Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/24000
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorSheardown, Heather-
dc.contributor.authorPostic, Ivana-
dc.date.accessioned2019-03-12T18:55:59Z-
dc.date.available2019-03-12T18:55:59Z-
dc.date.issued2019-
dc.identifier.urihttp://hdl.handle.net/11375/24000-
dc.description.abstractPolymeric biomaterials have created significant advances in the field of biomedical engineering, however, very few polymeric drug delivery devices have achieved clinical and commercial success. Thus, the motivation for this thesis was to encourage long-term success of materials through expanding the fundamental understanding of polymer properties. Poly(ethylene glycol) was specifically chosen for study as its polyether backbone provides it with many unique properties that are still not fully understood, and are not seen with other similar polymers. PEG has been shown to exhibit amphiphilic character, due to its high conformational freedom, and the ability to hydrogen-bond 2-3 water molecules for each ethylene oxide subunit, creating a very structured water shell and large hydrodynamic radius. Together, the properties formed the hypothesis for the possibility for PEG to control drug release and its environment, expanding its potential in biomedical applications. This hypothesis was investigated with PEG in three states – free PEG, conjugated and blended. Free PEG was determined to inhibit melanoma cell viability by activating apoptosis via PEG effects on the osmolality of the cell medium (Chapter 3). Novel silicone hydrogels incorporating methacrylated PEG as the sole hydrophilic component showed advantageous properties for biomedical applications across a range of formulations (such as low contact angle and protein deposition), as well as altering the release of highly hydrophilic antibiotics from the materials, presumably via PEG-drug hydrogen bonding (Chapter 4). Novel siloxane-PEG blended materials were shown to have the ability to influence drug release of hydrophilic, hydrophobic and drug salts through the structure of PEG (Chapter 5). Overall, the work within this thesis expanded understanding of the abilities and limitations of PEG based on its distinct structure, and expanded the potential for PEG in biomedical applications to more than being used as simply a hydrophilic additive.en_US
dc.language.isoenen_US
dc.subjectpoly(etheylene glycol)en_US
dc.subjectbiomedicalen_US
dc.subjectdrug deliveryen_US
dc.subjectpolymersen_US
dc.subjectsilicone hydrogelen_US
dc.subjectbiocompatibilityen_US
dc.titleEstablishing novel biomaterial applications of poly(ethylene glycol) based on its ability to bind water and control its environmenten_US
dc.typeThesisen_US
dc.contributor.departmentChemical Engineeringen_US
dc.description.degreetypeThesisen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
dc.description.layabstractPolymeric biomaterials have created significant advances in the field of biomedical engineering, however, very few polymeric drug delivery devices have achieved clinical and commercial success. Thus, the motivation for this thesis was to encourage long-term success of materials through expanding the fundamental understanding of polymer properties. Poly(ethylene glycol) was specifically chosen for study due to its unique exhibition of amphiphilic character and the ability to hydrogen-bond multiple water molecules, that together suggest the possibility for PEG to control drug release and its environment. Through strategic experimental designs, greater understanding of the abilities and limitations of PEG was established and shown to be the result of the distinct structure of PEG. Specifically, two novel drug delivery systems were developed with demonstrated understanding of the structure-function relationship between polymers and drugs, and the activity of PEG as a melanoma cell viability inhibitor was discovered and found correlated to the PEG structure. Overall the work within this thesis expanded the potential for PEG in biomedical applications to more than being used as simply a hydrophilic additive.en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
postic_ivana_finalsubmission201812_phdchemicalengineering.pdf
Access is allowed from: 2019-12-17
2.78 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue