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Abstract

This thesis mainly focuses on parallel hybrid electric vehicle energy management

problems considering fueling control and air path dynamics of a diesel engine. It aims

to explore the concealed fuel-saving potentials in conventional energy management

strategies, by employing detailed engine models. The contributions of this study lie

on the following aspects: 1) Fueling control consists of fuel injection mass and timing

control. By properly selecting combinations of fueling control variables and torque

split ratio, engine efficiency is increased and the HEV fuel consumption is further

reduced. 2) A transient engine model considering air path dynamics is applied to

more accurately predict engine torque. A model predictive control based energy

management strategy is developed and solved by dynamic programming. The fuel

efficiency is improved, comparing the proposed strategy to those that ignore the

engine transients. 3) A novel adaptive control-step learning model predictive control

scheme is proposed and implemented in HEV energy management design. It reveals

a trade-off between control accuracy and computational efficiency for the MPC based

strategies, and demonstrates a good adaptability to the variation of driving cycle

while maintaining low computational burden. 4) Two methods are presented to deal

with the conjunction between consecutive functions in the piece–wise linearization for

the energy management problem. One of them shows a fairly close performance with
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the original nonlinear method, but much less computing time.
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Chapter 1

Introduction

1.1 Background

Electrification and hybridization upon fuel-powered ground vehicles have attracted

great interests of researchers in the past decade due to the increasing concerns about

fossil fuel consumption and air pollution [1, 2]. A report in Fig. 1.1 from U.S. De-

partment of Energy shows that sales of Hybrid Electric Vehicles(HEVs) have grown

substantially in the U.S. market from 1999 to 2015. The main reason for this trend

is the expectation that HEVs represent an effective and short-term approach to save

fuel and reduce emissions. So what characteristics of HEVs make them draw peo-

ple’s attention? Specifically, in HEVs, an Internal Combustion Engine(ICE) and an

Electrical Motor(EM) combine their power to move the vehicle. Compared to con-

ventional vehicles, the presence of the additional energy source gives more freedom

in delivering the requested power; therefore, more possibilities of shifting ICE oper-

ating points to efficient regions. For example, in the situation of low vehicle load,

the engine in HEVs can simply shut down to avoid operating in low-speed-low-torque

1



Ph.D. Thesis - Yi Huo McMaster - Mechanical Engineering

regions, where the efficiency is low; HEVs can also improve its overall fuel economy in

the whole driving cycle by maneuvering the output powers of the engine and motor;

Besides, HEVs can regenerate part of vehicle kinetic energy and store it in the battery

during braking stages [3,4]. These advantages of HEVs are obviously unreachable in

conventional vehicles in which ICEs are the only power source.
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Figure 1.1: Summary of sales for Major HEVs in U.S. automotive market from year

1999 to 2015

There are three major HEV powertrain architectures: series, parallel and power

split (also named as compound) [5–7]. The series topology is an electric–powered

vehicle with an on-board charging system. The ICE can alway operate in the opti-

mal torque–speed point which indicates the best efficiency. However, it needs both

charging and discharging system, which leads to low efficiency and expensive cost. In

the parallel topology, both ICE and motor are mechanically connected to the drive

2
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train. It provides a higher level of hybridization than the series topology, and allows

the torque distribution according to the requested driving demand. The complexity

of structural and control is considered moderate in parallel HEVs. The power split

topology normally uses a planetary gear set as a power split device. The multi–

degree–of–freedom nature gives power split HEVs more opportunity of optimizing

ICE and motor operating conditions. As a result, it is also the most complicated

topology among the three and has the highest cost.

The studies in this thesis all adopt a parallel topology considering its moderate

structural and control complexity. The coordinative control of multiple power devices

is a major issue. To take advantage of the hybridization, the energy management or

supervisory control problem has been proposed and researched extensively. The ob-

jective of HEV energy management is to reduce fuel consumption in a driving mission

and satisfy the requirements from driver’s demands, battery energy storage and the

physical limits of components. There have been generally two trends that deals with

HEV energy management problems: rule-based and optimization-based solutions. In

paper [8], Farzad et al. gives a comprehensive overview of these two categories of

strategies. Briefly, in rule-based methods, the “rules” are designed intuitively based

on human expertise without a priori knowledge of a driving cycle and detailed vehicle

models. It manages the on-board power distribution mainly according to “load level”

and does not involve optimization [9–11].

Optimization-based strategies, however, exploit the hybrid powertrain system,

process information from engine and motor operating conditions, gear shifting, ac-

celeration and brake signals etc., and generate the setpoints for the individual con-

trol of each component. Normally, they form a cost function of decision variables

3



Ph.D. Thesis - Yi Huo McMaster - Mechanical Engineering

to minimize the fuel consumption either globally or instantaneously [12] [13]. The

underlying mathematics of this group of strategies relies on optimal control theory,

such as dynamic programming(DP), Pontryagin minimization principle(PMP) [14].

Optimization-based strategies have been implemented as off-line and on-line ap-

proaches. The off-line approach is performed over a known driving cycle and com-

monly a noncausal, globally optimal solution can be found. DP and PMP have

been successfully adopted in off-line energy management problems [15–17], [18, 19].

For on-line implementations, the problem is updated by present conditions of vehi-

cle powertrain and driving demand, so global optimality cannot be guaranteed and

suboptimal solutions are admitted. The ideology of model predictive control(MPC)

exceptionally aligns with the needs of on-line energy management strategies, because

of its model–based, performance-index-driven nature, and receding horizon mecha-

nism. MPC has been shown to be good candidates for generating near-optimal power

split laws [20–22].

1.2 Motivation and contributions

Based on the literature review, in traditional energy management strategies, the

engine is modeled by an efficiency map or brake specific fuel consumption (BSFC)

map with regard to engine speed and torque. The engine torque is directly used as

a decision variable in control law design. This implies two drawbacks of traditional

strategies. First, the process of engine torque generation is not sufficiently explicated

to exploit the benefits from hybridization. If the factors that strongly affect the engine

torque, such as cylinder air charge, fuel injection and ignition control(for gasoline

engines), are employed in energy management optimization as manipulated variables,

4
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the flexibility of the control system increases and the potential of saving fuel can be

explored further. For example, the fueling control in a diesel engine provides fuel

mass flow rate and injection timing to obtain the best BSFC at the same output

torque [23] [24]. The start time of injection affects the auto ignition in diesel engine so

that the combustion and torque production change accordingly. Fig. 1.2 shows BSFC

curves from paper [24]. It illustrates that an optimal injection timing at constant

engine load and speed occurs where BSFC reaches its lowest point.

*

Figure 1.2: BSFC results at different injection timings and loads (1800 rpm).

*E0-E15 represent the volume ratio of ethanol in diesel fuel

The second shortcoming is that the inherited steady-state assumption leads to
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inadequate analysis on engine transient behavior which adversely influences the de-

cision of the supervisory controller. Given that the derived engine setpoints cannot

be achieved instantly, especially in rapid transient processes, the expected power-

train output power is not guaranteed without delay. Therefore, energy management

strategies tend to apply actions that spend more power due to the requirement of

vehicle speed tracking. It could introduce extra fuel or battery energy consumption

than predicted. The more delay of the engine torque response is, the more energy

can be consumed. In paper [25] an experimental test shows the sluggish response

of boost pressure and indicated mean effective pressure (IMEP) for a turbocharged

diesel engine during 0-100% load transient at 1200 RPM. Paper [26] has proposed

a multivariable controller to improve the abilities of tracking engine torque/speed

trajectories generated from the HEV energy management strategy during transients,

and revealed its benefit on fuel economy and emissions. However, it did not consider

transients when deriving those trajectories. No matter how accurately the actual

operating points can be controlled to approach the desired ones, the desired setpoints

still cannot precisely predict the engine and hybrid powertrain torque. Hence, the

original problem still cannot be solved. In [27,28], Martin et al. proposed a method to

calculate the optimal transient control trajectories in a diesel-generator system. The

trajectory that realizes the best fuel performance was successfully obtained when given

step output power request in short-time driving missions. However, this method has

not been verified for HEV energy management problems in a standard driving cycle,

either through experiments or high–fidelity simulations.

The use of diesel engine in this research considers the utility of this engine type as

an alternative to conventional SI–ICE HEVs. This idea is driven by the emergence of

6
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homogeneous charge compression ignition (HCCI) that could be an advancement in

diesel engine technologies. Motivated by the two aforementioned issues, it is necessary

to properly incorporate a detailed diesel engine model into the energy management

strategy to further improve fuel economy. The key elements of the expected model

should reflect the main characters of engine torque generation and response. Fuel

injection and air charge are two major factors for diesel engine control [29]. A few

modern engine techniques, such as variable valve timing, exhaust gas recirculation,

turbocharger, fuel split injection, etc, all aim to enhance the coordinative control of

fuel and air in the cylinder to achieve better mixture, combustion, torque response

and fuel economy [30–33]. When these techniques are employed to HEV energy man-

agement problems, the system complexity grows as more state and control variables

are involved.

Thus, it is crucial to find an effective way to deal with these complexities, including

nonlinearity, time-variant and multi-input-multi-output systems. To this end, the

contributions of this thesis are listed as follows:

A. A new energy management strategy is developed for a parallel hybrid pow-

ertrain with a naturally aspirated diesel engine. By combining fuel injection

timing control into an instantaneous optimal control algorithm based on Pon-

tryagin minimization principle, the proposed strategy has an additional decision

variable that makes it possible to move engine operating points to more efficient

regions than strategies that do not. The improvement of the HEV fuel economy

is verified by simulations conducted in GT-SUITE/Simulink platform.
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B. An air path dynamic and engine transient torque model are adopted for a tur-

bocharged diesel engine and calibrated through the simulation data from GT-

SUITE. A four-state system is established for the studied HEV powertrain. An

on-line model predictive energy management strategy is developed to minimize

the fuel consumption in the finite receding horizon. The proposed strategy

demonstrates the benefits on fuel saving by comparison to other strategies that

do not capture engine transients.

C. Continuing with the problem in Contribution B, a novel learning framework

is designed and incorporated with the MPC based energy management strat-

egy to adaptively regulate control step according to the performance in the

previous control horizon. The proposed method, which is referred as adaptive

control-step learning MPC (ACLMPC), avoids intuitively selecting control step

which may lead to poor control performance. Through the simulation results

it demonstrates an excellent trade-off between the fuel economy and computa-

tional effort. Moreover, it shows a strong improvement of adaptability to the

variation of driving cycle, while maintaining low computational effort.

D. In MPC based strategies, solving a nonlinear mathematical programming prob-

lem is time-consuming. In order to reduce the computational effort, linearization

is conducted to obtain linear approximations of state equations, cost functions

and constraint functions. Two linear methods with different function-conjoining

approaches are compared with the original nonlinear method. The results show

that the proposed linear method largely decreased the computing time and

maintain fairly close fuel and SOC trajectories of the original method.

8
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1.3 Thesis outline

The remaining parts of the thesis are organized as follows:

In Chapter 2, a technique of diesel engine fueling control is involved in optimization-

based energy management strategy and shows its benefits on fuel economy.

In Chapter 3, an on-line supervisory controller considering transient characteristics

of a turbocharged diesel engine is developed to improve the accuracy of the decision

making in the energy management strategy and reduce fuel consumption.

In Chapter 4, a new mechanism, ACLMPC, is proposed to automatically regulate

the control step when implementing the MPC based energy management strategy. It

shows the benefit on fuel economy, computational effort and robustness.

Chapter 5 continues the work in Chapter 3 by linearizing related models and

converting the original problem into a linear programming problem, which is less

computationally expensive without sacrificing much accuracy.

In Chapter 6 the thesis is summarized and future work is discussed.

9



Chapter 2

Diesel engine fueling control

application in HEV energy

management strategies

This chapter includes the following published paper:

Huo, Yi, Fengjun Yan, and Daiwei Feng. “A hybrid electric vehicle energy opti-

mization strategy by using fueling control in diesel engines.” Proceedings of the Insti-

tution of Mechanical Engineers, Part D: Journal of Automobile Engineering (2018):

0954407017747372.

Huo, Yi is with the Department of Mechanical Engineering, McMaster University,

Hamilton, ON L8S 4L8, Canada.

Fengjun Yan is with the Department of Mechanical Engineering, McMaster Uni-

versity, Hamilton, ON L8S 4L8, Canada.

Daiwei Feng is with School of Mechatronics Engineering, University of Electronic

Science and Technology of China, China
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Co-authorship declaration: The idea of adopting fueling control techniques in

HEV energy management problems was jointly developed by me and Prof. Yan. I

had primarily completed the strategy design and simulation in GT-SUITE. Prof. Yan

gave me some suggestions about how to debug the program efficiently. He helped me

develop the scenarios in the simulation to verify the idea. Dr. Feng gave me some

helpful comments about paper writing and revision.

Abstract

This paper addresses a control scheme for a parallel hybrid vehicle powertrain by

introducing fueling control techniques. Since a diesel engine is involved in the pro-

posed configuration, the control of fuel injection mass and timing becomes a crucial

issue. In this study, these two variables are selected as control inputs for the hybrid

powertrain system. Meanwhile, an optimization-based control strategy is designed

to solve the hybrid electric vehicle power management problem by incorporating

engine brake specific fuel consumption characteristics with regard to fuel injection

control variables. To show the advantages of the proposed control scheme, another

optimization-based strategy with fixed fuel injection timing is developed and imple-

mented for comparison. The influence of NOx emission is also considered in control

strategy and simulation results to show that the proposed fuel control technique has

limited impact on NOx emission but imposes a considerable improvement on fuel

saving.

Kewwords: Fuel injection control, diesel engine, HEV energy manage-

ment, optimal control, power distribution
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2.1 Introduction

Over the past several decades, people have been focusing on energy saving tech-

nologies for ground vehicles due to concerns on increasing crude oil demand and

stringent regulations on vehicle emissions. The hybrid electric vehicle (HEV), as a

promising vehicle configuration, provides one of the most feasible solutions to re-

duce fuel consumption and air pollution without largely compromising vehicle per-

formance [1]. HEVs are expected to have a considerable contribution to social and

environmental requirements for both passenger cars and heavy-duty vehicles [2–4].

Architectures of HEVs have been extensively studied and several hybrid powertrain

prototypes were developed [5, 6]. The layouts of three commonly used HEV archi-

tectures, as described by Emadi et al., [5] illustrate their characteristics: series HEV

has at least one traction motor, one generator, and one engine integrated in power-

train; parallel HEV generally has one engine, traction motor, and one torque coupler;

series–parallel combined HEV has two electric motors and a power split device, such

as a planetary gear set. Based on different topological complexities and potential

costs of these three types of HEVs, the parallel configuration is adopted in this paper

since it does not require many design changes from conventional vehicle powertrains.

Commonly, a hybrid powertrain system is composed of two types of power sources,

namely, internal combustion engines (ICEs) and electric motors (EMs). As a result

of their dual-source property, a major challenge for controlling hybrid vehicles is en-

ergy management, which aims at determining power demands on mechanical and

electrical sources. A properly optimized energy distribution can greatly improve the

fuel performance of HEVs [7]. Three currently developed optimization-based energy

management strategies are dynamic programming (DP), the equivalent consumption
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management strategy (ECMS), and the Pontryagin minimization principle (PMP).

The pros and cons of these strategies are comprehensively discussed in several pa-

pers [8–12]. This paper adopts the PMP approach to solve the energy management

problem.

In the literature, there are a large number of studies addressing issues of HEV

energy management [8, 13–17]. The majority of them focus on implementing an

engine model based on performance maps with regard to engine torque and speed,

ignoring other significant factors such as fuel path and air path controls, particularly

in diesel engines [2,17–19]. However, for a naturally aspirated diesel engine, which is

proposed in the setup of this paper, fuel injection control is quite important from an

engine control perspective. Fuel injection control involves two variables, fuel injection

mass and timing. They have a large influence on the cylinder combustion, torque

production, fuel consumption, and emissions of a diesel engine [20–22]. In the study by

Sayin and Canakci [23], the effects of fuel injection timing are presented to show that

at certain operation points with the same engine speed and torque, the value of brake

specific fuel consumption (BSFC) can be reduced by up to 30% by regulating fuel

injection timing to the “sweat” point. Advanced or retarded fuel injection timing can

lead to a big difference on fuel economy because the combustion condition and cylinder

pressure vary dramatically according to the change of fuel injection timing [22, 24].

However, commonly-used engine models in dealing with HEVs energy management

problems do not consider the influence of fuel injection control. When applying

such models in energy management problems, only engine torque and speed will

be manipulated in their feasible regions rather than fuel injection control variables.

Therefore, it may conceal the potential to further improve the fuel economy.
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The main contribution of this paper is that we choose fuel injection mass and

timing as engine control inputs for the studied parallel HEV. Thus, engine output

torque can be modeled as a function of these two control inputs by given a particular

engine speed. Moreover, engine fuel consumption and nitrogen oxide (NOx) emis-

sion are considered as functions of fuel injection mass and timing, and engine speed.

The proposed energy management strategy instantaneously optimizes a cost function,

which is the sum of fuel mass flow rate and state of charge (SOC) consumption rate

at each step. To show the effectiveness of employing fuel injection control variables,

two different optimization-based strategies are compared based on simulations in an

FTP75 driving cycle, one with fixed fuel injection timing and one with optimized fuel

injection timing. Meanwhile, due to the significance of NOx emission in diesel engine

applications [25, 26], NOx emission (g/kwh) is involved as the emission index and

added in the cost functions of both strategies. Particulate matter (PM) and noise,

vibration, and harshness (NVH) are also two factors traditionally considered in diesel

engine applications. However, PM and NVH trade-off are not addressed in this paper

since we have limited resources to obtain the characteristics of NVH and PM.

This paper is organized as follows. In the next section, major components of the

proposed HEV model are described. Then, the development of energy management

strategies is explained. The simulation results on fuel consumption and vehicle per-

formance for the strategies are then demonstrated and compared. Finally, conclusions

are presented.
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2.2 Plant model description

2.2.1 Model overview

In Figure 2.1, a free-body diagram illustrates the structure of the HEV powertrain

and its control signals. As a parallel configuration, an ICE is connected to a automatic

manual transmission via a pressure-controlled clutch, and the output of an EM is

directly linked to the transmission and then connects to a Differential (DF). The

engine torque and motor torque are coupled only when the clutch is fully engaged.

