrate the fabrication of a new class of waveguide-encoded polymer films that are generated through a single-step, room temperature technique. Here, waveguide encoded lattices with a range of symmetries are spontaneously inscribed in photopolymerizable resins by self-trapped beams of incandescent light. We describe the generation of lattices consisting of five intersecting arrays of waveguides, which confer a range of unprecedented properties including a large, panoramic field of view (FOV) infinite depth of field and multiple imaging functionalities including focusing and inversion. We have also fabricated lattices inspired by natural arthropodal compound eyes, which comprise a radial distribution of waveguide and in turn impart a continuous, enhanced FOV. We demonstrate the application of these films in controlling the beam profiles of LEDs including their divergence and convergence. Finally, we show that thin films patterned with a periodic array of planar waveguides serve as effective beam steering coatings, which deflect light away from the metallic front contacts of commercially available solar cells and in this way, increase their efficiency.en_US
dc.language.isoenen_US
dc.subjectlight flowen_US
dc.subjectwaveguide latticesen_US
dc.subjectplanar filmsen_US
dc.titleControlling the flow of light with waveguide encoded slim polymer filmsen_US
dc.typeThesisen_US
dc.contributor.departmentChemistry and Chemical Biologyen_US
dc.description.degreetypeThesisen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Lin_Hao_201810_PhD.pdf
Access is allowed from: 2019-10-22
11.07 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue