Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/23724
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorBoden, Hans-
dc.contributor.authorKarimi, Homayun-
dc.date.accessioned2019-01-14T20:48:41Z-
dc.date.available2019-01-14T20:48:41Z-
dc.date.issued2018-
dc.identifier.urihttp://hdl.handle.net/11375/23724-
dc.description.abstractIn this thesis, we study alternating virtual knots. We show the Alexander polynomial of an almost classical alternating knot is alternating. We give a characterization theorem for alternating knots in terms of Goeritz matrices. We prove any reduced alternating diagram has minimal genus, and use this to prove the frst Tait Conjecture for virtual knots, namely any reduced diagram of an alternating virtual knot has minimal crossing number.en_US
dc.language.isoenen_US
dc.subjectAlternating Virtual Knotsen_US
dc.titleAlternating Virtual Knotsen_US
dc.typeThesisen_US
dc.contributor.departmentMathematics and Statisticsen_US
dc.description.degreetypeThesisen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Homayun Karimi PhD Thesis.pdf
Open Access
1.05 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue