Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/23433
Title: HEV Energy Management Considering Diesel Engine Fueling Control and Air Path Transients
Authors: Huo, Yi
Advisor: Yan, Fengjun
Department: Mechanical Engineering
Keywords: hybrid electric vehicle;energy management;diesel engine;fueling control;air path dynamics;model predictive control
Publication Date: Jul-2018
Abstract: This thesis mainly focuses on parallel hybrid electric vehicle energy management problems considering fueling control and air path dynamics of a diesel engine. It aims to explore the concealed fuel-saving potentials in conventional energy management strategies, by employing detailed engine models. The contributions of this study lie on the following aspects: 1) Fueling control consists of fuel injection mass and timing control. By properly selecting combinations of fueling control variables and torque split ratio, engine efficiency is increased and the HEV fuel consumption is further reduced. 2) A transient engine model considering air path dynamics is applied to more accurately predict engine torque. A model predictive control based energy management strategy is developed and solved by dynamic programming. The fuel efficiency is improved, comparing the proposed strategy to those that ignore the engine transients. 3) A novel adaptive control-step learning model predictive control scheme is proposed and implemented in HEV energy management design. It reveals a trade-off between control accuracy and computational efficiency for the MPC based strategies, and demonstrates a good adaptability to the variation of driving cycle while maintaining low computational burden. 4) Two methods are presented to deal with the conjunction between consecutive functions in the piece-wise linearization for the energy management problem. One of them shows a fairly close performance with the original nonlinear method, but much less computing time.
URI: http://hdl.handle.net/11375/23433
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
thesis.pdf
Open Access
11.01 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue