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Abstract

The Karhunen-Loève Transform (KLT) is prevalent nowadays in communication and

signal processing. This thesis aims at attaining the KLT in the encoders and achieving

the minimum sum rate in the case of Gaussian multiterminal source coding.

In the general multiterminal source coding case, the data collected at the terminals

will be compressed in a distributed manner, then communicated the fusion center

for reconstruction. The data source is assumed to be a Gaussian random vector in

this thesis. We introduce the rate-distortion function to formulate the optimization

problem. The rate-distortion function focuses on achieving the minimum encoding

sum rate, subject to a given distortion. The main purpose in the thesis is to propose a

distributed KLT for encoders to deal with the sampled data and produce the minimum

sum rate.

To determine the distributed Karhunen-Loève transform, we propose three kinds

of algorithms. The first iterative algorithm is derived directly from the saddle point

analysis of the optimization problem. Then we come up with another algorithm by

combining the original rate-distortion function with Wyner’s common information,

and this algorithm still has to be solved in an iterative way. Moreover, we also propose

algorithms without iterations. This kind of algorithms will generate the unknown

variables from the existing variables and calculate the result directly.
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All those algorithms can make the lower-bound and upper-bound of the minimum

sum rate converge, for the gap can be reduced to a relatively small range comparing

to the value of the upper-bound and lower-bound.
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Notation and abbreviations

E[·] the expectation operator

tr(·) the trace operator

(·)T the transpose operator

diag(x1, · · · , x`) an diagonal matrix with the i-th diagonal entry being xi, i = 1, · · · , `

| · | the determinant operator

I(X;Y ) the mutual information between variables X and Y

PCA principal component analysis

KLT Karhunen-Loève transform
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Chapter 1

Introduction

1.1 Background

The basic task of source coding is to characterize the signal with the minimum number

of symbols, under the constraint of a certain acceptable level of distortion. The

techniques of source coding are generally divided into two parts, as lossless coding

and lossy coding.

The lossless coding indicates the coding method that can restore the original

data exactly from the compressed data. However, lossless coding can still reduce

the code rate, by exploiting the contained statistical properties or dependencies in

the data compaction. However, there’s a limit in the application of lossless coding,

for the lossless coding can only be used for the signals of discrete-time and discrete-

amplitude [1]. One of the characteristic application of lossless coding is JPEG-LS [2].

Lossy source coding has a more widespread application, including the compression

of speech, pictures, video and audio signals, where the complete reconstruction of the

original source data is not required. Typical examples of the lossy coding include

1
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JPEG [3] for picture coding and H.264/AVC for video coding [4].

In the case of lossy coding, the restored signal is not completely the same as the

original source, but is only an approximation of it. Thus, we take the distortion as

a measure for the deviation of the original source and the restored data. Apart from

the distortion, there’s another property required for evaluating the performance of

coding, which is rate. When coding a sequence of finite symbols, the transmission

rate is defined as the average number of bits per input symbol [5].

There is a major branch in information theory named rate-distortion theory, which

focuses on achieving the minimum encoding rate to reconstruct the original source

data, subject to a given distortion. Since the determining of distributed KLT is

based on the trade-off relationship between rate and distortion in this thesis, we will

introduce the rate-distortion function first as a foundation.

It is clear that when the random variable is continuous, it is impossible for it to

be precisely represented with a finite number of bits, and hence the coding process

should be lossy. In typical applications, the ultimate receiver of the compressed signal

is a human sense, and it is also unnecessary to avoid the loss completely, due to the

limited sensitivity of human perception. However, we still try to achieve a better

coding result, to make the reconstruction as good as possible. This work can be

completed by defining a rate-distortion function, which is treated as a rate-distance

between the source and its output after coding. The rate-distortion function is usually

referred as R(d), where d is a given value, indicating that the distortion should be

equal or less than d.

One basic channel model is presented in Figure 1.1. where X(1), ..., X(n) are inde-

pendent and identically distributed (i.i.d) process. Define the original source as Xn =

2
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(X(1), · · · , X(n)) and the restored data from decoder as X̂n = (X̂(1), · · · , X̂(n)).

The rate-distortion function in the lossy coding case is represented as follows,

Figure 1.1: The basic channel model

1

n
Σn
t=1E[(X(t)− X̂(t))2] ≤ d (1.1)

R(d) , min
PX̂|X :E[(X(t)−X̂(t))2]≤d

I(X; X̂). (1.2)

In the scalar quadratic Gaussian case, X ∼ N (0,ΣX).

R(d) =
1

2
log+(

ΣX

d
), (1.3)

where log+(a) , max{log a, 0}.

1.2 The Karhunen-Loève transform

In this thesis, our interest mainly focus on the distributed Karhunen-Loève transform

(KLT). Consider the input source vector X = (X1, · · · , XL)T in a multiterminal

source coding scenario with L terminals, each terminal will sample a part of the input

vector Xi, i = 1, ..., L. The data sampled at different terminals will be compressed

in a distributed manner, then communicated to the fusion center for reconstruction.

The core problem in the thesis is to propose a distributed coding method for the

encoders to deal with the collected data through the KLT, in order to achieve the

3
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minimum sum rate in the multi-terminal case. By constructing the rate-distortion

function and solving the optimal convex problem, the KLT at each terminal can be

attained.

Since the approximation and compression of data is prevalent nowadays, the KLT

has become a fundamental part in plenty of related cases, which is also considered as

a type of principal component analysis (PCA).

In the standard (nondistributed) KLT situation, there exists only one overall en-

coder, which will collect the whole signal source X = (X1, · · · , XL)T . Here we assume

X is in the quadratic Gaussian case, X ∼ N (0,ΣX). The encoder here plays a role

to generate the description of the entire vector X in a certain manner, thus the re-

construction part can provide the estimated output vector X̂ = (X̂1, · · · , X̂L)T from

the rate-distortion function. Here we put the sum distortion constraint as

1

n

n∑
t=1

L∑
i=1

E[(Xi(t)− X̂i(t))
2] ≤ d. (1.4)

Then we introduce one variable D as the distortion matrix, which is defined as

D = E[(X − X̂)(X − X̂)T ]. (1.5)

And the rate-distortion function in the nondistributed case is represented as

R(d) = min
D

1

2
log

(
|ΣX |
|D|

)
subject to D � ΣX

tr(D) ≤ d.

(1.6)

4
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Figure 1.2: The distributed KLT scenario, L = 3.

Then we apply KLT on ΣX and obtain the unitary matrix U and diagonal matrix Λ

as follows,

ΣX = UTΛU

Λ = diag(λ1, · · · , λL).

(1.7)

In this situation, we can apply the reverse water filling algorithm to represent the

problem in (1.6) as

R(d) =
1

2
log+

(
λi
η

)
, (1.8)

where ΣL
i=1 min{η, λi} = min(d, tr(ΣX)).

Apart from the standard KLT scenario, there are cases where applying KLT on

the entire vector is not possible. In such case, the KLT should be employed in a

distributed manner.