This structure is selected because the powertrain is still controlled by the EM even

when the clutch is disengaged.

The plant model of studied HEV is developed in GT-SUITE 7.3. Co-simulation

between Matlab/ Simulink and GT-SUITE is conducted for the purpose of validating

energy management strategies. The models used for the design of energy management

strategies are described for each component in the following subsections, including

engine, motor, battery, vehicle, etc. To be noted, the modeling approaches and

parameters of the motor, battery, and vehicle are all replications of those in GT-

SUITE. The engine is modeled based on quasi-static assumptions [27]. The maps

that characterize fuel consumption and NOx emission are calibrated in the detailed

engine model in GT-SUITE.
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 Transmission

Motor

Supervisory 
controller

Battery

Fuel Injector

Intake

Exhaust

Motor power
request

Fuel mass and
Fuel timing

Clutch

DF

Figure 2.1: Schematic diagram of the parallel HEV powertrain system.

Some important model parameters are listed in Table 2.1. They are carefully

chosen to satisfy the requirement of maximum power demand in the specific driving

cycle.
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Table 2.1: Parameters of HEV model

Component Parameters Values

Vehicle Mass Mv 1900kg

Frontal area Af 1 m2

Air drag coefficient Cd 0.32

Final Drive ratio(Differential) 3.2

Tire rolling resistance Cr 0.015

Tire rolling radius rw 0.3m

One wheel inertia 1.25 kg-m2

Engine Displacement 2.0L

Maximum torque 183 Nm

Electric Motor Motor max Torque 238 Nm

Mortor max Power 25 kw

Battery Capacity 20 Amp-h

Modules 25

Voltage per module 12.3 V

Transmission 1st/2nd/3rd speed ratio 2.125/1.36/0.72

2.2.2 Vehicle longitudinal model

A longitudinal vehicle dynamics model is adopted considering vehicle as a single

mass. The driving torque and drag torque are both applied on the vehicle. The

vehicle dynamic is given by

dV

dt
=
Fd − Fdrag
Mvrw

(2.1)
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where V is vehicle speed, Mv and rw are vehicle mass and tire rolling radius, and

Fdrive is the driving force provided by powertrain. The drag force, Fdrag, which is the

sum force resulting from road resistance and air drag effects, is defined as

dV

dt
=

1

2
ρAfCdV

2 + CrMvg (2.2)

Here, ρ is air density and Cd is air drag force coefficient, Af is frontal area, Cr is

rolling resistance coefficient, and g is acceleration due to gravity.

The models of transmission, differential, and other drive shafts are simplified as

gear ratios, and their inertias are lumped into vehicle inertia. The requested torque

on vehicle wheels is scaled by gear ratios of the differential and transmission to obtain

the requested torque on transmission input shaft.

2.2.3 Motor-battery system description

In studies of HEVs, the motorbattery system is normally composed of the me-

chanical and electrical parts. The mechanical part of the motor is an inertia system

described as a first-order differential equation. For the electrical part, an efficiency

map with respect to motor speed and torque is used to specify the relationship be-

tween the produced mechanical power and the required electrical power, as shown

by

Pele,m =

 Pmec,m/ηm(Tmec,m, ωmec,m) , Tm > 0

Pmec,m · ηm(Tmec,m, ωmec,m) , Tm < 0
(2.3)

Tmec,min(ωmec,m) ≤ Tmec,m ≤ Tmec,max(ωmec,m) (2.4)
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Here, the output mechanical power of the motor Pmec,m = Tmec,m · ωmec,m. The

actual motor torque Tmec,m has both upper and lower limits Tmec,max and Tmec,min,

which are all functions of motor speed, as shown in Equation 2.3. Here ηm is motor

efficiency with respect to motor torque and speed, which is inherited from the GT-

SUITE HEV model.

An accurate battery model is extremely complicated and computationally inef-

ficient considering thermal effects. Many studies on HEVs use simplified battery

models ignoring thermal effects. In this paper, we only consider the electrical fea-

tures of a battery. Consequently, three variables, open circuit voltage, Voc, internal

resistances during discharging, Rdis, and charging, Rcha, are involved. To be noted,

these variables are all SOC-dependent. The battery current and output voltage can

be calculated as follows

I =
Voc − Vb
Rb

(2.5)

Vb =
Pele,m
I

(2.6)

where Rb is the internal resistance of the battery depending on discharge and

charge mode, I is the circuit current, and Vb is the battery output voltage. The

characteristics of Voc and Rb related to SOC are shown in Figure 2.2.

SOC can be obtained by integrating the current, as shown in Equation 2.7. When

the current is positive, it means that the battery is discharging. On the other hand,
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the battery is recharging if the current has a negative value.

SOC = SOCini −
t∫

0

I

Qb

dτ (2.7)

Here, SOCini is the initial value of SOC, and Qb refers to the storage capacity of

the battery.
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Figure 2.2: Battery open circuit voltage and internal resistance with respect to SOC.
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2.2.4 Engine model

The plant model of engine used in this paper is a one-dimensional diesel engine

model from GT-SUITE involving the dynamics of air path, fuel path, and combus-

tion. This model has sufficient information to fulfill the requirements of fuel injection

control. Engine BSFC and NOx emission are calibrated as maps with regard to three

variables: engine speed, fuel injection mass and fuel injection timing. As the scope of

this study focuses on a quasi-static problem, the situations in which fuel consumption

and NOx emission may be affected by vehicle transient processes, such as start-stop

and gear-shifts, are not involved in the strategy design. Therefore, the fuel injection

control is determined based on those maps, which will be thoroughly illustrated in

Section 2.3.

2.3 Control algorithm

2.3.1 Review of energy management strategies

As mentioned in the Introduction, three mainstream optimization-based strategies

are DP, ECMS, and PMP. Generally, DP is almost a perfect method as it can guaran-

tee the global optimality of fuel consumption in the entire driving cycle. However, the

tremendous computational effort of its numerical implementation reveals that DP is

extremely time-consuming. Thus, DP is barely utilized in real-time control but often

considered as a benchmark for validating other strategies [8].

ECMS and PMP can be implemented as real-time energy management approaches.

They have very similar form of cost function that is typically the sum of fuel energy

and electrical energy consumption at each time step. Their cost functions are updated
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and minimized at every time instance as the algorithm is proceeding forward. The

major difference between PMP and ECMS is that they are conceived in different ways.

PMP is formulated mathematically and can be proved as a necessary condition of the

global optimality and even a sufficient condition in some special cases [28]. ECMS

is developed intuitively based on experiences, and it is not a candidate of globally

optimal solutions. However, ECMS and PMP have close connections. In fact, the cost

function in ECMS can be viewed as an approximation of that in PMP [11]. Following

PMP method, the proposed control strategy is formed below.

2.3.2 Architecture of control strategy

Figure 2.3 shows the control structure for the HEV powertrain. It mainly consists

of a power split controller and a proportional–integral–derivative (PID) controller.

The Feedforward PID controller first estimates the total requested power for driving

the vehicle based on the vehicle acceleration and identified powertrain system, and

then corrects it depending on the error between the actual and required vehicle speeds.

As long as the requested power is sufficiently provided by the engine and motor,

vehicle speed tracking performance can be guaranteed. The power split controller is

the core of energy management strategies and decides control inputs for HEVs: fuel

injection mass, fuel injection timing and power split ratio (abbreviated to split ratio)

Rp. The split ratio is defined in Equations 2.8 and 2.9 as a proportion of engine

requested power to total requested power.

Peng,req = RpPtot,req (2.8)
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Pmot,req = (1−Rp)Ptot,req (2.9)

HEV Plant

Fuel injection mass

Fuel injection timing

Power split ratio
SOC

Vehicle speed

Engine speed

PID controller 
with Feedforward

Total requested power

Power Split 
Controller

Fuel injection mass

Power split ratio

Fuel injection timing

Figure 2.3: The structure of HEV powertrain control

Thus, the engine requested power Peng,req and the motor requested power Pmot,req

are calculated by giving the total power demand Ptot,req and the split ratio.

In order to bridge fuel injection control variables and engine performances, maps of

BSFC, engine torque, and NOx emission are calibrated in detailed engine model from

GT-SUITE to obtain prior knowledge that is needed in energy management strategies.

These maps use fuel injection mass and timing, engine speed as inputs. A predefined

range of each input variable is applied on calibration to ensure the feasibility of engine

operation. Figure 2.4 shows three two-dimensional band diagrams that illustrate

BSFC, engine torque, and NOx emission with regard to the three inputs. Each

diagram has four subplots that depict the characteristics at four constant engine

speeds, 1200, 1600, 2000, and 3000 r/ min. Lines in different colors indicate different

values of fuel injection mass. To be noted, the characteristics at other engine speeds

(1000, 1400, 1800, 2500, 3500, 4000 r/min) are not shown but they are considered
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in the calibration and energy management strategy designs. As shown in the figure,

the BSFC value has obvious discrepancies when fuel injection timing is changed, but

NOx emission stays relatively constant.
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Figure 2.4: Diagram of BSFC (a), engine torque (b), and NOx emission g/kwh (c)

with regard to engine speed, fuel injection mass, and fuel injection timing.
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Figure 2.5: Contour maps with different x, y axis for BSFC, and NOx emission (the

left figures of (a) and (b) use engine speed and fuel injection mass as x, y axis; the

right figures of (a) and (b) use fuel injection timing and mass as x, y axis).

Figure 2.5 presents features of BSFC and NOx emission in the contour maps at

constant fuel injection timings or engine speeds. For instance, the left figures in
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Figure 5(a) and (b) are plotted by setting fuel timing as 28 CA; the right figures are

plotted by setting engine speed at 2000 r/min.

The BSFC, engine torque, and NOx emission maps provide enough information

for the design of an energy management strategy. Compared to the traditional engine

model that only uses engine torque and speed as inputs, the proposed model offers

another degree of freedom to control engine torque and fuel consumption. Although

the model becomes more complicated, it gives more opportunities to save fuel.

2.3.3 Fuel consumption optimization

Combining Equations 2.3, 2.5, 2.6, 2.7 the state-space function is derived as

SȮC = f(SOC,u) = −
Voc −

√
V 2
oc − 4RbPmec,m/η

2RbQb

(2.10)

Here, Voc and Rb are SOC dependent; Pmec,m relies on the vehicle operating condition

and control vector u = [Fm, Ft, Rp], where Fm, Ft, and Rp are the fuel injection mass,

fuel injection timing, and power split ratio, respectively. The value of η depends on

operating condition of motor. When motor is providing energy, η = ηm, and when

motor is regenerating energy, η = 1/ηm.

Following the procedure of PMP, a Hamiltonian function is defined as

H = ṁf (u) + λf(SOC,u) (2.11)

which is also the cost function. It instantaneously minimizes the total equivalent fuel

cost comprised of that from both fuel path and electrical path. In Equation 2.11, ṁf
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is the fuel flow rate given by

ṁf (u) = BSFC(Fm, Ft, ωeng) ·Rp · Ptot,req (2.12)

and λ is a costate variable to be tuned.

Equation 2.12 describes fuel flow rate as a function of control variables and mea-

surable variables. Engine speed ωeng and total requested power Ptot,req are measurable,

and Ptot,req comes from PID controller in the outer loop (see Figure 2.3). Thus, by

considering ωeng and Ptot,req as known parameters, fuel flow rate becomes a function

of control vector u.

In PMP theory, the costate variable λ has an updating mechanism at each time

step, as shown by

λ̇ = − ∂H

∂SOC
= −λ ∂f

∂SOC
(2.13)

For a typical HEV, SOC is usually sustained in a relatively narrow range, for example,

0.4–0.6. Under this assumption, the function f is approximated to be irrelevant to

SOC. Because little change of open circuit voltage and internal resistance occurs in

the SOC range from 0.4 to 0.6, they can be seen as constants (see Figure 2.2). Thus,

f(SOC,u) ≈ f(u) and then λ̇ ≈ 0. This means that variation of costate is negligible

within the limited SOC range, and only its initial value λ0 needs to be selected.

Once the initial value of costate is given, at every step Hamilton function is min-

imized to find optimal control variables, namely, fuel injection mass, fuel injection

timing and power split ratio. These three variables drive the vehicle to a new oper-

ating point to get an updated Hamilton function to continue the iteration.

To be noted, at each step the minimization of cost function is a constrained
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problem, meaning that the searching zones for all the variables involved should be

confined to their limitations. To fulfill this, several constraint functions are defined.

An important rule of driving cycle test is that drivers demand must be achieved.

In this study, we use fuel injection variables to control engine output torque. As a

consequence, an equality constraint is formed in Equation 2.14. Here, Teng is the

engine torque function which can be obtained from the map in Figure 2.4(b). As

ωeng, Ptot,req are all known, the relationship among fuel mass, fuel timing, and split

ratio is given by

Peng,req = RpPtot,req = ωeng · Teng(Fm, Ft, ωeng) (2.14)

According to the study by Grizzle [2], the main inequality constraints in dealing

with HEV energy management problems are battery charge and discharge capability,

motor power limits, SOC constraints, and the boundaries of engine control variables.

