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Abstract

The approximate nearest neighbor(ANN) search over high dimensional data has be-

come an unavoidable service for online applications. Fast and high-quality results of

unknown queries are the largest challenge that most algorithms faced with. Locality

Sensitive Hashing(LSH) is a well-known ANN search algorithm while suffers from in-

efficient index structure, poor accuracy in distributed scheme. The traditional index

structures have most significant bits(MSB) problem, which is their indexing strategies

have an implicit assumption that the bits from one direction in the hash value have

higher priority. In this thesis, we propose a new content-based index called Random

Draw Forest(RDF), which not only uses an adaptive tree structure by applying the

dynamic length of compound hash functions to meet the different cardinality of data,

but also applies the shuffling permutations to solve the MSB problem in the tradi-

tional LSH-based index. To raise the accuracy in the distributed scheme, we design a

variable steps lookup strategy to search the ∆-step sub-indexes which are most likely

to hold the mistakenly partitioned similar objects. By analyzing the index, we show

that RDF has a higher probability to retrieve the similar objects compare to the orig-

inal index structure. In the experiment, we first learn the performance of different

hash functions, then we show the effect of parameters in RDF and the performance

of RDF compared with other LSH-based methods to meet the ANN search.
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Chapter 1

Introduction

Nowadays, shared video websites have become increasingly popular. For example,

more than 3 billion searches are processed a month in Youtube. 136,000 photos are

uploaded on Facebook every 60 seconds. 500 million tweets are sent per day. The

volume, velocity, and variety of the unstructured data make it very challenging in

processing the data in these online multimedia applications, wherein the content-

based similarity search is an indispensable and fundamental operation. To reduce the

complexity of tackling the large-scale multimedia data, a commonly used approach is

manually tagging the video with metadata, then apply text-mining, Natural Language

Processing (NLP), or text analytics methods for structured metadata to study the

unstructured data. There are two drawbacks to this type of methods: (1) The perfor-

mance of online multimedia systems are dependent on the quality and completeness of

the metadata, however, having humans manually annotate videos/images is labour-

intensive, time consuming and error prone; (2) the contemporary online video/image

systems trust the users who upload the video clips to annotate the videos/images.

However, a user may intentionally use deceptive descriptions to a video in order to
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Figure 1.1: The overview of content-based video search system.

gain popularity. In this sense, the human-generated metadata can be one of the

causes leading to inaccurate search results [13].

In this thesis, we design and implement a content-based indexing scheme to sup-

port efficient similarity search over large-scale unstructured data with high dimen-

sionality. As shown in Figure 1.1, there are three stages to initialize the index:

1. Feature extraction: The feature descriptors are extracted directly from ob-

ject data(e.g. images and videos) by using one of the state-of-the-art algorithms

SIFT[18, 26] color histogram [15], or their combinations. The ”similarity prop-

erty” has been faithfully captured, which means the similarity between these

feature descriptors(i.e. color distribution) can be used to evaluate the similarity

between object data.

2



M.Sc. Thesis - Yangdi Lu McMaster - Computing & Software

2. Reduce dimension: The feature descriptors are usually high-dimensional vec-

tors with rich information. However, search directly over the high-dimensional

data will lead to the Curse of Dimensionality [33], where query performance

declines exponentially with the increasing number of dimensions. To break

this curse, various algorithms of Approximate Nearest Neighbor (ANN) search

[10, 9, 36] have been proposed, where feature descriptors are usually converted

into compact representations (low dimension vectors).

3. Construct index: Based on the compact representations from above, we build

an index to facilitate the search, where we reduce the complexity from O(log(n))

to O(1).

Among ANNs locality sensitive hashing (LSH) [10, 2, 31, 17, 19, 29, 1, 37] is a

sublinear algorithm to find ANN for high-dimensional data points by applying by

applying the distance-preserving hash functions to project similar high-dimensional

points into the same bucket. Ordering permutation indexing(OPI) [9, 22] is an ef-

ficient non-distributed algorithm to predict the similarity between objects according

to how they rank their distance towards a distinguished set of pivots(anchor objects).

The distance between the objects now is hinted by the distance between their respec-

tive permutations. Small world graphs(SWG) [36, 20] is a greedy searching algorithm

in metric spaces. The basic concept resides on ”The neighbor of my neighbor is also

likely to be my neighbor”, which is also called the small world theory. The traversing

between any two nodes on a navigable small world network is of polylogarithmic time

complexity, which makes it suitable for ANN search problem. While the restriction

of SWG is that the queries of data points should be inserted in the SWG before

searching the ANN.

3
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To achieve the practical online similarity search system, besides the speed and

quality of results need to be considered, two additional issues are also extremely

important: 1) whether the algorithm can be distributed to tackle the incremental

data, since the memory space is limited and expensive. 2) whether the system can

deal with concurrent unknown queries not be inserted in the pre-constructed index.

Due to the fact that OPI is not a distributed algorithm, which is not applicable to

cope with the increasing data. The SWGs restriction makes the system update the

index frequently, which is not a proper scheme in practical system view for the online

system since updating the index is a resource-consumption operation. While the LSH

fulfills these two conditions: meet the requirement that the search queries do not need

to be in the index and requirement of parallel/distributed design in online similarity

search system [2, 37]. Thus, we apply LSH to implement a practical content-based

similarity search system.

Here, we present a summary of our contributions in this thesis:

1. We design a content-based index called Random Draw Forest(RDF), which uses

multiple shuffling permutations to conquer the MSB problem. Each Random

Draw Tree(RDT) provides a portion of similar objects for the query. As the

number of objects increases in RDT, the dimension of hash values is adap-

tively extended in deeper level to increase the resolution for unbalanced data

distribution, which significantly improves the accuracy of ANN queries.

2. We apply the distributed Layered-LSH scheme [2] to RDF, which reduces the

search range and enables the parallelism/distribution of the system. The or-

thogonal hash family [12] is applied to partition the space more accurately.

To deal with the mistakenly partitioned similar objects, a ∆-step sub-indexes

4
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search strategy is designed to leverage the accuracy and efficiency.

3. We combine the Multi-probe LSH search strategy [19] and PHF multi-index

storage [37] to reduce the index storage and implement RDF in the real key-

value database. We implement the state-of-the-art LSH method to demonstrate

the performance of different hash functions. Then we conduct experiments to

tune the related parameters and compare with other traditional LSH methods

on the video dataset. The evaluation result demonstrates RDF does have 5.4%

to 8.3% improvement in terms of average accuracy(Section 5.5).

1.1 Thesis Outline

In Chapter 2, we introduce the related work, background and problem statement in

this work. For example, the state-of-the-art ways to improve the LSH, the defini-

tions of approximate nearest neighbor, locality sensitive hashing, batch orthogonal

hash function, p-stable hash function. The main issues that LSH-based methods

experience.

Chapter 3 first discusses the Layered Hash for reducing the dimensionality of orig-

inal feature descriptors and dividing the large dataset into different content-sensitive

partitions. Then we design a ∆-step lookup strategy to optimize the search process

and balance the trade-off between the efficiency and accuracy. The experimental

comparisons are shown in the last section of Chapter 3.

In Chapter 4, we first introduce a new index structure called Random Draw For-

est(RDF), which consists of Random Draw Tree(RDT). We present the detail steps

to build the RDT with pseudocode. We also design a multi-probes and ∆-step search

5
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algorithm to search over the RDF to achieve better performance.

In Chapter 5, we implement the basic LSH(BLSH) index to compare the per-

formance of four different hash family: P-Stable, J2JSD, SRP and BOA. Then we

tune the related parameters in RDF and compare the RDF with other LSH-based

methods.

In the last Chapter, we conclude the thesis and remark the advantages and dis-

advantages of RDF. We also propose some possible improvements, which can reduce

the search range while maintaining a high accuracy.

6



Chapter 2

Preliminary

2.1 Related Work

Real-world objects are represented in usually vectorial form. We commonly refer to

these object representations as data points in some space. To find the exact nearest

neighbor for high-dimensional points, an improved binary tree structure KD-tree [4]

is developed, where the points are partitioned into different level cells. However, the

real-time query complexity of KD-tree is aroundO(2dlog(n)), where d is the dimension

of points, n is the number of points. It spends log(n) to find the cells ”near” the query

points, 2d to search around cells in that neighborhood(which is typically treated as a

constant). Therefore, the practical condition to use KD-tree is n >> 2d. Otherwise,

the efficiency is no better than brute-force linear scan approach(the query complexity

is O(dn)), which is called the Curse of Dimensionality [33].

To pursue the speed, the searching condition is relaxed. Approximate Near-

est Neighbor(ANN) methods are developed to pursue the good-enough fast answers

by sacrificing a limited amount of accuracy. To solve the ANN problem in high

7
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dimensional space, Indyk and Motwani proposed the idea of Locality Sensitive

Hashing(LSH)[10] that has the property that projects close-by points into the same

hash bucket in hash tables with a higher probability than distant ones. However, this

random algorithm has the following aspects can be improved.

1. Search strategy : Panigraphy proposed an entropy-based LSH [23] that generates

random ”perturbed” objects near the query object, queries all of them plus the

query object to generate candidate set. Based on the entropy-based LSH, Multi-

probes LSH [19] proposed a better way to generate high quality ”perturbed”

query based on the hash values, which not only reduces the memory usage of

index, but also achieve high accuracy.

2. Hash functions : P-stable hash functions [6] is designed for `p norm, where

p ∈ (0, 2]. Sign random projection(SRP) hash functions [5] is designed for

cosine(angular) distance. Orthogonal hash functions [12] improved the SRP

where all hash functions are orthogonal to each other. Cross-polytope hash

function [1] is another good choice for cosine distance. J2JSD hash function

[21] is a hash family for probability distributions.

3. Index structure: LSB [31] transfers the hash values into Z-order values to build

a B-tree structure index. SKLSH [17] defines a new distance measure of hash

values, and sort these hash values to build a B+-tree. Basically, these two

methods tweak the data placement in the disk to accelerate query request pro-

cessing. PHF [37] use a multi-index storage between SSD(Solid-State Drive)

and memory to facilitate the query speed. LSH Forest [3] is a tree-based gener-

ation of LSH, where heavily load hash buckets are recursively partitioned with

embedded hash tables.

8



M.Sc. Thesis - Yangdi Lu McMaster - Computing & Software

4. Distributed design: DLSH [2] uses layered-LSH to partition the points into sev-

eral partitions as distributed scheme. PLSH [30] broadcasts the query requests

to all distributed/parallel workers in the system to achieve parallelism.

5. Collision optimization: C2LSH [7] optimizes the compound hash functions by

dynamically computing the hash value one by one, rather than computing the

compound hash functions at once.

More research works are still doing to improve the accuracy and efficiency of LSH

algorithms.

2.2 Approximate Nearest Neighbor

After relaxing the condition, the high dimensional content-based similarity search

problem is switched to approximate nearest neighbor(ANN) search problem. As

shown in Definition 1, ANN search aims to find k nearest neighbor results for a

set of queries.

Definition 1 ANN Search. Given a set of data points D in d-dimensional space

Rd and a set of query points Q. ANN search returns the k nearest points of D to each

query q ∈ Q.

Data points v1 and v2 are represented as vectors −→v1 and −→v2 in d-dimensional vector

space. If the ‖ v1, v2 ‖s is smaller than pre-defined constant R, we say that they are

ANN, where ‖ ·, · ‖s denotes the `s distance. Since it is easier for a user to pick

k rather than a non-intuitive threshold R, so K-NN search is more attractive. The

9
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typical similarity measure distance are the Euclidean distance(s = 2) and the Ham-

ming distance(s = 1). Cosine(angular) distance is another popular one to measure

similarity of two points.

2.3 Locality Sensitive Hashing

As shown in Definition 2, LSH has the properties that close objects in high-dimensional

space will collide with a higher possibility than distant ones.

Definition 2 Locality Sensitive Hashing. Given a distance R, a dataset D, an

approximate ratio c and two probability values P1 and P2, a hash function h : Rd → Z

is called (R, c, P1, P2)-sensitive if it satisfies the following conditions simultaneously

for any two points p1, p2 ∈ D :

• If ‖ p1, p2 ‖s≤ R, then Pr[h(p1) = h(p2)] ≥ P1;

• If ‖ p1, p2 ‖s≥ cR, then Pr[h(p1) = h(p2)] ≤ P2;

Here, Pr[e(h)] means the probability of event e(h), both c > 1 and P1 > P2 hold.

Also, to improve the distinguishing capacity(reduce the false positives), we apply a

compound LSH function denoted as G = (h1, h2, . . . , hm), where h1, h2, . . . , hm are

randomly picked LSH functions from a hash family. Specifically, the compound hash

value of point p under G is K = G(p) = (h1(p), h2(p), . . . , hm(p)). For simplicity, we

call the LSH compound hash values as hash values in the rest of the paper.

Different hash families turn out to have different performance. In the last decade,

many hash families are devised for various similarity measures. For example, p-Stable

hash family [6] is suitable for `s distance when s ∈ (0, 2], random hyper-plane [5],

10
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hyperplane 1
hyperplane 2
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p2

a1 a2
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✓
✓

Figure 2.1: Two vectors p1 and p2 make an angle θ.

batch orthogonal angle(BOA) hash family [12] and cross-polytope hash family [1] are

for cosine distance.

2.3.1 Batch Orthogonal Angle Hash Functions

In this thesis, BOA hash family is used to generate the hash values. As shown in

Definition 3.

Definition 3 Batch orthogonal angle LSH. In a d dimensional data space, given

an input vector p and an orthogonal projection vector a, we define the hash functions

as h(p) = sign(p · a).

The sign function sign(·) is defined as

sign(z) =

 1 if z ≥ 0

0 if z < 0

11
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Algorithm 1: BOAHashFamily(d, Fs, m)

Input: Dimension of object d; Hash family size Fs(Fs ≤ d); Number of hash
functions m;

Output: BOA hash family O;
1 O = ∅ /*Save the Orthogonal angle Hash family*/ ;
2 G = ∅;
3 Generate a random matrix H with each element x being sampled

independently from the normal distribution N (0, 1). Denote H = [xi,j]d×d;
4 Compute the QR decomposition of H, such that H = QR;
5 for i = 1; i ≤ Fs do
6 o = the i-th column of Q;
7 O.add(o);

8 for i = 1; i ≤ m do
9 w = choose a random number from 1 to Fs;

10 G.add(O[w]);

11 return G;

h(p) = 1 or 0 indicates on which side of the hyperplane p lies. As shown in the

Figure 2.1, a1 and a2 are two vectors, p1 and p2 are two high dimensional points make

an angle θ. In the left plot, a1 determines the hyperplane 1, p1 and p2 are projected

on the different sides of hyperplane 1, so h(p1) = 1 and h(p2) = 0. In the right plot,

again a2 determines the hyperplane 2, while p1 and p2 are projected on the same side

of hyperplane 2, so the h(p1) = 1 and h(p2) = 1. Based on this, the probability that

the randomly chosen vector a for p1 and p2 have the same hash value is (180-θ)/180.

Since p and a are normalized during data preprocessing, the angle distance in LSH

between p and a is measured as arccos(a ·p). Thus, with multiple hash functions, the

hash values of objects are binary sequences. For instance, if m = 8, K = 01011000,

which is easy to be saved as bitmap representation in primitive data type(e.g. int and

long). Another advantage is calculating the Hamming distance between the binary

sequences are mainly bitwise operation, which is much faster than computing other

12
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distance(e.g., Euclidean distance). The data space is also partitioned more accurately

by using BOA LSH due to the rectangular region of space partition [12]. Algorithm

1 shows how to generate the BOA hash family.

2.3.2 P-Stable Hash Functions

The p-stable hash functions are used in the compared LSH-based methods is described

as follows:

ha,b(p) = bp · a+ b

w
c

where b·c is the floor operation, a is a vector with entries chosen independently from

the Gaussian distribution N(0, 1), w is the bucket width, b is a random real variable

uniformly chosen from the range [0, w). In intuitively, an LSH function ha,b(p) works

as follows: It projects the object p onto a line La whose direction is identified by a.

Then, the projection of p is shifted by a constant b. With the line La being segmented

into intervals with size w, the hash function returns the number of the interval that

contains the shifted projection of p.

2.3.3 Minimize Index Storage

Generally, the main problem affecting the performance of LSH is the number of

hash tables, since each hash table is a whole copy of the dataset in traditional in-

dexing design. To make better use of a smaller number of hash tables, Multi-probe

LSH(MPLSH) [19] is designed to reduce the number of hash tables by step-wise prob-

ing more perturbs of a query to more near buckets within a hash table. The search

algorithm not only considers the main bucket where the query object falls, but also

the buckets that ”close” to the main bucket. For example, the query object is hashed

13
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video descriptors

default hash

videosID video descriptors

2
1

…

n

[31, 4,… , 552]
[98, 32,… , 65]

[154, 4,… , 74]

…

LSH

DataTable

LSHTable 0
LSH hash values videosID

[0, 1, 0, … , 1] 1
[1, 1, 1, … , 0] 2

… …
n[0, 0, 1, … , 0]

LSHTable1

…

LSHTable L

LSH hash values videosID
… …

Figure 2.2: The multi-index storage scheme.

to (3,6,4), besides searching the similar objects in the main bucket (3,6,4), the al-

gorithm also searches the other buckets such as (4,6,4), (3,6,4) or (4,5,4), which are

close to the main bucket. Through the MPLSH search algorithm, it achieves a high

accuracy even with a small number of hash tables.

As shown in the Figure 2.2, Partitioned Hash Forest(PHF) [37] designs a multi-

index storage scheme by using two types of tables: 1)DataTable: saves a copy of

original dataset as (key, value) for fast querying original vectors 2) LSHTables: only

save the keys from DataTable as values for the index. By this design, the index(hash

tables) only contains the keys, rather than the original data, which reduces storage

space while using enough hash tables to achieve high accuracy. The original design of

search algorithm in PHF includes two steps: 1) Search the DataTable by key to find

the feature vector; 2) Calculate the feature vector’s hash value, then search the all

LSHTables to retrieve all candidates. However, the serialization and deserialization

14
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K1

K3

q

K2

… … Root

Figure 2.3: The most significant bits problem in current index structure, different
colors indicate the different number of hash values.

in the first step cost too much time [37].

In this thesis, we combine the two technologies together to minimize the indexing

storage. Also, the search algorithm directly passes the feature vector to calculate its

hash value, which avoids the overhead to query the DataTable, results in improving

the performance a lot.

2.3.4 Most Significant Bits Problem

Current representative LSH-based index methods [31, 17, 37] use the 1/LLCP (K1, K2),

where LLCP (K1, K2) is the length of longest common prefix (LLCP) of K1 and K2.

For example, given K1 = 000100 and K2 = 001100, then LLCP (K1, K2) = 2, or own

defined distance measure approach to calculate the distance between two hash values

K1 and K2. These indexing strategies have an implicit assumption that different bits

in the data item have different significance(e.g., left bits are more important than the

right bits in a hash value). However, the hash functions that randomly picked from

a pre-generated hash family without priority. The error is involved when minor dif-

ferent bits happen in the left part of the hash value. As shown in the Figure 2.3, K1,

15
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hyperplane s

area 1 area 2

Figure 2.4: The difficulty to make a choice of the number of hash functions.

K2 and K3 are three hash values in the index, q is the hash value of the query object.

Since K1 and K3 have the same first two bits from left, according to the previous

indexing strategy, K1 and K3 are in the left subtree. K2 is in the right subtree of the

index. However, the distance between q and K2 is obviously less than the distance

between q and K3 under `2. When the query q comes, it only retrieves the similar

objects in left subtree and ignores K2 in the right subtree, which affects the accuracy

by losing the part of similar objects(e.g. K2 in the Figure 2.3 in the right subtree).

2.3.5 The Deficiency of Static Compound Hash Functions

Most of the time we don’t know the distribution of the dataset. For example, in Figure

2.4, we find the dataset has two main clusters: area 1 and area 2. The density of

points in area 1 is much larger than the density in area 2. The red line is hyperplane s.

For querying the nearest neighbors of the green point in area 1, it is crucial to add the
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hyperplane s. Because the high resolution is needed to remove the irrelevant points

in larger density area. The search circle is small as we can see in area 1. However,

for querying the nearest neighbors of the green point in area 2, the hyperplane s is

not necessary. The reason is in area 2, the small density doesn’t need hyperplane s to

differentiate the points, since the number of hyperplanes is enough. Thus, the search

circle in area 2 is larger. Reflect to LSH, whether we can use the dynamic number of

hash functions to distinguish different density area in dataset is also a good point to

improve the performance.

Some frequently used notations in this paper are given in Table 2.1.

Notation Description
D = 〈p1, ..., pn〉 Index data set consists of n d-dimenional objects
Q = 〈q1, ...〉 Query data set that not in D

L Number of LSHTables
Fs Size of hash family
m Number of hash functions in LSHTable

G(·) = (h1(·), ..., hm(·)) Hash functions in reducing dimension LSH layer, con-
sists of m BOA functions

G
′
(·) = (h

′
1(·), ..., h′

M(·)) Hash function in partition LSH layer, consists of M
The number of BOA functions in Partition LSH layer

K = 〈K1, K2, ....Kn〉 Hash values in a LSHTable after applying RD LSH
layer on D, K1=G(p1)=(h1(p1), ..., hm(p1))

K
′
= 〈K ′

1, K
′
2, ....K

′
n〉 Hash values in a LSHTable after applying partition

LSH layer on K, K
′
1=G

′
(K1)=(h

′
1(K1), ..., h

′
M(K1))

ns The number of shuffling permutations
P (x, y) y-permutation of x
Kt,i,j Twisted hash values by applying shuffling permuta-

tion Pi(m,m) on j-th sub-index, for 1 ≤ i ≤ ns and
0 ≤ j ≤ 2M − 1

l = {l1, l2, l3, . . . , li} The length of d-node in each level i of RDT
Th The threshold of k-nodes under the same slot

Table 2.1: Summary of Notations
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Chapter 3

Layered Hash for Partitioning the

Data

As discussed in the Chapter 1, the first phase is to get the feature descriptors by

conducting the feature extraction algorithms on raw dataset. However, this is not

the main topic in this thesis. There are many public datasets of feature descriptors

for image, video and text, which will be described in Chapter 5.

3.1 Reduce Dimension LSH Layer

Most feature descriptors of image, video, and text are one high dimensional vectors

or several high dimensional vectors. It is impossible to directly construct an efficient

index for them due to the ”Curse of Dimensionality”. Therefore, reducing the di-

mension of these vectors are the second steps for constructing the index. By using

the BOA LSH as the first layer LSH, the high dimensional vectors are descended into

low dimensional vectors(binary sequences) without losing the ”similarity property”,
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which means the similar objects are most likely to have similar hash values. The

algorithm of first layer LSH to generate one LSHTable hash values is described in

Algorithm 2. Basically, it contains two parts: 1) Generation of LSH functions in line

1. 2) Computation of hash values as we explained in 2.3.1 in line 5 and save into

primitive data type from line 6 to 10.

Algorithm 2: RDLSHLayer(d, Fs, m, D)

Input: Dimension of object d; Hash family size Fs; Number of hash functions
in RD LSH layer m; Index data set D

Output: Hash values K;
1 G = BOAHashFamily(d,Fs,m);
2 K = ∅;
3 Transfer the G into a d by m matirx, each column is an orthogonal angle hash

function;
4 Transfer the D into a n by d matrix, each row is d-dimensional feature vector;
5 compute T = sign(D ·G) /* · is the matrix multiplication; sign() is a element

operation apply sign function on each item in matrix*/ ;
6 for i = 1; i ≤ n do
7 k = 0;
8 for j = 1; j ≤ m do
9 compute k = k << 1 | T [i, j];

10 K.add(k);

11 return K;

As demonstrated in PHF [37], there is a higher probability to put the content-

similar objects in different buckets if the m is too large. However, if m is too small,

the hash value may not have enough resolution to achieve ”locality sensitive” of raw

features. In addition, to reduce the space of index, it is ideal that the hash values

are able to be saved as a bitmap. In addition, suppose the dataset is uniformly

distributed, the choice of m is recommended to keep at the same order of magnitude

of objects. For example, m = 10 is the good choice for the dataset contains 2m = 1024
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objects. However, to design a general index for online query system, the number of

objects is always increasing. Thus we set mmax = 32 and use integer which saved as

m binary bits in real implementation, where 2mmax = 4294967296 is large enough for

most dataset. Specifically, Ki = 01001011 . . . 001︸ ︷︷ ︸
m

.

3.2 Partition LSH Layer

Nonetheless, if we directly build the index based on the whole hash values K, the

multiple concurrent queries does introduce memory overheads. To handle the concur-

rency when multiple queries reach the index, partition strategy is applied to divide

the index into as much as possible sub-indexes without losing accuracy. However, it

is challenging(if not impossible) to partition data in a way that guarantees that all

queries will only need to access a single sub-index since the objects are required to

be similar with each other within a sub-index.

Two approaches are developed to divide the index by objects’ distance. 1) K-

means clustering partition methods [32]: dividing the index based on how many

clusters the dataset has. However, due to the frequent update, it’s difficult to im-

plement suitable parameters to achieve high performance for the online system. 2)

Partition LSH [2, 37]: after calculating the hash values K from RD layer of LSH, we

apply a new set of M LSH functions as partition LSH layer on K. For each hash value

Ki, the result K
′
i is an M long bit sequence, which indicates the sub-index that the

object belongs to. For example, if M = 2, K
′
i = 01, the Ki belongs to sub-index-01.

Based on the property of LSH as we introduced in Section 2.3, the principle behind

partition LSH layer resides here:

20



M.Sc. Thesis - Yangdi Lu McMaster - Computing & Software

1). Similar objects have high possibility to have the similar hash values after RD

LSH layer.

2). Similar hash values have high possibility to have the similar hash values(sub-

index-ID) after partition LSH layer.

The algorithm of partition LSH layer is presented in Algorithm 3. Basically, it

consists of two parts: 1) Generation of LSH functions in line 1. 2) Computation of

sub-index-ID for each hash value and save into primitive data type from line 2 to 12.

Algorithm 3: PLSHLayer(m,Fs,M ,K)

Input: Number of hash functions in RD LSH layer m; Hash family size Fs;
Number of hash functions in parititon LSH layer M ; Hash values K;

Output: sub-index-ID K
′
;

1 G
′
= BOAHashFamily(m,Fs,M);

2 K
′
= ∅;

3 for i = 1; i ≤ n do
4 Vector tmpK = zeros(m);
5 ID = 0, tmpBit = 0;
6 for j = 0; j < m do
7 compute tmpK(j) = (K.get(i) & (1 << j)) >>> j;

8 for t = 1; t ≤M do
9 compute tmpBit = sign(tmpK ·G′

.get(t));
10 compute ID = ID << 1 | tmpBit;
11 K

′
.add(ID);

12 return K
′
;

The distributed version of in-memory online similarity search system, each ma-

chine keeps one sub-index in the memory. When the system handles concurrent

queries, each query only accesses to one sub-index(or machine). Through this, there

is no overhead network delay between the work nodes in the distributed version of the
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system, which improves the network efficiency. The parameters M influences the con-

currency handling capacity of the system. Specifically, 2M sub-indexes are generated.

The larger M we set, the more robust ability of the system to handle concurrency.

Even though the n objects are divided into 2M pieces, the balanced distribution

of data percentage in each sub-index for real dataset is important to the system

performance. The partition LSH layer turns out to be a computation waste if the

unbalanced distribution of data percentage occurs. For example, before the parti-

tion LSH layer, only one piece contains n objects. Suppose M = 2, the n objects

are separated into 4 sub-index, denoted as sub-index-00, sub-index-01, sub-index-10,

sub-index-11. However, if the corresponding data percentage over these sub-indexes

is like 5%, 3%, 2% and 90%. It is regarded as a bad partition strategy since the

largest percentage is 90%, which is almost close to the whole dataset. Most of the

queries still retrieve the sub-index-11 rather than other three sub-indexes. The un-

balanced workload makes most the of queries slow as before the partition. Therefore,

the balanced distribution of data percentage is an important evaluation metric for

partition strategy.

To evaluate the stability of Partition LSH layer, we count the number of objects in

each sub-indexes. The dataset GloVe [24], SIFT [11], NYTimes [16], Fashion-MNIST

[35] and CC WEB VIDEO [34] are used. After applying the Partition LSH layer,

each sub-index is ideal to keep a 100/2M% percentage of the whole dataset and the

sum of these rates is equal to 100%. Due to the fact that only one sub-index will be

retrieved. The query’s search range drops off dramatically if the percentage is stable.

The σ(standard deviation) is calculated to measure how far the percentage in each

sub-index are spread out from the ideal percentage, which makes the results more
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Table 3.1: Stability of Partition LSH Layer, each number in a column is the data
percentage of sub-indexes. σ is standard deviation, which is used to measure how far
the percentage in each sub-index are spread out from the ideal(average) percentage.
For each dataset, m = 20, 20, 18, 16, 14 respectively.

M=2 GloVe SIFT NYTimes Fashion-MNIST CC WEB VIDEO

sub-index-00 28.0 23.8 23.8 15.0 26.0

sub-index-01 25.1 21.7 24.9 30.8 18.2

sub-index-10 24.1 25.2 28.1 23.9 26.4

sub-index-11 22.8 29.3 23.2 30.3 29.4

σ 1.91 2.78 1.89 6.38 4.14

M=3 GloVe SIFT NYTimes Fashion-MNIST CC WEB VIDEO

sub-index-000 14.8 5.5 18.1 20.5 9.2

sub-index-001 6.7 5.3 13.6 19.1 13.7

sub-index-010 10.2 20.1 11.1 11.1 11.1

sub-index-011 8.6 15.0 12.9 9.3 13.7

sub-index-100 25.6 14.3 13.9 11.9 19.1

sub-index-101 8.4 5.2 8.9 13.4 11.8

sub-index-110 14.6 17.1 10.8 8.5 8.7

sub-index-111 11.1 17.5 10.7 6.2 12.7

σ 5.64 5.78 2.64 4.70 3.05

M=4 GloVe SIFT NYTimes Fashion-MNIST CC WEB VIDEO

sub-index-0000 5.2 3.6 10.5 8.2 10.3

sub-index-0001 4.7 7.7 5.3 4.9 7.9

sub-index-0010 4.5 11.6 5.3 4.9 2.1

sub-index-0011 3.0 2.1 2.4 4.2 3.9

sub-index-0100 7.1 4.9 7.3 2.2 7.7

sub-index-0101 4.9 4.7 8.1 3.9 5.2

sub-index-0110 5.8 8.7 8.9 4.7 4.3

sub-index-0111 1.6 2.4 8.0 6.3 6.0

sub-index-1000 12.7 7.1 6.3 8.9 8.9

sub-index-1001 3.1 6.9 5.1 14.4 9.5

sub-index-1010 10.8 10.5 5.4 4.6 2.2

sub-index-1011 2.5 7.2 2.8 12.0 2.8

sub-index-1100 17.2 7.1 4.0 2.7 7.7

sub-index-1101 4.0 4.5 9.6 7.7 5.1

sub-index-1110 11.0 5.3 3.8 2.1 8.7

sub-index-1111 1.9 5.7 7.1 8.3 7.8

σ 4.29 2.56 2.32 3.37 2.58
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obviously. In Table 3.1, we test the different M for each dataset. When M = 2,

Partition LSH layer has good performance for all datasets, especially the GloVe and

NYTimes with lower σ. The data percentage of each sub-index is around 25%. For

the worst dataset Fashion-MNIST, the highest rate is 30.8%, and the lowest is 15.0%.

It means the worst case of search is only need to look up 30.8% of the whole dataset.

When M = 3, 4, more sub-indexes are generated to support concurrent search. The

NYTimes has lower σ than other four datasets. The smallest and largest rate ofM = 4

is 1.6% and 17.2% in GloVe. It is acceptable since the σ is only 4.29. However, the

tiny rate(e.g. less than 0.5%) is unsatisfactory for the distributed vision. The tiny

rate is only able to deal with a tiny part of queries. However, all the workers are

normally configured as the same setup in the current distributed framework. Thus,

the computation waste occurs in tiny rate workers, and the overhead happens in large

rate workers. Based on the Table 3.1, after the partition LSH layer, the cardinality of

data in each sub-index is stable, which reduces a large searching range for similarity

search.

3.3 Look Up ∆-step Sub-indexes

The ideal partition strategy is dividing all the similar objects into one sub-index.

However, due to the approximate property of the partition layer LSH, similar objects

are still likely to be divided into the different sub-indexes, which results in degrading

the accuracy and consistency of the system. To increase the accuracy, a ∆-step search

approach is designed based on another LSH property: The sub-indexes that are one

step away are most likely to contain objects that are close to the query object than

sub-indexes that are two steps away.
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There are only two possible values 0 or 1 in each bit of a hash value, we denote

the Hamming distance between two K
′
s as ∆ and ∆max = M . To prove that the

Hamming distance between K
′
s after BOA partition LSH layer has an unbiased

estimate of the angle(similarity) between the corresponding two given Ks from RD

LSH layer, we first have Lemma 1 [8](Lemma 3.2).

Lemma 1 Given a random vector r drawn uniformly from the unit sphere Sd−1 in

Rd, any two vectors vi and vj from Sd−1, we have

Pr[sign(vi · r) 6= sign(vj · r)] =
θvi,vj
π

Since the BOA LSH is used in this thesis, as defined in Section 2.3.1, the hash

functions are orthogonal vectors and the objects are all normalized before hashing.

Thus, we have

Pr[hr(vi) 6= hr(vj)] =
θvi,vj
π

As the hash functions contain sign(·), which means the final result only depends

on the positive or negative of the vectors inner product. So the normalized vectors

from the RD LSH layer have the same hash result as the non-normalized vectors.

Through the former proof in [12], we have

Theorem 1 Given M orthorgonal vectors h1, h2, . . . , hM from the orthogonal angle

hash family, then for any two normalized binary vectors p, q ∈ Sm−1 from the RD

LSH layer, by defining M indicator random variables Xp,q
1 , Xp,q

2 , . . . , Xp,q
M as

Xp,q
i =

 1 hi(p) 6= hi(q)

0 hi(p) = hi(q)
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We have E[Xp,q
i ] = Pr[X

p,q
i = 1] = Pr[hi(p) 6= hi(q)] = θp,q

π
, for any 1 ≤ i ≤M .

So the expectation of ∆ is

E[∆] = E[dHamming(h(p), h(q))] = E[
M∑
i=1

Xp,q
i ]

=
M∑
i=1

E[Xp,q
i ] =

M∑
i=1

θp,q/π = Cθp,q

where C = M/π. Thus, smaller ∆-step sub-index is more likely to contain the hash

values near to the query’s hash value. It also explains that why we search from the

original(0-step) sub-index, then the 1-step sub-indexes.

To generate the ∆-step sub-indexes, we only need to apply +1(for bit=0) or -

1(for bit=1) on the ∆ number of bits in original sub-index-ID. Suppose the original

sub-index-ID of q1 is K
′
1, so the 1-step sub-index-ID is applying +1/-1 operation on

one random bit of K
′
, the 2-step is applying +1/-1 operation on two random bits

of K
′
1 and so on. The total number of ∆-step wise sub-index is

(
M
∆

)
. For example,

if M = 3, as we can see from the Figure 3.1, the original sub-index-ID is 010, the

1-step sub-index-IDs are 110, 000, 011, the 2-step sub-index-IDs are 100, 111, 001,

the 3-step sub-index-IDs is 101.

To see whether our partition LSH layer can efficiently divide the similar objects

into one sub-index. Figure 3.2 shows the distribution of different sub-index of top k

nearest neighbors on GloVe dataset. Since each queries’ top k nearest neighbors will

fall into different sub-indexes, we calculate the 2000 queries’ top k nearest neighbors’

∆-step sub-index and get the average distribution. As we can see from the plots, 90%
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2-step
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Figure 3.1: Different ∆-step sub-index-ID graph with M = 3. Each dotted line
represents one step.

of the top k nearest neighbors are hashed in the original sub-index even with the in-

crement of k. When the M rises, the top k nearest neighbors are lightly decentralized

into different steps sub-index, but the original(0-step) sub-index still maintain a high

percentage 88%. The efficiency of parallelism search over index is earned by losing

part of the ground truth. Another conclusion we find that most mistakenly parti-

tioned top k nearest neighbors are more likely to fall into 1-step sub-indexes rather

than 2-step sub-indexes. Thus, we adopt the 1-step sub-indexes look up to improve

the accuracy if the requirement is high accuracy. The impact of ∆ on accuracy and

efficiency is discussed in the Section 5.4.4.

In conclusion, the Reduce Dimension LSH layer transfers the high dimensional

vectors into low dimension representations. To partition the big dataset, we use the

Partition LSH layer to divide the data into several sub-indexes. Each of the sub-index

only shares a small percentage of data. We also retrieve the mistakenly partitioned

similar objects through a ∆-step sub-indexes lookup strategy.
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Top 10
Top 30
Top 50
Top 70
Top 90

Figure 3.2: ∆-step sub-index distribution on GloVe. m = 19
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Chapter 4

Random Draw Forest

As shown in Figure 4.1, the step 1,2,3,4 shows that after reducing the dimensionality

of feature data by applying layered hash as described in Chapter 3, every sub-index

consists of a sufficient number of hash values, whose dimensionality m is around

log2(n). However, what if the n reaches 1000,000. The log2(n) ≈ 20, which is still

a large number for the traditional tree structure. Also, the number of n is unknown

or always incremental in the practical online similarity search system. If we directly

search the hash values, the complexity is O(log(n)) if we use binary search. Therefore,

it is necessary for us to design an index structure which not only supports to fast

search the ANN of query’s hash value but also provides a dynamic m to solve the

deficiency as we discussed in section 2.3.5. Also, the MSB problem as mentioned in

Section 2.3.4 need to be conquered to maintain a high accuracy by capturing enough

top k of the query.
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Step 4
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.
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Step 6.

Figure 4.1: In the example, m = 6 and M = 2, so we have 2M = 4 sub-indexes for
parallelism. In each sub-index, the hash values are converted to twisted hash values
by applying several shuffling permutations on hash values. Each set of twisted hash
values corresponding to a random draw tree(RDT), multiple of RDT make up the
RDF.

4.1 Index Structure

The random draw forest(RDF) consists of random draw trees(RDT). The structure

of the RDT is similar to the R-tree which is formed by hierarchically partitioning the

hash values in each sub-index. The difference is when the level goes deeper, the more

bits of hash values are evaluated to determine the position, results in making the real

m adaptively for different dataset, which is inspired by PHF [37]. To minimize the
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Figure 4.2: Generation of twisted hash values.

index space, the multi-index storage scheme as described in Section 2.3.3 is used. As

the leaf-nodes and internal nodes in the tree structure, we introduce two types of

nodes: (1) k-node: contains two fields KEY and POINT , KEY is the objectID in

DataTable, and POINT keeps the reference to the next k-node in the same slot. (2)

d-node: an array contains l slots, which is mutable in different levels, and we treat

each slot as a bucket in an LSHTable. The value in each slot saves the reference to

the first k-node in the slot or the first d-node in the slot.
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4.2 Construction of Random Draw Tree

To overcome the MSB problem, instead of building the index tree directly on the hash

values, we randomly generate ns shuffling permutations P(m,m) for each sub-index,

as shown in Figure 4.1(step 5). Based on these permutations, we then have ns set

of twisted hash values as depicted in Figure 4.2. For example, m = 10, given a hash

value Ki = 0111001010, the P (10, 10) = (9, 6, 1, 4, 3, 10, 2, 8, 5, 7), the twisted hash

value is Kt = K � P (10, 10) = 1001101001. To facilitate the query speed, each set

of twisted hash values corresponding to a random draw tree(RDT). In Figure 4.3,

the example shows how to build the RDT based on i-th twisted hash values of j-th

sub-index Kt,i,j. The detail steps of inserting an twisted hash value from Kt,i,j into

a RDT are explained as follows:

• Initialization: To simplify, let ~ denote this twisted hash value. Initializing

level = 1, The llevel long d-node is used as root d-node(also treated as level 1).

Then we calculate the number of bits used in root d-node to determine slot by

log2(llevel). The max level of tree is depended on the l1, l2, . . . , lmax we set.

• Step 1: According to the first log2(llevel) bits of ~, we generate a Integer range

from 0 to llevel − 1 as the slot of level 1. For instance, if l1 = 32, m = 10, ~ =

1001001101, and log2(l1) = 5. Then first 5 bits extracted from ~ is (10010)b = 18

to determine the slot in root level of the RDT.

• Step 2: If the slot has not been occupied, we update the value in the cor-

responding slot of the root node as the address of object whose twisted hash

value under i-th permutation is ~ in storage space and terminate the insert

processing. The Insert k1 and Insert k4 in figure 4.3 shows this step.
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Insert k4

Figure 4.3: Random draw tree: we progressively include more bits of twisted hash
values to locate them in the certain level of d-node. When there are more than Th
nodes under the same buckets, we redistribute them to the next level of the hash tree.
For this example, Th = 3 and l1 = l2 = 128.

• Step 3: If the slot has been occupied, and the corresponding node is d-node,

we do level = level + 1, then progressively use the next log2(llevel) bits of ~ as

the slot in the current level d-node, then go back to Step 2.

• Step 4: If the slot has been occupied, and the corresponding node is k-node,

also the number of objects under this slot is equal or less than Th, we insert ~

as a k-node under this slot in the RDT, then terminate, as Insert k2 and Insert
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k3 show in figure 4.3. If the number of objects under this slot is larger than Th,

we add a new d-node under this slot, then go to Step 5.

• Step 5: level = level + 1, we progressively use next log2(llevel) bits of ~ as the

slot in the new d-node, and redistribute the k-nodes under the former slot in

this new d-node, as Insert k5 describes in figure 4.3. If the number of objects in

the new d-node under one slot is still larger than Th, we do Step 5 repeatedly

until less than Th or reaching to the max level, then terminate. So, it means at

the max level, there is no Th limitation for each slot in d-node.

The pseudocode of the index algorithm is shown in Algorithm 4, as follows the

steps described above. Through the RDT construction steps, we totally have 2MnsL

random draw trees.

4.3 Search Strategy

As shown in the Figure 1.1, after building the index, the query operation includes the

following steps:

• Generate compact representations: The steps are the same as building the

index.

• Index search strategy: Based on the query’s twisted hash value, search the

RDF, the evaluation set is narrowed down to a Candidiates set, which is likely

to hold the similar objects to query.

• Filtering: Assessing the Candidiates set through their hash values, filter the

bad candidates.
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• Ranking: The remaining high-quality results in Candidiates set are evaluated

by comparing the distance with the raw features. The high ranking results will

be presented.

The basic index search strategy for query q is described as following:

1. By applying the ns shuffling permutations, we get the twisted hash values as

Kt,1, Kt,2, . . . , Kt,ns .

2. Using the Kt,1, Kt,2, . . . , Kt,ns to search each corresponding hash trees. The

search starts from the root node(level=1). Take the Kt,1 as an example, we

take the first llevel bits of Kt,1 to calculate the slot number in root node.

3. If the content in the slot are all the k-nodes, then return all these k-nodes as

candidates, and terminate. Otherwise, go 4.

4. If the content in the slot is a d-node, then level=level+1, and continually take

the next llevel bits of the Kt,1 to calculate the slot number in this d-node. Again,

evaluating the content under this new slot as said in 3.

To achieve a higher recall with smaller index storage, we involve the multi-probes

strategy [19] to generate multiple tweak queries to search over RDF. The ∆-step sub-

indexes lookup strategy is also applied as we discussed in Section 3.3. The algorithm of

search one RDT is shown in Algorithm 5. The way to generate multi-probes is similar

to the way generate ∆-step sub-indexes, because the Hamming distance between K’s

has the unbiased estimate of similarity between the corresponding objects.
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Algorithm 4: Index(d,Fs,m,D,M ,P i(m,m),l,Th)

Input: Dimension of object d; Hash family size Fs; Number of hash functions in RD
LSH layer m; Index data set D(Here D is a key-value map); Number of hash
functions in parititon LSH layer M ; i-th shuffling permutation P i(m,m);
Number of slots in each level l = l1, l2, . . . , lmax,Threshold of k-nodes under
the same slot Th

Output: Index I
1 I = initialize 2M number of empty RDTs, each RDT is a bitmap;
2 /*Bitmap is space save design, which is better than ArrayContainer. For example,

for 128 int array, if we use bitmap, we only need 128 bits, totally 4 int array.*/;
3 K = RDLSHLayer(d,Fs,m,D);

4 K
′

= PLSHLayer(m,Fs,M ,K);
5 Kt,i = K � P i(m,m) /*Applying i-th permutation on K, get a re-ordered Kt,i*/ ;
6 max=l.length;
7 maskArray=Array(l1 − 1, l2 − 1,. . . , lmax − 1);
8 for j = 0; j < n do
9 curHash=Kt,i.get(j);

10 curSID=K ′.get(j);
11 curRDT=I.get(curSID);
12 level = 1;
13 while true do

14 slot = (curHash >>> (m−
level∑
w=1

log2(lw))) & maskArray(level);

15 (valueInSlot, nodeType)=curRDT.find(slot,level); /*Find the slot in
bitmap, to see if it is 0(empty) or 1(non-empty) */;

16 if valueInSlot is 0 then
17 curRDT.add(D.getKey(j),level,slot);
18 break;

19 else
20 /*If it is non-empty, to see what type of node under this slot*/;
21 if nodeType is d-node then
22 level = level + 1;
23 continue;

24 else
25 /*It is k-node, traverse the all k-nodes to check the number of

objects under this slot*/;
26 numOfObjects=curRDT.add(D.getKey(j),
27 level,slot);
28 if numOfObjects ≤ Th then
29 /*create a new d-node in next level and redistribute the objects

in next level*/;
30 curRDT.addDNode(slot,level);
31 curRDT.redistributeOldObjects();
32 curRDT.add(D.getKey(j),level+1);

33 break;

34 return I;
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Algorithm 5: Search(Q,d,Fs,m,I,M ,P i(m,m),l,∆)

Input: Query data set Q; Dimension of object d; Hash family size Fs; Number of
hash functions in RD LSH layer m; Index I; Number of hash functions in
parititon LSH layer M ; i-th shuffling permutation P i(m,m); Number of
slots in each level l = l1, l2, . . . , lmax; ∆-step;

Output: Result R
1 R = ∅/* a empty set list*/;
2 K = RDLSHLayer(d,Fs,m,Q);

3 K
′

= PLSHLayer(m,Fs,M ,K);
4 Kt,i = K � P i(m,m) /*Applying i-th permutation on K, get a re-ordered Kt,i*/ ;
5 max=l.length;
6 maskArray=Array(l1 − 1, l2 − 1,. . . , lmax − 1);
7 for j = 0; j < n do
8 tmpR=∅;
9 Hash=Kt,i.get(j);

10 multiProbes=GenerateMultiProbes(curHash);
11 curSID=K ′.get(j);
12 /* The way to generate ∆-step sub-indexes is described in Section 3.3*/;
13 ∆-stepSID=GenerateDeltaSID(curSID,∆);
14 curRDTs=I.get(∆-stepSID);
15 level = 1;
16 while multiProbes.hasNext do
17 curR=∅;
18 curHash=multiProbes.next();
19 while true do

20 slot = (curHash >>> (m−
level∑
w=1

log2(lw))) & maskArray(level);

21 (valueInSlot, nodeType)=curRDTs.find(slot,level); /*Find the slot in
bitmap, to see if it is 0(empty) or 1(non-empty) */;

22 if valueInSlot is 0 then
23 tmpR.add(curR);
24 break;

25 else
26 /*If it is non-empty, to see what type of node under this slot*/;
27 if nodeType is d-node then
28 level = level + 1;
29 continue;

30 else
31 /*It is k-node, retrieve the all k-nodes under this slot*/;
32 curR=curRDTs.get(level,slot);
33 tmpR.add(curR);
34 break;

35 R.add(tmpR);

36 return R;
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4.4 Analysis of Index

To see whether random draw solves the MSB problem, we first analyze it in probability

view. Due to the fact that K1 and K2 won’t be treated as similar to each other if they

don’t in the same slot at root level of d-node, we only need to consider the first level

to calculate the probability of K1 and K2 in the different slot in one RDT, denoted

as Pr[K1,level=1 6= K2,level=1]. Let D denotes the Hamming Distance between K1 and

K2. The

E[D] =
mθK1,K2

π

Pr[K1,level=1 6= K2,level=1] = 1−
CDm−log2(l1)

CDm

= 1−
D∏
i=1

(
1− log2(l1)

m− i+ 1

)

Thus, the probability of K1 and K2 are treated as similar objects in RDT is

Pr[K1,level=1 = K2,level=1] =
D∏
i=1

(
1− log2(l1)

m− i+ 1

)

Here, ! is the factorial. After doing ns shuffling permutation, when the query’s hash

value is K1, the final probability of the candidates set contains object p2(whose hash

value is K2) is

Ps = 1− (1− Pr[K1,level=1 = K2,level=1])ns

It’s hard to find the obvious clue from above formula, so we analyze it based on the

real parameters in our implementation: m = 20, l1 = 32, ns can be any Integer. As

depicted in the left plot from Figure 4.4, Ps decreases as the D increases, the objects
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Figure 4.4: The left plot is Ps with different ns and D. The right plot is expectation of
D with different top k ground truth, we set L = 10, m = 20, 20, 18, 16, 14 respectively to
calculate average D of 2000 queries.

with a smaller D between their hash values are more likely to be indexed as similar

objects in the RDT. Particularly, Ps declines dramatically when ns = 1, since a large

number of ground truth objects are excluded due to the MSB problem. For the same

D, Ps rises with the increment of ns. It means more similar objects at the same

degree of D are retrieved to improve the quality of candidates.

As for the real datasets, our system builds the index by using the hash values,

which are supposed to represent the feature of real objects. However, ”Similarity”

of objects is a rough concept. The accuracy loss is already involved when the raw

features are transferred into hash values, while the ”locality sensitivity” is kept. In
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another word, similar objects have several different bits in their hash values. In the

right plot of Figure 4.4, the expectation of D is evaluated by the various top k ground

truth over different datasets. Two important conclusions can be seen from this: 1)

Even when we search the top 2 nearest neighbor, D ≈ 2 and Ps ≈ 0.55 due to the

MSB problem. 2) When k reaches 10, the expectation of D increases to around 4.

Combined with the two plots in figure 4.4, Ps of ns = 5 is incredibly larger than the

Ps of ns = 1 when D = 4, which proves the importance of shuffling permutations in

the RDF.

Another advantage of RDT is we don’t need to care about the real m for different

datasets with different cardinality or distribution. As we discussed in Section 2.3.5,

the fixed length of hash values may cause the two problems: 1) have too many

candidates in smaller density area 2) don’t have enough candidates in larger density

area. However, in RDT, if the cardinality of objects in a certain area is larger than

the threshold Th, the level will increase adaptively. Thus, more bits of hash value will

be involved to calculate the position in deeper d-node. The relationship between n, l

and Th is roughly like

n∏levela
i=1 li

< Th <
n∏levela−1

i=1 li

Let’s denote the actual m as ma and actual level as levela

ma =
levela∑
i=1

log2(li)

In the practical online similarity search system, since we never know the actual car-

dinality of the data, by using the RDT, it will choose the best ma for data.

The variable l controls the number of bits to locate the objects in different level of
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RDT. Given a m, we have to keep 2m ≥ l1×l2×· · ·×lmax. For instance, given m = 20,

l = (l1, l2, . . . , lmax) = (16, 16, 16, 16, 16), so log2(l1) = log2(l2) = log2(l3) = log2(l4) =

log2(l5) = 4, the system always uses 4 bits of twisted hash value to determine the slot

in d-node for every level. By this design, each level is treated with the same degree of

resolution. Nonetheless, the adaptive resolution in different levels is more convincing

to capture enough ground truth or improve the value of candidates. Therefore, the

variable bits for each level is more appealing. It means the number of bits to locate the

hash value are adaptive for different levels. For example, we set l = (l1, l2, . . . , lmax) =

(4, 8, 16, 32, 64), so log2(l1) = 2, log2(l2) = 3, log2(l3) = 4, log2(l4) = 5, log2(l5) = 6,

through this l, in the root level of RDT, we only use 2 bits in calculate the slot, so the

system doesn’t lose too much ground truth in first level, it helps the small number

similar objects group gain enough efficient candidates. In the next levels, we increase

more bits as 3,4,5,6 for each level, because the only condition for objects going deeper

is number of the ”similar” objects under the same slot is equal or larger than Th,

therefore, for the depper level, we need to increase resolution to make these ”similar”

objects be divided into different ”similar” groups.

For each query, the time includes three parts:

• Hash the query: calculate the hash value and sub-index-ID costs O((d+M)mL),

twist the hash values costs O(m2nsL)

• Retrieve the RDF: Since retrieve process is directly use the twist hash value to

find the candidates, so it costs O(1).

• Filter and Rank: it roughy costs O(log( nnsL
2ma2M

)).

So totally, the average query time complexity is around O(dL+ log( n
2ma )).
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Chapter 5

Experiments

To evaluate our similarity search method, we implemented our experiment on a Linux

Intel(R) Xeon(R) server(2.2-0GHz, 32.0GB memory). The index is stored in MapDB

[14]. MapDB is a pure-Java database engine, and we can easily customize it to achieve

our goal due to its clear interfaces and implementation. We inherited the MapDB’s

storage module and implemented the RDF.

5.1 Datasets

The datasets are used to evaluate our methods is list in Table 5.1. GloVe, SIFT,

NYTimes and Fashion-MNIST are all well-known public datasets for ANN search.

GloVe: it is generated by using an unsupervised learning algorithm for obtain-

ing vector representations for words. Training is performed on aggregated global

word-word co-occurrence statistics from a corpus, and the resulting representations

showcase interesting linear substructures of the word vector space.

SIFT: each data point is a SIFT feature which is extracted from Caltech-256 by
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Table 5.1: Datasets
Dataset Description Dimension Size
GloVe Global Vectors for Word Representation on tweets [24] 100 1,133,628
SIFT Image feature vectors [11] 128 1,000,000

NYTimes Bag of Words Data Set [16] 256 290,000
Fashion-MNIST Zalando articles’ images [35] 784 60,000

CC WEB VIDEO Near-Duplicate Web Video [34] 256 12,870

the open source VLFeat library.

NYTimes: contains five text collections in the form of bags-of-words. After

tokenization and removal of stopwords, the vocabulary of unique words was truncated

by only keeping words that occurred more than ten times.

Fashion-MNIST: it is a dataset of Zalando’s article imagesconsisting of a train-

ing set of 60,000 examples. Each example is a 28x28 grayscale image.

CC WEB VIDEO: it is divided into 24 categories based on the 24 queries and

totally 12,870 videos. In each category, there are different labels to indicate the

relation between the labeled video and the query video. Specifically, ”E” represents

”Exactly the same”, ”S” represents ”Similar” and others represent ”Dissimilar”. For

the ANN search, we build the index for all 24 categories and only use the ”S” videos

as the queries, the ground truth is also the ”S” videos. We apply the method of the

DVD(Discriminative Video Descriptor) to extract the feature descriptors of the video.

Three descriptors HSV blue, HSV green and HSV red are used as raw features. Each

descriptor is a 256-dimension vector.

Then, we normalize and center the dataset and queries(except for the Fashion-

MNIST, since the performance is better without center the dataset). Due to the fact

that these three datasets don’t have the query and ground truth. Thus, we randomly

pick 2,000 queries and use the brute-force linear scan [25] approach to get the top 100

ground truth.
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5.2 Performance Metrics

We utilize the following measures to evaluate the performance of our method.

• recall : recall is used to evaluate the accuracy of the return objects, which

is widely used in many ANN research work [22, 20]. Given a query q, let

R∗ = {o∗1, o∗2, o∗3 . . . , o∗k} be the ground truth of top k nearest neighbors with re-

spect to q, our method for ANN search returns k points R = {o1, o2, o3 . . . , ok}.

Both results are ranked by the increasing order of their distance to q. Therefore,

the recall for ANN with repect to q is computed as

recall(q) =
|{o∗1, o∗2, o∗3 . . . , o∗k}

⋂{o1, o2, o3 . . . , ok}|
k

Here, |set| means the number of objects in the set. Since the |R ∗ | = |R| = k,

the recall actually equals to the precision.

• candidates percentage(cp). For each query, the number of candidiates is dif-

ferent, we use the cp to indicates how much the searching range of dataset is

reduced by applying our indexing method. The cp is defined as follows:

cp =
1

nq

nq∑
i=1

|Candidates(qi)|
n

where n is the cardinality objects in dataset, nq is the number of queries.

• Average Response Time(ART). For each query, the time cost mainly consists of

two parts: 1) The searching time in each sub-index to find the closest objects to

the query object; 2) The calculating time to verify all objects in candidates set

to get top k nearest neighbors. We use the average response time to evaluate
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the system time performance. Here, we use ti to denote the time cost for the

i-th query object. The ART is computed as

ART =
1

nq

nq∑
i=1

ti

5.3 The-state-of-art LSH Index Methods

The several state-of-the-art LSH-based index methods are developed in the last decade.

These methods use different hash functions or different index schemes to improve the

performance. We implement the basic LSH index [27], where the p-stable hash func-

tions as we discussed in 2.3.2 are originally applied to project the objects.

Thus, if m hash functions are applied, the original object will be described by m

integer indices, for example, (8,10,13), which are also known as hash value. As for

the index, in order to find the objects that fall into common buckets, a conventional

hash is used to map the m-dimensional hash value K into a single linear index by

computing

T =
( m∑
i=1

HiKi

)
mod P

where Hi are integer weights and P is the hash table size. By transferring the K into

a fingerprint T , similar objects are most likely to have the same T bucket. Then on

retrieval it directly gets the candidates from the exact matching bucket. We call this

method as BLSH.
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5.3.1 Compare different hash functions

To test the performance of hash functions, four different hash families are used to

test the BLSH, the P-Stable and BOA are introduced in Section 2.3. We also test

the Sign-random-projection(SRP) [5] and S2JSD-LSH [21] for S2JSD(Square root of

two times the Jensen-Shannon Divergence) distance, the S2JSD is defined as:

ha,b(p) = b

√
4a·p
W 2 + 1− 1

2
+ bc

where b is a real number uniformly taken from 0 to 1, a is a vector with entries chosen

independently from the Gaussian distribution N(0, 1).

For testing P-Stable hash functions on SIFT and Fashion-MNIST, we set w = 4,

P = 8191 as a large enough prime number, m and L are two variable parameters. We

test different m = 10, 15, 20 and gradually increase L with the rise of recall and cp.

The L = 1, 3, 5, 10, 20, 30, . . . , 130, 140, 150 for SIFT and L = 1, 2, 3, 4, 5, . . . , 14, 15 for

Fashion-MNIST. As for p-Stable hash functions on NYTimes, we set w = 2, P = 8191

and L = 1, 2, 3, 4, 5, . . . , 14, 15. We also set k = 10, so the algorithms return the top

10 approximate nearest neighbors.

For testing S2JSD on SIFT, we set W = 0.8, P = 8191 and also use different

m = 10, 15, 20. L = 1, 2, 3, 4, 5, . . . , 19, 20, 30, 40, 50, 60, 70, 80. For dataset Fashion-

MNIST, we set W = 0.4, P = 8191 and L = 1, 2, 3, 4, 5, . . . , 19, 20. For NYtimes, we

set W = 0.4, P = 8191 and L = 1, 2, 3, 4, 5, . . . , 19, 20.

When we test SRP on NYTimes, we set L = 1, 2, 3, 4, 5, . . . , 19, 20. Also, SRP

only need one table for SIFT. We use L = 1, 2, 3, . . . , 14, 15 for BOA on three dataset.

The Figure 5.1 shows the result of four different hash functions on different
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Figure 5.1: Four hash functions comparison

datasets by using BLSH. As we can see from the plots (a),(b),(c), the P-Stable and

S2JSD almost have the same performance. For m = 10, 15 when L is larger than

10, the P-Stable still a little bit better than the J2JSD. The SRP always has the

recall=1, it means SRP doesn’t have enough capacity to partition the dataset SIFT.

The BOA has better ability than SRP to partition the dataset, however, compare to

the P-Stable and J2JSD, it uses higher cp to achieve the same recall. We also find

that with the increase of m, P-Stable and J2JSD achieve higher recall with the same

cp, while BOA is the opposite. Overall, for SIFT dataset, P-Stable is a good choice.
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In plots (d),(e),(f), we find there is no SRP performance point, because it always

retrieves 100% data in our experiment, so SRP cannot be applied to the Fashion-

MNIST. BOA can be used for Fashion-MNIST, but the performance is way worse

than P-Stable and J2JSD. In addition, J2JSD uses smaller L to achieve the same

performance of P-Stable. Thus, J2JSD is suitable for fashion-MNIST. As shown in

plots (d),(e),(f), the BOA has the highest recall in same cp, even though it’s only a

little bit higher than the SRP. P-Stable is better than the J2JSD, however, both of

them are worse than the SRP and BOA.

In conclusion, based on the performance of BLSH index, P-Stable and J2JSD

are the choices for dataset SIFT and Fashion-MNIST. BOA and SPR are suitable

for NYTimes. The reason is that the dataset SIFT and Fashion-MNIST are image

datasets. By applying the machine learning methods, the similarity of features is kept

by Euclidean distance. Thus, the P-Stable and J2JSD have better performance. As

for dataset NYTimes, it is a text dataset, the similarity of features is preserved by

cosine distance, so BOA and SPR have the better performance.

5.4 Parameter Sensitivity of RDF

Overall, not only do we expect our system reduces as much as the possible searching

range to response the query faster, but also keeps a high recall of top k nearest

neighbor search. To achieve this goal, there are some parameters to be adjusted as

list in Table 5.2. L is the number of hash tables, obviously, the recall and space cost

rise together with the increment of L. In addition, the requirement of hundreds of

hash tables to be created in order to achieve a high recall(e.g. 0.9), which causes

the memory overhead [19]. As we introduced in Section 2.3.3, generating a large
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Table 5.2: Related Parameters
Parameter Description

L Number of hash tables

Th The threshold of k-nodes under the same slot

M The number of BOA functions in Partition LSH layer

l = {l1, l2, . . . lmax} The length of d-node in each level of RDT

ns The number of shuffling permutations

∆ The step from original sub-index to all sub-indexes which need to
be looked up

number of probes and multi-index storage scheme are the good choice to conquer it.

When implementing the RDF, we combine the multi-probes and multi-index storage

scheme together, so only one copy of the whole dataset is kept in the memory. In the

following experiment, we only test the RDF on GloVe and NYTimes datasets, due to

the fact that BOA hash functions perform well based on our experiment.