In the distributed KLT scenario, there exists multiple separate encoders, which is

shown in Fig 1.2 (suppose L=3). Since those encoders are not able to communicate

with each other in this situation, it is clear that applying the KLT to the entire source

5
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signal vector is not possible here. Instead, each encoder deals with a part of the source

signal vector X (which is Xi, i = 1, ..., L) separately and produces the corresponding

output Yi at the rate Ri, i = 1, ..., L. Here we assume X to be the Gaussian case,

X ∼ N (0,ΣX). Similar to the centralized case, the reconstruction part will also

produce the estimated vector X̂ from the rate-distortion function. In the distributed

scenario, we define the distortion di in each encoder i as

1

n

n∑
t=1

E[(Xi(t)− X̂i(t))
2] ≤ di, i = 1, ..., L. (1.9)

Let σi denote the error variance of encoder i, i = 1, ..., L. The minimum sum rate

achievable in the distributed KLT is given by

min
σ1,··· ,σL

1

2
log

(
|ΣX |
|D|

)
subject to σi ≤ σXi

D = (Σ−1
X + diag(σ−1

1 − σ−1
X1
, · · · , σ−1

L − σ
−1
XL

))−1

tr(D) ≤ d.

(1.10)

One fundamental part in the above problem is characterizing the optimum trade-off

between the compression rates and distortions [6]. The lossless case of this problem

was solved by Slepian and Wolf to a large extent, in the paper published in 1973 [7].

Later, their result has been extended to the lossy case by Wyner and Ziv [8], as well

as Tung [9]. Although there has not existed a complete solution yet to the problem

of multiterminal source coding in the general case, remarkable development has been

made on some special scenarios, especially in the quadratic Gaussian case [10–15].

6



M.A.Sc. Thesis - Xiaoyu Zhao McMaster - Electrical Engineering

1.3 Organization of this thesis

In this thesis, we address the multiterminal source coding problem in a distributed

Karhunen-Loève transform (KLT) scenario. The topic of this thesis is inspired by

the work of Michael Gastpar et al. [16], which also determines the architecture of

KLT in multiterminal source coding model through the rate-distortion function. This

thesis will extend the work of Gastpar et al. by relaxing the equality constraint and

proposing a convex optimization formulation.

The organization of the rest part is introduced as follows. The problem definitions

and conversions will be represented in Chapter 2. The solution algorithms, the sim-

ulation results and the compares between them can be found in Chapter 3, Chapter

4 and Chapter 5. we will draw the conclusions in Chapter 6.

7



Chapter 2

Preliminaries

2.1 Conversions of the problem

In this section, we will make conversions to the original rate-distortion function, in

order to transform the original objective problem. The algorithms for the distributed

Karhunen-Loève transform(KLT) will be derived from this newly converted convex

optimization problem.

In the multiterminal source coding, there are L terminals, and each terminal will

sample a part of the input source vector X. In the transform coding case, let X

be a Gaussian random vector with mean zero and covariance matrix ΣX . Define

XT = (XT
1 , · · · , XT

L )T , where Xi is a vector of dimension `i, i = 1, ..., L. Let Y T =

(Y T
1 , · · · , Y T

L )T be the output vector after encoding, with Yi = CiXi + Qi, where Ci

is a matrix with dimension `i × `i, and Qi is also a Gaussian random vector with

mean zero and covariance ΣQi
, i = 1, ..., L. Here the matrix Ci acts as the transform

matrix in each encoder i for realizing the KLT. And the vector Qi is assumed to be the

noise term. Hence Qi and Qj (i 6= j, i, j = 1, ..., L) are independent with each other.

8
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It is assumed that the vectors Xi and Qj (j = 1, ..., L) are mutually independent.

Further, we define the matrix C from matrix Ci as C = diag(C1, · · · , CL) and let

matrix ΣQ = diag(ΣQ1 , · · · ,ΣQL
).

The objective function is derived as follows, from the rate-distortion function

mentioned in (1.2). The expectation E(X|Y ) can represent the vector X̂ mentioned

in Chapter 2, which is the data reconstructed from vector Y . Therefore, we can derive

the expression for distortion matrix D from (1.5) as

D = tr(E[(X − E[X|Y ])(X − E[X|Y ])T ]). (2.1)

The mutual information I(X; X̂) is equals to the mutual information I(X;Y ). There-

fore, the problem in (1.2) can be converted to

min
C,ΣQ�0

I(X;Y )

subject to tr(E[(X − E[X|Y ])(X − E[X|Y ])T ]) ≤ d.

(2.2)

Because of the conditions where X and Y are both Gaussian distributed and Qi are

mutually independent from Xi, the objective function can also be represented as

I(X;Y ) =
1

2
log
|CΣXC

T + ΣQ|
|ΣQ|

. (2.3)

9
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The derivation of (2.3) is listed as follows,

I(X;Y ) = I(Y ;X)

=
1

2
log

|ΣY |
|E[(X − Y )(X − Y )T ]|

=
1

2
log
|CΣXC

T + ΣQ|
|ΣQ|

.

As for the distortion matrix D in (2.1), it can also be derived as

D = tr(E[(X − E[X|Y ])(X − E[X|Y ])T ])

= ΣX − ΣXC
T (CΣXC

T + ΣQ)−1CΣX .

(2.4)

Therefore, the optimization problem in (2.2) can be written as

min
C

1

2
log
|CΣXC

T + ΣQ|
|ΣQ|

subject to tr(ΣX − ΣXC
T (CΣXC

T + ΣQ)−1CΣX) ≤ d

ΣQ � 0.

(2.5)

Since the optimization problem has been turned into the form in (2.5), we can intro-

duce several new variables to make the conversions to a further step. Let Σi be an

`i × `i matrix, where i = 1, ..., L. We assume that

0 � diag(Σ1, · · · ,ΣL) � ΣX . (2.6)

Then define another matrix ΣZ from Σi, i = 1, · · · , L, and the covariance matrix ΣX

as follows,

ΣZ = (diag(Σ−1
1 , · · · ,Σ−1

L )− Σ−1
X )−1. (2.7)

10
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The case of ΣZ may appear rank-deficient, but this situation can be handled via a

suitable projection to the nondegenerate subspace. Moreover, introduce another new

variable matrix Γi, i = 1, ..., L as

Γi = Σi − ΣiC
T
i (CiΣiC

T
i + ΣQi

)−1CiΣi. (2.8)

There’s one equation for describing the relationship between Γi, D and ΣZ , which

can be verified as

diag(Γ1, · · · ,ΓL) = (D−1 + Σ−1
Z )−1. (2.9)

With all those newly introduced variables including Σi, Γi(i = 1, ..., L), ΣZ and D, it

can be verified that

1

2
log
|CΣXC

T + ΣQ|
|ΣQ|

=
1

2
log
|ΣX + ΣZ ||diag(Σ1, · · · ,ΣL)|
|D + ΣZ ||diag(Γ1, · · · ,ΓL)|

. (2.10)

The derivation of those two conversions (2.9) and (2.10) is given in the appendix.

Therefore, we can write the optimization problem in (2.5) to be an optimization

problem as

min
D,Γ1,··· ,ΓL

1

2
log
|ΣX + ΣZ ||diag(Σ1, · · · ,ΣL)|
|D + ΣZ ||diag(Γ1, · · · ,ΓL)|

subject to 0 � D � ΣX ,

tr(D) ≤ d,

0 � diag(Γ1, · · · ,ΓL),

diag(Γ1, · · · ,ΓL) = (D−1 + Σ−1
Z )−1.

(2.11)

11
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Here we can relax the last constraint to generate the new following convex optimiza-

tion problem as

min
D,Γ1,··· ,ΓL

1

2
log
|ΣX + ΣZ ||diag(Σ1, · · · ,ΣL)|
|D + ΣZ ||diag(Γ1, · · · ,ΓL)|

subject to 0 � D � ΣX ,

tr(D) ≤ d,

0 � diag(Γ1, · · · ,ΓL),

diag(Γ1, · · · ,ΓL) � (D−1 + Σ−1
Z )−1.

(2.12)

This newly generated optimization problem provides the lower bound on the original

non-convex problem. Note that this lower bound is valid for any Σ1, · · · ,ΣL satisfying

(2.6). Therefore, we can maximize over Σ1, · · · ,ΣL subject to (2.6) to find the tightest

lower bound.

12



Chapter 3

Implementation of The Iterative

Algorithm

3.1 The saddle point

In the convex optimization problem (2.12), we assume matrix Σi, i = 1, ..., L to be

constant, thus the optimization problem is solved over the variables D and Γi, i =

1, ..., L to get the lower bound on minimum sum rate. In fact, the matrix Σi is also a

variable and has influence on the result of this minimum sum rate as well. Therefore,

our tightest lower bound on the sum rate is represented by the following max-min

13
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problem,

max
Σ1,··· ,ΣL

min
D,Γ1,··· ,ΓL

1

2
log
|ΣX + ΣZ ||diag(Σ1, · · · ,ΣL)|
|D + ΣZ ||diag(Γ1, · · · ,ΓL)|

subject to 0 � diag(Σ1, · · · ,ΣL) � ΣX

0 � D � ΣX ,

tr(D) ≤ d,

0 � diag(Γ1, · · · ,ΓL),

diag(Γ1, · · · ,ΓL) � (D−1 + Σ−1
Z )−1.

(3.1)

In the following analysis, we assume the number of terminals L to be 2. In the

above optimization problem, diag(Σ1,Σ2) = (Σ−1
X +Σ−1

Z )−1, which is derived from the

definition of ΣZ in (2.7). By applying the matrix inversion lemma, we can get the

following equation

(D−1 + Σ−1
Z )−1 = D −D(ΣZ +D)−1D. (3.2)

Now we can rewrite the last constraint as

0 � D − diag(Γ1,Γ2)−D(ΣZ +D)−1D,

by the Schur complement, this is equivalent to

0 �

ΣZ +D D

D D − diag(Γ1,Γ2)


which is linear matrix inequality. Then we’d like to make some conversions on the

14
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objective function in (3.1). Introduce a new variable Θ, where

(Σ−1
X + Θ−1)−1 = D. (3.3)

Therefore, the objective function is concave over Σ1 and Σ2. It is possible that there

exists a saddle point and the max-min problem is equivalent to min-max problem as

follows,

min
D,Γ1,Γ2

max
Σ1,Σ2

1

2
log

|ΣX + Θ||diag(Σ1,Σ2)|
|diag(Σ1,Σ2) + Θ|diag(Γ1,Γ2)|

subject to 0 � diag(Σ1,Σ2) � ΣX

0 � D � ΣX ,

tr(D) ≤ d,

0 � diag(Γ1,Γ2),

(diag(Γ−1
1 ,Γ−1

2 )−Θ−1)−1 � diag(Σ1,Σ2) � ΣX .

(3.4)

3.2 The iterative method

In the solving part of this thesis, we utilize the CVX toolbox and the SDPT3 in

MATLAB to crack those optimization problems. Here CVX is a modeling system

for convex optimization and SDPT3 is a software for semidefinite-quadratic-linear

programming.

When the optimization problem is represented in the form like (3.4) with all these

constraints, the optimization problem itself is convex, but CVX won’t recognize it

to be so. Therefore, we have to transform the problem in (3.4) by linearization and

make CVX able to solve it.

15
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Here we generate an iterative algorithm to get the minimum value on sum rate

and this algorithm is divided into two parts.

The first min part of the problem deal with the variables D, Γ1, Γ2 and treat the

matrix Σ1, Σ2 as constants, the objective function and constraints for this part is

listed as follows,

min
D,Γ1,Γ2

1

2
log
|ΣX + ΣZ ||diag(Σ1,Σ2)|
|D + ΣZ ||diag(Γ1,Γ2)|

subject to 0 � D � ΣX ,

tr(D) ≤ d,

0 � diag(Γ1,Γ2),

diag(Γ1,Γ2) � (D−1 + Σ−1
Z )−1.

(3.5)

Then we deal with max part of the problem, obtaining the maximum value of the

objective function from the variables Σ1 and Σ2. Similarly, here we treat the variables

D, Γ1 and Γ2 as constants, with the corresponding value they obtained in (3.5). The

max part is represented as

max
Σ1,Σ2

1

2
log

|ΣX + Θ||diag(Σ1,Σ2)|
|diag(Σ1,Σ2) + Θ|diag(Γ1,Γ2)|

subject to 0 � diag(Σ1,Σ2) � ΣX

(diag(Γ−1
1 ,Γ−1

2 )−Θ−1)−1 � diag(Σ1,Σ2) � ΣX .

(3.6)

As we mentioned before, linearization on the objective function here is necessary,

otherwise CVX can not handle it. We introduce the Taylor Series to linearize the
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objective function in (3.6) as

max
Σ1,Σ2

1

2
log |diag(Σ1,Σ2)| − 1

2
tr((diag(Σ

(n)
1 ,Σ

(n)
2 ) + Θ))−1 · diag(Σ1,Σ2)

subject to 0 � diag(Σ1,Σ2) � ΣX

(diag(Γ−1
1 ,Γ−1

2 )−Θ−1)−1 � diag(Σ1,Σ2) � ΣX .

(3.7)

After finishing this max part, we have to make some refinement on the matrix Σ1,

Σ2 obtained at (3.7). Here we introduce one parameter α as the step size, and let the

Σ1 and Σ2, which are obtained at this present step, be noted as Σ∗1, Σ∗2. In addition,

we use Σ
(n)
1 , Σ

(n)
2 to represent the value of Σ1, Σ2 obtained at the last iteration in the

same step as (3.7). If it is in the first iteration, Σ
(n)
1 and Σ

(n)
2 will be the initial values

of Σ1, Σ2 respectively. Therefore, the value of Σ1 and Σ2 in the max part we get is

Σ1 = (1− α)Σ
(n)
1 + α · Σ∗1

Σ2 = (1− α)Σ
(n)
2 + α · Σ∗2.

(3.8)

Now we have already obtained the value of all variables D, Σi and Γi (i = 1, 2).

And the last step in these procedures is to compute the lower-bound and upper-bound

for the minimum sum rate with all the values we got. To get the upper bound here,

we have to do the following computation with Γ1, Γ2 and ΣZ as

D∗ = ((diag(Γ1,Γ2))−1 − Σ−1
Z )−1. (3.9)

Then we put the D∗ back to the objective function in (3.5) and get the upper bound

as follows

upper bound =
1

2
log
|ΣX + ΣZ ||diag(Σ1,Σ2)|
|D∗ + ΣZ ||diag(Γ1,Γ2)|

. (3.10)
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Similar to the upper-bound, if we put the obtained value of D directly to (3.5),

the lower-bound is obtained as

lower bound =
1

2
log
|ΣX + ΣZ ||diag(Σ1,Σ2)|
|D + ΣZ ||diag(Γ1,Γ2)|

(3.11)

thus the gap between upper-bound and lower-bound is represented as

1

2
log
|ΣX + ΣZ ||diag(Σ1,Σ2)|
|D∗ + ΣZ ||diag(Γ1,Γ2)|

− 1

2
log
|ΣX + ΣZ ||diag(Σ1,Σ2)|
|D + ΣZ ||diag(Γ1,Γ2)|

. (3.12)

Now all the process in one iteration is completed. The goal in this algorithm is

to reduce the gap between upper-bound and lower-bound and make them converge.

After finishing one iteration, we put the obtained value of Σ1, Σ2 to the min part in

(3.5) again and launch the new iteration. It can be verified from simulations that the

gap between upper-bound and lower-bound can be reduced with iterations, and both

bounds can get converged when L = 2.

3.3 Results of the iterative algorithm

This part will represent some numerical examples to illustrate the iterative algorithm

composed by the min part and the max part.

Let X = (XT
1 , X

T
2 )T . We will begin with an example with ΣX and Σ1, Σ2. The

ΣX is a randomly generated matrix with dimension 8×8. Here we assume the source

vector to be divided by two parts X1 and X2, each of them with the dimension 4, X

is mean zero and ΣX is the covariance matrix of X. The dimension of Σ1 and Σ2 is

the same as the dimension of X1, X2 correspondingly.

18



M.A.Sc. Thesis - Xiaoyu Zhao McMaster - Electrical Engineering

Figure 3.1: The upper-bound and lower-bound when ΣX is 8 × 8, X1 and X2 with
the dimension of 4, L = 2.

Fig 3.1 represents the upper-bound and lower-bound in the minimum sum rate.

The X-axis indicates the value of distortion d, from 0 to tr(ΣX). And the Y-axis here

is the minimum sum rate corresponding to every value of d. It is obvious that when

the dimension of ΣX is 8, which is not a large scale, the upper-bound and lower-bound

can touch each other perfectly.

We want to take the example further. Since in Fig 3.1, ΣX has a relatively small

dimension, now we want to change the dimension to a larger scale, to see if the

convergence still exists. Let the dimension of the covariance matrix ΣX to be 28,

which means the vector X is of the dimension 28. We divide it to the vector X1 and

X2, with dimensions of 13 and 15 respectively.
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Figure 3.2: The upper-bound and lower-bound when ΣX is 28 × 28, X1 with the
dimension of 13, X2 with dimension of 15, L = 2.

The scenario is shown in Fig 3.2. It can be seen that under such circumstance,

the lower-bound and upper-bound of the objective function still can touch each other

perfectly in all values of distortion d

In the above examples, we assume the vectors X1 and X2 are independent, now

we want to test if the algorithm still works when X1 and X2 are correlated as

X = (XT
1 , X

T
2 )T

X2 = AX1 +N2.

(3.13)

Where A is a randomly generated matrix and N2 is a vector, acting as an error term

here, with the elements in a much smaller scale than X1.
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Figure 3.3: The upper-bound and lower-bound when ΣX is 25 × 25, X1 with the
dimension of 9, X2 with the dimension of 16, L = 2.

When testing the case with correlation, we set the dimension of ΣX to be 25,

matrix Σ1, Σ2 with dimension of 9 and 16. And the vector X1, X2 has the relationship

in (3.13). Fig 3.3 described the lower-bound and upper bound in this scenario, where

both the upper-bound and lower-bound still can get touched, indicating that the

iterative algorithm works even when vectors in X have correlation relationship.

However, in the above cases, we define the vectors X1 and X2 of the similar

numerical value, now we want to test if the element in X1 has a significant greater

value than X2.

In Fig 3.4, ΣX is a 19 × 19 matrix, and X1 and X2 have the dimension of 7 and

12. In this scenario, we set the element of X1 is 15 times greater of those in X2

in numerical value. As the figure shows, this iterative algorithm is feasible in this

situation.

In these examples, including different dimensions of ΣX and different relationships
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Figure 3.4: The upper-bound and lower-bound when ΣX is 19 × 19, X1 with the
dimension of 7, X2 with the dimension of 12 L = 2.

between X1 and X2, we can find that the iterative algorithm derived from the saddle

point analysis can make the upper-bound and the lower-bound converge when the

number of terminals L is 2. And we wonder what the result will be if L is grater than

2.

Let vector X = (XT
1 , X

T
2 , X

T
3 )T , where X1, X2 and X3 are of the similar numerical

value and they are not correlated with each other. The dimensions of these 3 vectors

are 4, 7 and 9. Fig 3.5 shows the result of upper-bound and lower-bound in this

situation, which indicates that both of them can still converge. In the following

example, when the dimension of these three vectors are 12, 3 and 9. Similar to

the last case, X1, X2 and X3 are of the similar numerical value and they are not

correlated with each other. The lower-bound of the minimum sum rate begins to

have the complex numbers when d is less than half of the tr(ΣX). Besides, the case of

L = 5 has been tested, and the same situation happens that the lower-bound appears
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Figure 3.5: The upper-bound and lower-bound when ΣX is 20 × 20, X1, X2 and X3

with the dimension of 4, 7, 9, L = 3.

to have an imaginary part. It indicates that the toolbox or software we presently

utilize may not able to handle the situation perfectly when the number of terminals

is greater than 2, thus the error term exists. Or this algorithm may not suit the

situation when L is greater than 2 in a general way.
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Chapter 4

The Algorithm with Wyner’s

Common Information

4.1 The connection with Wyner’s common infor-

mation

In Chapter 3, we have presented an iterative algorithm composed of two parts. In

each iteration, the value of all variables will be updated and pass to the next iteration

for computation, until the lower-bound and upper-bound converge.

It is clear that the value of matrix Σi (in the following part, we assume L = 2,

so i=1,2) is of significant importance. Numerical results suggest that if a particular

choice of (Σ1, Σ2) produces a tight bound on the rate-distortion function (3.5) in

a given d, then the same pair (Σ1, Σ2) is also able to make the upper-bound and

lower-bound touch for d′ < d in certain scenarios. It simulates the interest to know

what kind of (Σ1, Σ2) is optimal when d ≈ tr(ΣX).
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To realize this idea, we can revisit the following optimization problem, which has

been mentioned in Chapter 3, as the max part of the iterative problem

max
Σ1,Σ2

1

2
log

|ΣX + Θ||diag(Σ1,Σ2)|
|diag(Σ1,Σ2) + Θ|diag(Γ1,Γ2)|

subject to 0 � diag(Σ1,Σ2) � ΣX

(diag(Γ−1
1 ,Γ−1

2 )−Θ−1)−1 � diag(Σ1,Σ2) � ΣX .

(4.1)

Note that when d ≈ tr(ΣX), the diagonal entries of Θ always go to infinity. Since

Θ = (D−1 − Σ−1
X )−1.

As a consequence, the result of |diag(Σ1,Σ2) + Θ| essentially dose not depend on (Σ1,

Σ2). However, if we further ignore the constraint for the max part (diag(Γ−1
1 ,Γ−1

2 )−

Θ−1)−1 � diag(Σ1,Σ2), then we can rewrite the above optimization problem as

max
Σ1,Σ2

1

2
log |diag(Σ1,Σ2)|

subject to 0 � diag(Σ1,Σ2) � ΣX .

(4.2)

From the form we derived in (4.1), it is quite interesting to note that this is exactly

the optimization problem for determining Wyner’s common information [17] in the

Gaussian case. Specially, let X = (XT
1 , X

T
2 )T , then the optimization problem (4.1)

will be equivalent to

min
pW |X1,X2

I(X1, X2;W )

subject to X1 ↔ W ↔ X2 from a Markov chain.

(4.3)
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Let the pair of matrix (Σ1,Σ2) denote the optimal solution to the optimization

problem in (4.1). Under such circumstance, it can be verified that the equation

diag(Σ−1
1 ,Σ−1

2 )− Σ−1
X must be rank deficient.

Therefore, ΣZ , (diag(Σ−1
1 ,Σ−1

2 ) − Σ−1
X ) will not be well defined. However, this

issue can be easily handled through a suitable projection to the non-degenerate sub-

space. Now let α1, ..., αp denote the positive eigenvalues of the result diag(Σ−1
1 ,Σ−1

2 )−

Σ−1
X , and let π1, ..., πp be the corresponding eigenvectors.

We can rewrite the objective function

1

2
log
|ΣX + ΣZ ||diag(Σ1,Σ2)|
|D + ΣZ ||diag(Γ1,Γ2)|

as

1

2
log
|ΠTΣXΠ + Λ||diag(Σ1,Σ2)|
|ΠTDΠ + Λ||diag(Γ1,Γ2)|

. (4.4)

The constraint can be written as

0 �

ΠTDΠ + Λ ΠTD

DΠ D − diag(Γ1,Γ2)

 ,

where we define

Λ , diag(
1

α1

, ...,
1

αp
)

Π , (π1, ..., πp).
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4.2 The procedure of the algorithm

The main difference between the algorithm with Wyner’s common information and

the iterative algorithm mentioned in Chapter 3 lies in the initialization of the matrix

pair (Σ1,Σ2).

We start with an optimization problem over Σ1 and Σ2. Instead of generating

a random matrix as Σ1 and Σ2, we try to initialize these two matrix through an

optimization problem as follows

max
Σ1,Σ2

1

2
log |diag(Σ1,Σ2)|

subject to 0 � diag(Σ1,Σ2) � ΣX .

(4.5)

After obtaining the value of initial Σ1 and Σ2, we will start the main part of this

algorithm, which looks quite similar to the iterative algorithm in Chapter 3, except

some modifications when it concerns ΣZ .

We will divide the algorithm by the min part and the max part, and solve the

problem in an iterative way. In the min part, we will fix Σ1 and Σ2 to the correct

values and try to obtain the value of D, Γ1 and Γ2. The min part optimization is
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written as follows,

min
D,Γ1,Γ2

1

2
log
|ΠTΣXΠ + Λ||diag(Σ1,Σ2)|
|ΠTDΠ + Λ||diag(Γ1,Γ2)|

subject to 0 � D � ΣX ,

tr(D) ≤ d,

0 � diag(Γ1,Γ2),

0 �

ΠTDΠ + Λ ΠTD

DΠ D − diag(Γ1,Γ2)



(4.6)

where α1, ..., αp denote the positive eigenvalues of the result diag(Σ−1
1 ,Σ−1

2 ) − Σ−1
X ,

and π1, ..., πp denote the corresponding eigenvectors. We define Λ , diag( 1
α1
, ..., 1

αp
),

Π , (π1, ..., πp).

Then we start the max part, obtaining the maximum value of the objective func-

tion from the variables Σ1 and Σ2. Here we treat the variables D, Γ1 and Γ2 as

constants. The max part is represented as

max
Σ1,Σ2

1

2
log

|ΣX + Θ||diag(Σ1,Σ2)|
|diag(Σ1,Σ2) + Θ||diag(Γ1,Γ2)|

subject to 0 � diag(Σ1,Σ2) � ΣX

(diag(Γ−1
1 ,Γ−1

2 )−Θ−1)−1 � diag(Σ1,Σ2) � ΣX

(4.7)

see Θ = (D−1−Σ−1
X )−1. And the same linearization function as appeared in Chapter

3, (3.7), should be introduced in this max part.

Now after obtaining the value of all variables D, Σi and Γi (i = 1, 2), the last step

in these procedures is to compute the lower-bound and upper-bound for the minimum

sum rate with all the values we got. To get the upper bound here, we have to do the
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following computation with Γ1, Γ2 and Π, Λ as

D∗ = ((diag(Γ1,Γ2))−1 − ΠΛ−1ΠT . (4.8)

Then we put the D∗ to the objective function in (4.6) and get the upper bound

upper bound =
1

2
log
|ΠTΣXΠ + Λ||diag(Σ1,Σ2)|
|ΠTD∗Π + Λ||diag(Γ1,Γ2)|

. (4.9)

Similar to the upper-bound, if we put the obtained value of D directly to (4.6),

the lower-bound is obtained as

lower bound =
1

2
log
|ΠTΣXΠ + Λ||diag(Σ1,Σ2)|
|ΠTDΠ + Λ||diag(Γ1,Γ2)|

(4.10)

thus the gap between upper-bound and lower-bound is represented as

1

2
log
|ΠTΣXΠ + Λ||diag(Σ1,Σ2)|
|ΠTD∗Π + Λ||diag(Γ1,Γ2)|

− 1

2
log
|ΠTΣXΠ + Λ||diag(Σ1,Σ2)|
|ΠTDΠ + Λ||diag(Γ1,Γ2)|

. (4.11)

The above is all the procedures in one iteration. Similar to the iterative algorithm

in Chapter 3, the goal in this algorithm with Wyner’s common information is to reduce

the gap between upper-bound and lower-bound and make them converge. With the

initialization of Σ1 and Σ2 at first, the operation efficiency of this algorithm can be

improved.

Therefore, after finishing one iteration, we put the obtained value Σ1, Σ2 to the

min part in (4.6) again and start the new iteration.
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Figure 4.1: The upper-bound and lower-bound when ΣX is 26× 26, L = 2. X1 with
the dimension of 10, X2 with the dimension of 16.

4.3 Results of this algorithm

This part will represent some numerical examples for the algorithm with Wyner’s

common information.

Let X = (XT
1 , X

T
2 )T . We will begin with an example with ΣX and Σ1, Σ2. The

ΣX is a randomly generated matrix with dimension 26 × 26. Here we assume the

source vector to be divided by two parts X1 and X2, each with the the dimension of

10 and 16, X is mean zero and ΣX is the covariance matrix of X. The dimension of

Σ1 and Σ2 is the same as the dimension of X1, X2 correspondingly.

Fig 4.1 represents the upper-bound and lower-bound in the minimum sum rate.

The X-axis indicates the value of distortion d, from 0 to tr(ΣX). The Y-axis here is

the minimum sum rate corresponding to every value of d. It can be observed that

the bounds have converged. We want to take the example further.
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We now want to test if the algorithm still works when X1 and X2 are correlated

X = (XT
1 , X

T
2 )T

X2 = AX1 +N2.

(4.12)

Where A is a randomly generated matrix and N2 is a vector, acting as an error term

here, with the elements in a much smaller scale than X1.
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Figure 4.2: The upper-bound and lower-bound when ΣX is 25 × 25, L = 2.X1 with
the dimension of 9, X2 with the dimension of 16.

When testing the case with correlation, we set the dimension of ΣX to be 25,

matrix Σ1, Σ2 with dimension of 9 and 16. And the vectorsX1, X2 has the relationship

in (4.14). Fig 4.2 described the lower-bound and upper-bound in this scenario, where

both the upper-bound and lower-bound still can get touched, indicating that this new

iterative algorithm with Wyner’s common information works even when vector X has

correlation.

However, in the above cases, we define the vectors X1 and X2 are of the similar

numerical value and dimension, now we want to test if the element in X1 has a

significant larger value than X2.

In Fig 4.3, ΣX is a 24 × 24 matrix, and X1 and X2 has the dimension of 3 and

21. In this scenario, we set the element of X1 is 20 times larger of those in X2 in

numerical value. As the figure shows, this algorithm is feasible in this situation.
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Figure 4.3: The upper-bound and lower-bound when ΣX is 24 × 24, L = 2.X1 with
the dimension of 3, X2 with the dimension of 21.

After testing the examples, including different dimension of ΣX and different rela-

tionships between X1 and X2, we can draw the conclusion that the iterative algorithm

with Wyner’s common information works when the number of terminals L is 2. And

we wonder how this algorithm will perform if L is grater than 2.

Let vector X = (XT
1 , X

T
2 , X

T
3 )T , where X1, X2 and X3 are of the similar numerical

value and they are not correlated with each other. The dimensions of these 3 vectors

are 3, 8 and 6. Fig 4.5 shows the result of upper-bound and lower-bound in this

situation, which indicates that the bounds converge.

In the following example, the dimension of these three vectors are 3, 8 and 6,

the same as the last example. Here X1, X2 and X3 are of the similar numerical

value but they are correlated with each other. When d is in a certain range, the

gap between upper-bound and lower-bound can not be ignored even increasing the

number of iterations, the gap can be seen in Fig 4.5. It seems that there are cases
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Figure 4.4: The upper-bound and lower-bound when ΣX is 17× 17, L = 3. X1 with
the dimension of 3, X2 with the dimension of 8, X3 with with the dimension of 6.

Figure 4.5: The upper-bound and lower-bound when ΣX is 17× 17, L = 3. X1 with
the dimension of 3, X2 with the dimension of 8, X3 with with the dimension of 6,
correlated.
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with three terminals where this algorithm with Wyner’s common information is not

able to reduce the gap completely.
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Chapter 5

The Algorithm with Initializations

5.1 Methods to initialize the variable

In this chapter, we will derive three methods to initialize one key variable ΣZ , which

has appeared in Chapters 3 and 4. In the previous chapters, we define ΣZ as follows

ΣZ = ((diag(Σ1, · · · ,ΣL))−1 − Σ−1
X )−1 (5.1)

then we launch the algorithms iteratively until the upper-bound and lower-bound

converge. However, we find that if we initialize the value of ΣZ at first and derive

Σi, (i = 1, · · · , L) from the obtained ΣZ , sometimes it is also feasible to make the

upper-bound and lower-bound touched. Under such circumstance, we can avoid the

iterative procedures. Instead, we put the Σi derived from ΣZ directly to the opti-

mization problem for computing the minimum sum rate. In the following part, we

assume L = 2.

36



M.A.Sc. Thesis - Xiaoyu Zhao McMaster - Electrical Engineering

We can derive ΣZ directly from the covariance matrix ΣX as follows

ΣZ =

 ΣX11 −ΣX12

−ΣX21 ΣX22

 (5.2)

where ΣX11 denotes to the upper left matrix in D with dimension i×i, where i denotes

the dimension of vector X1. Let j denotes the dimension of X2. Thus ΣX12 denotes

the part of ΣX from column i + 1 to column i + j and row 1 to row i .The rest is

represented in the same manner.

After obtaining the value of ΣZ , we can derive (Σ1,Σ2) by the equation

diag(Σ1,Σ2) = (Σ−1
Z + Σ−1

X )−1 (5.3)

then we start the optimization problem for computing the minimum sum rate, by

putting the derived Σ1 and Σ2 to it directly

min
D,Γ1,Γ2

1

2
log
|ΣX + ΣZ ||diag(Σ1,Σ2)|
|D + ΣZ ||diag(Γ1,Γ2)|

subject to 0 � D � ΣX ,

tr(D) ≤ d,

0 � diag(Γ1,Γ2),

diag(Γ1,Γ2) � (D−1 + Σ−1
Z )−1.

(5.4)

The approach to compute the upper-bound and lower-bound is the same as in Chapter

3, the gap can be represented as

1

2
log
|ΣX + ΣZ ||diag(Σ1,Σ2)|
|D∗ + ΣZ ||diag(Γ1,Γ2)|

− 1

2
log
|ΣX + ΣZ ||diag(Σ1,Σ2)|
|D + ΣZ ||diag(Γ1,Γ2)|

(5.5)
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where

D∗ = ((diag(Γ1,Γ2))−1 − Σ−1
Z )−1. (5.6)

Now we do not need to complete another max part as in Chapters 3 and 4. Instead,

we compute the gap from one optimization problem(5.4) directly.

Apart from deriving ΣZ from ΣX , we also can derive ΣZ from an optimal D as

ΣZ =

D11 −D12

D21 D22

 (5.7)

where D11 denotes to the upper left part in D with dimension i× i. Let j denotes the

dimension of X2. Thus D12 denotes to the part in D from column i + 1 to column

i+ j and row 1 to row i .The rest is represented in the same manner. The following

procedures are the same as mentioned before, from (5.3) to (5.5).

What’s more, we also can derive ΣZ from the computed D∗ in the similar way as

ΣZ =

D∗11 −D∗12

D∗21 D∗22

 (5.8)

and proceed the algorithm as the last two mentioned approaches(5.2) and (5.7).

5.2 Results

In this section we will represent some examples to show the results of those three

algorithms.

We will test these three algorithms with the same matrix ΣX and the same cor-

responding dimensions in Σ1, Σ2.
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Figure 5.1: The upper-bound and lower-bound when ΣX is 25× 25, L = 2, derive ΣZ

from ΣX . X1 with the dimension of 9, X2 with the dimension of 16.

We set ΣX with dimension 25× 25, and vector X1 with the dimension of 9, vector

X2 with the dimension of 16. X1 and X2 are correlated, which has the relationship

in (4.14). Fig 5.1 represents the upper-bound and lower-bound when computing the

ΣZ from ΣX , which shows that the two bounds get converge. The figure for the other

two algorithms, which compute ΣZ from D and D∗, have nearly the same figure as

Fig 5.1.

In the Fig 5.1, we take the value of distortion d as the X-axis, from 0 to tr(ΣX).

Here we pick 30 points uniformly to draw the figure. However, there exists a part in d,

where all these three algorithms produce the non-negligible gap between lower-bound

and upper-bound. In order to show the gap numerically and make the comparison

more directly, I will represent the normalized gap in following table 5.1. The gap will
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be normalized as

normalized gap =
upper-bound− lower-bound

upper-bound
. (5.9)

Table 5.1: The Gap between lower-bond and upper-bound in three algorithms, when
X1 with dimension 9 and X2 with dimension 16

d 2.9165 3.4975 4.079 4.660 5.241 5.822 6.404 6.985
Gap 19.21×10−8 2.78×10−5 2.75×10−4 2.64×10−4 2.36×10−4 2.08×10−4 1.76×10−4 1.28×10−4

Gap 25.79×10−4 4.07×10−4 3.56×10−4 3.15×10−4 2.78×10−4 2.44×10−4 2.08×10−4 1.83×10−4

Gap 35.79×10−4 4.07×10−4 3.56×10−4 3.15×10−4 2.78×10−4 2.44×10−4 2.08×10−4 1.83×10−4

In the above Table 5.1, gap 1 denotes the gap when computing ΣZ from ΣX in

(5.2), and gap 2 and 3 denote to the scenarios where ΣZ is derived from D (5.7) and

D∗(5.8). It can be seen from Table 5.1 that all those three algorithms produce a

relatively obvious gap in the same range of d, with a normalized gap on the scale of

10−4. The first algorithm appears to perform better than the other two, but only in a

slight degree. Algorithm 2 and 3 seem to have the same performance in this scenario,

with nuanced difference as follows, where ∆Gap denotes the difference between Gap

2 and Gap 3.

Table 5.2: The Gap difference in Gap 2 and Gap 3, when X1 with dimension 9 and
X2 with dimension 16

d 2.9165 3.4975 4.079 4.660 5.241 5.822 6.404 6.985
∆Gap-1.46×10−7 -3.063×10−7 -3.89×10−7 7.50×10−7 -3.17×10−7 2.41×10−7 2.84×10−7 3.16×10−7

We can test another example when ΣX with dimension 25× 25, the dimension of

X1 is 12, and the dimension of X2 is 13. We wonder what the performance of those

three algorithms will be when X1 and X2 share the similar dimensions. Vector X1

40



M.A.Sc. Thesis - Xiaoyu Zhao McMaster - Electrical Engineering

Figure 5.2: The upper-bound and lower-bound when ΣX is 25× 25, L = 2, derive ΣZ

from ΣX . X1 with the dimension of 12, X2 with the dimension of 13.

and X2 are correlated. Like Fig 5.1, we will represent the figure of upper-bound and

lower-bound in algorithm one when the value of d ranges from 0 to tr(ΣX) as follows.

However, there also exists a certain range in d where the gap can not be reduced

perfectly. We will represent the normalized gap between upper-bound and lower-

bound in that part to show the results and compare the performance between these

three algorithms.

Table 5.3: The Gap between lower-bond and upper-bound in three algorithms, when
X1 with dimension 12 and X2 with dimension 13

d 3.885 5.176 6.468 7.759 9.051 10.343 11.634 12.926
Gap 12.17×10−7 4.12×10−4 1.37×10−3 1.16×10−3 1.08×10−3 3.28×10−3 3.39×10−3 2.18×10−3

Gap 22.22×10−3 6.55×10−3 7.04×10−3 6.72×10−3 1.16×10−3 3.44×10−3 5.50×10−4 5.28×10−4

Gap 32.22×10−3 6.55×10−3 7.04×10−3 6.72×10−3 1.17×10−3 3.45×10−3 5.49×10−4 5.28×10−4

It seems that in this scenario, when X1 and X2 share almost the same dimension
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Figure 5.3: The upper-bound and lower-bound when ΣX is 12× 12, L = 2, derive ΣZ

from ΣX . X1 with the dimension of 5, X2 with the dimension of 7.

and are correlated, those three algorithms represent nearly the same performance

and those gaps are not negligible. It can be seen that the first algorithm performs

better than the other two in this certain range, when gap 2 and 3 are quite obvious.

Algorithms 2 and 3 still share the similar performance. However, apart from this

range of d in the scenario, algorithm 2 and 3 performs better than algorithm one. So

it is hard for us to judge which one is better, it depends on the scenario we meet.

When the dimensions of X1 and X2 are of the relatively small value and those

two vectors are not correlated with each other, all those three algorithms can make

the upper-bound and lower-bound touched closely. We can find that in the following

scenario, when the dimensions of X1, X2 are 5 and 7. Here both vectors are not

correlated with each other.

Fig 5.3 represents the upper-bound and lower-bound in this scenario, when gen-

erating ΣZ from the covariance matrix ΣX . In order to show the results in a more
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detailed way, we will list a part of the normalized gaps as follows.

Table 5.4: The Gap between lower-bond and upper-bound in three algorithms, when
X1 with dimension 5 and X2 with dimension 7

d 1.707 1.949 2.191 2.434 2.676 2.918 3.161 3.403
Gap 11.94×10−10 1.31×10−9 1.07×10−10 4.73×10−10 5.19×10−9 4.61×10−9 7.27×10−9 1.38×10−9

Gap 27.42×10−10 2.39×10−9 6.16×10−10 2.42×10−10 6.46×10−9 6.61×10−9 3.60×10−9 4.20×10−9

Gap 3 1.18×10−9 1.59×10−10 7.39×10−10 2.18×10−10 4.12×10−9 7.79×10−9 7.02×10−9 1.07×10−9

In the above Table 5.4, all the three algorithms produce satisfying results. The

normalized gaps can be reduced to a magnitude of 10−9 or even less in this scenario,

which indicates that all the three algorithms perform well under such circumstance.
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Chapter 6

Conclusion

In this thesis, we aim at achieving the minimum sum rate in the multi-terminal

Gaussian case. To begin with, we derive the equation for minimum sum rate from the

rate-distortion function. Then we make conversions of the original optimal problem,

transforming it to a convex one and raising an iterative algorithm to converge the

upper-bound and lower-bound of the objective function. When those two bounds

coincide, it can be verified that we obtain the optimal solution to the minimum sum

rate.

We come up with three major kinds of algorithms. The first one is the iterative

algorithm derived from the objective function directly. The iterative algorithm is

composed of two parts, which aim at obtaining the maximum value and the minimum

value of the transformed objective problem. That is to say, the essential of this

algorithm is the saddle point analysis.

Based on the first algorithm, we raise another algorithm with Wyner’s common

information. In this algorithm, we solve an optimal problem at first and obtain the

initial value of two fundamental variables. Then we continue the iterative procedures
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and get the optimal solution.

We also put forward algorithms without iterations, which generate the variables

from known variables and put them back to the objective problem. Under such

circumstance, the upper-bound and lower-bound can be computed directly.

All those algorithms can make the lower-bound and upper-bound touch in certain

cases, for the gap can be reduced to a relatively small value comparing to the value of

upper-bound and lower-bound. The performance of the algorithms will differ in the

scenarios they meet, with different dimensions and relationships between the vectors.

When the number of encoders L is equal to 2, all those algorithms are applicable. But

when L is greater than 2, these series of algorithms may not work well. There could

appear numerical errors or the upper-bound and lower-bound may not converge.

Therefore, there is some future work for the cases with three or more terminals.

In the aspect of implementation, we can try to solve the optimization problems with

another kind of software or toolbox, which are able to handle the problem as well

as avoid the numerical errors. Thus the complex number in the lower-bound can

be removed. In the algorithm part, We can also try to improve the algorithm by

modifying the objective functions and the constraints, to make it more applicable

and precise when L is greater than 2.
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Appendix A

Derivation of Equation 2.9

We can define the matrix Σ = diag(Σ1, · · · ,ΣL) and Γ = diag(Γ1, · · · ,ΓL) for conve-

nience. Then, we can apply the matrix inversion lemma [18] in the expression for D

in (2.4), which will derive the expression for D−1 as follows,

D−1 = Σ−1
X C−1(CΣXC

T + ΣQ)(CΣXC
T + ΣQ − CΣXΣ−1

X ΣXC
T )−1CΣXΣ−1

X

= Σ−1
X C−1(CΣXC

T + ΣQ)Σ−1
Q C

= CΣ−1
Q CT + Σ−1

X .

(A.1)

From the expression for ΣZ in (2.7), it can be derived that

D−1 + Σ−1
Z = CΣ−1

Q CT + Σ−1
X + Σ−1 − Σ−1

X

= CΣ−1
Q CT + Σ−1.

(A.2)
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The definition of Γi, i = 1, ..., L is represented in (2.8), Thus the expression of matrix

Γ can be proved to be

Γ = Σ− ΣCT (CΣCT + ΣQ)−1CΣ. (A.3)

By applying the matrix inversion lemma again, we can get that

Γ−1 = CΣ−1
Q CT + Σ−1. (A.4)

Therefore, (A..4) shares the same result in (A..2), which proves that

Γ−1 = D−1 + Σ−1
Z (A.5)

is the same as

diag(Γ1, · · · ,ΓL) = (D−1 + Σ−1
Z )−1. (A.6)
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Appendix B

Derivation of Equation 2.10

1

2
log
|CΣXC

T + ΣQ|
|ΣQ|

=
1

2
log
|CΣXC

T + ΣQ| · |Σ−1
Q |

|ΣQ| · |Σ−1
Q |

=
1

2
log
|CΣXΣ−1

Q CT + I|
|ΣQ| · |ΣQ|−1

=
1

2
log |CΣXΣ−1

Q CT + I|

=
1

2
log(|CΣ−1

Q CT + Σ−1
X | · |ΣX |)

=
1

2
log

(
|CΣ−1

Q CT + Σ−1
X |

|Σ−1
X |

)
.

(B.7)

We can define the matrix Σ = diag(Σ1, · · · ,ΣL) and Γ = diag(Γ1, · · · ,ΓL). From

the definition of ΣZ in (2.7), we can derive the expression for Σ−1
X as

Σ−1
X = diag(Σ1, · · · ,ΣL)−1 − Σ−1

Z

= Σ−1 − Σ−1
Z .

(B.8)

As for the numerator in (B..7), we can apply the matrix inversion lemma directly to
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it as

(CΣ−1
Q CT + Σ−1

X )−1 = ΣX − ΣXC
T (CΣXC

T + ΣQ)−1CΣX . (B.9)

It is obvious that the conversion of CΣ−1
Q CT + Σ−1

X in (B..9) is exactly the definition

of matrix D in (2.4). What’s more, it has been proved that Γ = (D−1 + Σ−1
Z )−1.

Therefore, (B..7) can be represented as

1

2
log
|CΣXC

T + ΣQ|
|ΣQ|

=
1

2
log

(
|D−1|

|Σ−1 − Σ−1
Z |

)
=

1

2
log

(
|Γ−1 − Σ−1

Z |
|Σ−1 − Σ−1

Z |

)
=

1

2
log

(
|I − Σ−1

Z Γ| · |Γ−1|
|I − Σ−1

Z Σ| · |Σ−1|

)
=

1

2
log

(
|Σ−1

Z − Σ−1
Z ΓΣ−1

Z | · |Γ−1|
|Σ−1

Z − Σ−1
Z ΣΣ−1

Z | · |Σ−1|

)
.

(B.10)

Here, we still applying the matrix inversion lemma to (B.10), and the expression in

numerator and denominator can be transformed to

Σ−1
Z − Σ−1

Z ΓΣ−1
Z = Σ−1

Z − Σ−1
Z (D−1 + Σ−1

Z )−1Σ−1
Z

= (D + ΣZ)−1

(B.11)

Σ−1
Z − Σ−1

Z ΣΣ−1
Z = Σ−1

Z − Σ−1
Z (σ−1

X + Σ−1
Z )−1Σ−1

Z

= (ΣX + ΣZ)−1.

(B.12)

49



M.A.Sc. Thesis - Xiaoyu Zhao McMaster - Electrical Engineering

Therefore, (B..10) can be derived to a further extent as

1

2
log
|CΣXC

T + ΣQ|
|ΣQ|

=
1

2
log

(
|Σ−1

Z − Σ−1
Z ΓΣ−1

Z | · |Γ−1|
|Σ−1

Z − Σ−1
Z ΣΣ−1

Z | · |Σ−1|

)
=

1

2
log
|D + ΣZ |−1 · |Γ|−1

|ΣX + ΣZ |−1 · |Σ|−1

=
1

2
log
|ΣX + ΣZ | · |Σ|
|D + ΣZ | · |Γ|

=
1

2
log
|ΣX + ΣZ ||diag(Σ1, · · · ,ΣL)|
|D + ΣZ ||diag(Γ1, · · · ,ΓL)|

.

(B.13)
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