Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/23970
Title: Salient Index for Similarity Search Over High Dimensional Vectors
Authors: Lu, Yangdi
Advisor: He, Wenbo
Department: Computing and Software
Keywords: approximate nearest neighbor;locality sensitive hashing;index structure;searching strategy
Publication Date: 2018
Abstract: The approximate nearest neighbor(ANN) search over high dimensional data has become an unavoidable service for online applications. Fast and high-quality results of unknown queries are the largest challenge that most algorithms faced with. Locality Sensitive Hashing(LSH) is a well-known ANN search algorithm while suffers from inefficient index structure, poor accuracy in distributed scheme. The traditional index structures have most significant bits(MSB) problem, which is their indexing strategies have an implicit assumption that the bits from one direction in the hash value have higher priority. In this thesis, we propose a new content-based index called Random Draw Forest(RDF), which not only uses an adaptive tree structure by applying the dynamic length of compound hash functions to meet the different cardinality of data, but also applies the shuffling permutations to solve the MSB problem in the traditional LSH-based index. To raise the accuracy in the distributed scheme, we design a variable steps lookup strategy to search the multiple step sub-indexes which are most likely to hold the mistakenly partitioned similar objects. By analyzing the index, we show that RDF has a higher probability to retrieve the similar objects compare to the original index structure. In the experiment, we first learn the performance of different hash functions, then we show the effect of parameters in RDF and the performance of RDF compared with other LSH-based methods to meet the ANN search.
URI: http://hdl.handle.net/11375/23970
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Lu_Yangdi_201807_MSc.pdf
Access is allowed from: 2019-03-31
1.79 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue