Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/24119
Title: Determining the Distributed Karhunen-Loève Transform via Convex Semidefinite Relaxation
Authors: Zhao, Xiaoyu
Advisor: Chen, Jun
Department: Electrical and Computer Engineering
Keywords: multiterminal source coding;Karhunen–Loève transform;rate–distortion function
Publication Date: 2018
Abstract: The Karhunen–Loève Transform (KLT) is prevalent nowadays in communication and signal processing. This thesis aims at attaining the KLT in the encoders and achieving the minimum sum rate in the case of Gaussian multiterminal source coding. In the general multiterminal source coding case, the data collected at the terminals will be compressed in a distributed manner, then communicated the fusion center for reconstruction. The data source is assumed to be a Gaussian random vector in this thesis. We introduce the rate-distortion function to formulate the optimization problem. The rate-distortion function focuses on achieving the minimum encoding sum rate, subject to a given distortion. The main purpose in the thesis is to propose a distributed KLT for encoders to deal with the sampled data and produce the minimum sum rate. To determine the distributed Karhunen–Loève transform, we propose three kinds of algorithms. The rst iterative algorithm is derived directly from the saddle point analysis of the optimization problem. Then we come up with another algorithm by combining the original rate-distortion function with Wyner's common information, and this algorithm still has to be solved in an iterative way. Moreover, we also propose algorithms without iterations. This kind of algorithms will generate the unknown variables from the existing variables and calculate the result directly.All those algorithms can make the lower-bound and upper-bound of the minimum sum rate converge, for the gap can be reduced to a relatively small range comparing to the value of the upper-bound and lower-bound.
URI: http://hdl.handle.net/11375/24119
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Zhao_Xiaoyu_201808_MASc.pdf
Open Access
377.42 kBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue