Please use this identifier to cite or link to this item:
http://hdl.handle.net/11375/23703| Title: | RESILIENCE-BASED BLAST DESIGN OF REINFORCED CONCRETE MASONRY SYSTEMS |
| Authors: | Salem, Shady |
| Advisor: | El-Dakhakhni, Wael Tait, Michael |
| Department: | Civil Engineering |
| Keywords: | resilience surface;reinforced masonry;recovery time;functionality loss;out-of-plane;resistance function;fragility surface;blast risk;Nonlinear analysis;Axial load |
| Publication Date: | 2018 |
| Abstract: | The use of fully grouted reinforced masonry shear walls (RMSWs) has been growing in several areas around the world owing to their relative ease of construction and their in-plane ductile behavior. However, RMSWs possess low out-of-plane ductility which amplifies the vulnerability of such components under blast loading. Furthermore, the long time and high costs of recovery following devastating (deliberate or accidental) explosions have created a need for resilience-based design for risk mitigation, especially considering the different sources of associated uncertainty. As such, this study aims to lay out the foundations of a probabilistic resilience–based blast analysis and design framework. The framework should have the capability of quantifying the overall building post-blast functionality in order to estimate its recovery cost and time, and thus the building resilience following such a demand. The proposed framework will be specifically applied for RMSW buildings incurring blast loads through a profound investigation for the behavior of rectangular RMSWs as being a primary structural element in reinforced masonry buildings. The investigation will subsume an experimental and analytical evaluation for the performance of load-bearing RMSWs with different in-plane ductility levels subjected to out-of-plane quasi-static loading. This will be followed by a numerical investigation of RMSWs to conclude the blast probabilistic performance of RMSWs that can be applied within the proposed probabilistic resilience-based blast framework. The work in this dissertation presents a key step towards adopting resilience based analysis and design in future editions of blast-resistant construction standards and provides the decisionmakers with a complete insight into post-blast building functionality and its recovery. |
| URI: | http://hdl.handle.net/11375/23703 |
| Appears in Collections: | Open Access Dissertations and Theses |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| Salem_Shady_September2018_PhD.pdf | 7.7 MB | Adobe PDF | View/Open |
Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.