5.4.1 The influence of M

As we discussed in Section 3.2, by introducing M BOA hash functions, the index

is split into 2M sub-indexes. The number of sub-indexes determines how much the

system support parallelism and M is directly related to this number. For instance,

given M = 2, the sub-index-ID = 00, 01, 10 and 11. Since the query steps are as

follows: 1) calculate the object’s hash value in RD LSH layer; 2) apply Partition LSH

layer on hash value to get the original sub-index-ID; 3) search all RDTs in ∆-step

sub-indexes to get the candidates. Thus, each query only involves in one sub-index

when ∆ = 0. To compare the impact of different M , we use the GloVe and set the

l = {32, 32, 32, 32, 32}, ns = 1, Th = 5000 and with 0-step search. In each different

M , each signal(e.g. star, triangle and so on)the first three experiments have L=1, 5

and 10, then always add 10 to L for latter experiments, and stops when the CP is
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Figure 5.2: recall and cp with different M

over than 10% or L > 150. For each different L, we request 2000 random queries

after constructing the index, then calculate the top 10 NN recall for these queries. In

the Figure 5.2, the larger M we set, the more slowly recall rises with the increment

of L. Because part of the ground truth is lost when the system applies Partition LSH

layer, two hash values are probable to be separated into different sub-indexes even

though they are similar to each other. However, if we pursue the query speed, larger

M need to be considered. M = 1 only supports 2 workers while M = 4 serves 16

workers in distributed vision.

5.4.2 The influence of l

Basically, the length of d-node in each level leverages the structure of RDT, as we said

in the Section 4.4, the variable l controls the number of bits to locate the objects in
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Figure 5.3: recall and cp with different l

different level of RDT. To test the influence of l, we use GloVe and set m = 32, ns = 1,

M = 0 and Th = 5000, we compare the 4 different l set, which is {32,32,32,32,32,32},

{64,64,64,64,64}, {128,128,128,128} and {4,8,16,32,64,128}. In Figure 5.3, with the

same CP , l = {128, 128, 128, 128} have the highest recall because the more bits of

hash value are involved to calculate the slot in each level, the high degree of the data

are divided into different slot. The variable l = {4, 8, 16, 32, 64, 128} is the fastest one

to increase the recall. As we have explained in Section 4.4, the variable l captures

more candidates in former levels, it helps the small number similar objects group gain

enough efficient candidates.

51



M.Sc. Thesis - Yangdi Lu McMaster - Computing & Software

5.4.3 The threshold of objects under the same slot

The different number of threshold Th affects the actual level under each slot. The level

is small with large Th. In Section 4.4, we analyze the relationship between the n, l and

Th. However, in practice, the distribution of feature data in the cloud application is

not perfectly uniform. To find the influence of Th, we test it on GloVe dataset. Given

the fixed parameters: l = {32, 32, 32, 32, 32, 32}, ns = 1, M = 1. As for the steps of

L, we follow the same strategy as used to find the influence of M . From the Figure

5.4, with the increase of Th, it is easier to get a higher recall with less L, in that there

are more objects under the same slot in RDT, also, the actual level of RDT becomes

smaller. However, with the same CP , we find that the smaller Th has higher recall.

The number of objects under the same slot decreases, which causes a large number

of similar groups must be divided due to higher resolution in the deeper level(where

the objects are redistributed into different slots in a new d-node). It also leads the

average level of objects in RDT increases, thus the building time also extends. In

addition, with smaller Th, it is difficult to increase the recall to a high level(etc. over

0.9) even we increase L to 150. And when we increase Th to 7000, there is no major

difference compared to Th = 5000, it means that Th has reached saturation.

5.4.4 ∆-step search

In Section 3.3, the Figure 3.2 shows the top k objects’ data percentage of ∆-step

indexes cover. Even though the similar objects are still likely to be divided into

different sub-indexes, the original(0-step) sub-index still keeps the highest rate(around

90%) of top k similar objects. The 1-step sub-indexes keep the second highest rate. To

test the different ∆-steps search performance, we use the dataset GloVe and measure
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it by using recall and ART. Given the parameters L = 20, ns = 3, Th = 5000

and l = {32, 32, 32, 32, 32, 32}, because the ∆max = M , we conduct experiment on

different M , and evaluate all possible ∆-step searches. As we can see from the Table

5.3, the 0-step search always has the shortest ART with lowest recall. It is because

the 0-step search only involves one sub-index, which only contains around 100/2M%

data, as shown in Table 3.1. With the increment of ∆, the recall rises because more

sub-indexes are searched, which also costs more query time. In addition, we find that

only searching the 1-step sub-indexes increases the recall a lot and the others not. It

is because the other ∆-step sub-indexes don’t contain much of the similar objects,

which also proves the Partition LSH layer works well.
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Table 5.3: ∆-step search performance with different M on GloVe
M=2 M=3 M=4

∆ 0 1 2 0 1 2 3 0 1 2 3 4

recall 0.78 0.87 0.88 0.73 0.86 0.88 0.89 0.68 0.85 0.89 0.90 0.90

ART (ms) 41.6 67.9 70.5 33.1 62.8 76.5 81.8 28.2 43.2 93.4 117.4 127.4

1 2 3 4 5 6
ns
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Figure 5.5: recall with different ns

5.4.5 Number of shuffling permutations

The number of shuffling permutations effect the real number of RDTs in the RDF. As

depicted in Figure 4.4, by increasing ns, Ps go down more smoothly, which results in

capturing more similar objects in the results. However, larger ns also means creating

more RDTs. The ART definitely rises because of traversing more RDTs to find the

candidates. We test the influence of ns on GloVe and NYTimes dataset. We generate

2000 random queries and set L = 20, l = {32, 32, 32, 32, 32, 32}, M = 2, ∆ = 0 and

Th = 5000. In the Figure 5.5, with the rise of ns, the recall increases. However,

due to the fact that LSH algorithm is based on probability. Thus, when ns > 3, the
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recall doesn’t have large difference. So the ns = 3 is a fair choice to keep both a high

recall(over 0.9) and a relative low number of RDTs.

5.5 Comparison with Other LSH Methods

The FALCONN [1], LSHForest [3], PHF [37] are used to compare the performance

with our method on CC WEB VIDEO dataset. For CC WEB VIDEO, we use three

different features: HSV blue, HSV green and HSV red. Without loss of generality,

the experiments stop until the recall doesn’t increase anymore. In the Table 5.4,

for the single feature, the HSV red is the better than other two features to find the

similar objects. The combined feature means using three of them to get the better

results, while it costs more time through query more indexes. In terms of query speed,

FALCONN is the fastest method to get the query results. LSHForest costs more time

than other three methods. PHF and RDF have the almost same query speed, a little

slower than FALCONN. As for the recall, FALCONN is unstable, with the combined

features, the highest recall can be 0.997, the lowest recall is 0.418, while the average

is the worst one in these four methods. By conquering the MSB problem, our method

RDF is superior to the other three methods with the average recall 0.744 by using

combined features. Due to the fact that part of similar objects are missing because of

MSB problem. By applying ns shuffling permutations on original hash values, each

set of twisted hash values are used to construct the different shape of RDTs. More

similar objects can be preserved to improve the overall performance than other three

methods.
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Table 5.4: The recall and ART on CC WEB VIDEO
Methods Feature highest recall lowest recall average recall ART (ms)

LSHForest

HSV blue 0.939 0.248 0.536 7.886
HSV green 0.917 0.258 0.518 6.871
HSV red 0.918 0.305 0.584 8.176

combine feature 0.976 0.421 0.690 19.816

FALCONN

HSV blue 0.949 0.25 0.539 2.970
HSV green 0.917 0.261 0.526 3.014
HSV red 0.939 0.312 0.587 2.853

combine feature 0.997 0.418 0.661 7.61

PHF

HSV blue 0.918 0.175 0.495 3.498
HSV green 0.960 0.217 0.524 3.498
HSV red 0.960 0.216 0.514 3.470

combine feature 0.984 0.389 0.670 10.126

RDF

HSV blue 0.960 0.286 0.594 3.418
HSV green 0.960 0.303 0.619 3.508
HSV red 0.971 0.310 0.629 3.509

combine feature 0.980 0.486 0.744 10.379
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Chapter 6

Conclusions and Future Work

In this thesis, we present a LSH-based distributed index called Random Draw For-

est(RDF), to achieve the efficient and high-quality similarity search over large-scale

multimedia data. We use the multiple shuffling permutations to avoid the MSB prob-

lem in the traditional index structure. The structure of RDT is adaptive for different

dataset with different distribution or magnitude. In the meanwhile, to reduce the

search range for large-scale data, the Layered Hash provides the good solution for

distribution of large-scale data. To gain the mistakenly partitioned similar objects in

other sub-indexes, we design a ∆-step sub-indexes lookup strategy. We also combine

the multi-probes and multi-index storage to overcome index storage overhead. The

comprehensive experiments show the Layered Hash has the stable data distribution

and RDF outperforms the other LSH-based state-of-the-art algorithms.

In the future, there are four points in LSH and similarity search can be optimized:

• The way to pick up the adaptive hash functions for certain dataset by consid-

ering data distribution. Sun presented an approach to explore and exploit the

data distribution by using principal component analysis(PCA) first, then adjust
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the hash functions which are most suitable for the data [28].

• Index structure improvement. For example, by optimizing the step to redis-

tribute the objects in RDF, which improves the speed of index construction.

• Learn the intrinsic dimensionality of data, which is usually much lower than the

appearing dimensionality.

• The way to efficiently filter the candidates, approximation is acceptable.

We envision that more fruitful directions to solve the similarity search problem

based on practical large-scale dataset in the future.
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