So, the cost function is subject to the following inequalities

Pmot,min ≤ (1−Rp)Ptot,req ≤ Pmot,max

Fm,min ≤ Fm ≤ Fm,max

Ft,min ≤ Ft ≤ Ft,max

SOCmin ≤ SOC ≤ SOCmax

(2.15)

Here Fm,max, Fm,min and Ft,max, Ft,min are the upper and lower bounds of fuel injec-

tion mass and fuel injection timing. SOC range is from 0.3 to 0.7. Here, Pmot,min

and Pmot,max can be derived from Equation 2.4 depending on motor speed. Besides,

the electric power in discharging mode that can be provided by battery should be
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restricted according to Equation 2.10, which also implies another upper bound of

motor power defined as

Pmec,m/η ≤
V 2
oc

4Rb

(2.16)

The two bounds of motor maximum power should be compared and the smaller value

is applied.

2.3.4 Strategy considering NOx emission

NOx emission is employed in a modified Hamilton function given by

H = (1− γ)ṁf (u) + λf(SOC,u) + γNOx(u) (2.17)

NOx function is obtained from calibrated map in Figure 2.4 with regard to control

vector u. Here γ is another factor that regulates the weight of NOx emission in the

cost function. Other constraints and boundary conditions are the same as in fuel

consumption problem. From Figure 2.5, we can see that the contours NOx emission

and BSFC have opposite trends as x, y inputs are changing. Typically, it may require

a tradeoff between fuel consumption and NOx emission. In this study, γ is manually

selected without optimization aiming at comparing the results of NOx emission in

different energy management strategies.
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2.4 Simulation

2.4.1 Simulation results in fuel consumption problem

In the previous section, we discussed how to find optimal control solutions in

the defined HEV energy management problem. This section will show the results of

implementing two different strategies. One is involving all the control variables in

vector u into the optimization problem, which is noted by “optimal fuel timing”. In

order to clarify the improvement by involving fuel injection control variables, another

optimization-based strategy with fixed fuel injection timing is proposed as well, which

is noted by “fixed fuel timing”. In the second case, fuel injection timing Ft is set to a

constant (-12 CA) in Equations 2.12 and 2.14, and only fuel injection mass and power

split ratio can be manipulated. In other words, fuel injection timing is deprived of its

influence on HEV powertrain system. Furthermore, gear shifting and engine ON/OFF

control are all identical in both cases to avoid interferences from them. The values of

costate λ in two cases are selected as 1200. The compared powertrain performances in

these two cases will be shown and analyzed in the following figures. The first case is

expected to save more energy than the second one because of its ability of optimizing

fuel injection timing.

Both of two cases are simulated under the FTP75 driving cycle, as shown in

Figure 2.6. We can see that vehicle speed tracking is perfectly achieved in both cases.

Figure 2.7 illustrates engine torque and speed behaviors in the whole driving cycle.

Identical results of engine speed in both cases indicate that the same gearshift and

engine start–stop strategies are utilized. In addition, during vehicle deceleration,

regenerative braking functions in two cases also share the same tactic, which is that

30



Ph.D. Thesis - Yi Huo McMaster - Mechanical Engineering

motor regenerates as much energy as possible and engine provides zero output torque.

The power split controller is not activated during engine idle and vehicle deceleration,

so the difference in the two cases of motor torque, engine torque, split ratio, SOC,

etc., can be seen as direct outcomes from different energy management strategies.
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Figure 2.6: Comparison of vehicle speed tracking for variable fuel timing strategy

and fixed fuel timing strategy

Figures 2.8 and 2.9 plot the fuel injection mass and timing behaviors in both

overall cycle and zoom-in cycle (770–970 s). The differences between blue line and

reddash line are caused by two control strategies. Obviously, these differences occur

in the same time slots as in fuel injection mass and power split ratio curves in Figures

2.8 and 2.12. Optimal fuel timing strategy exploits fuel injection timing and adds

another degree of freedom to the system. Therefore, the feasible range of BSFC

can be expanded and smaller BSFC can be found. Consequently, engine operating

points move to a more efficient region and overall efficiency for hybrid powertrain is

increased.
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Figure 2.9: Comparison of fuel injection timing behavior for variable fuel timing

strategy and fixed fuel timing strategy

Specifically, comparing two curves at 840 s, 860 s, and 905 s in Figures 2.8, 2.9,

and 2.12 zoom-in figures, “optimal fuel timing” strategy tends to use more engine

power instead of motor power than “fixed fuel timing” strategy. It is not difficult

to conclude that engine efficiency increases to the point where “optimal fuel timing”

strategy has to make the changes. Moreover, because engine efficiency also depends

on engine operating condition, at some cycle points these changes are evident but

others are not.

Fuel consumption and SOC results are shown in Figure 2.11. At the end of

driving cycle, the fuel consumptions in “optimal fuel timing” strategy and “fix fuel

timing strategy” are 653 g and 624 g, respectively, and the final SOCs in two cases

are 0.59 and 0.53. It means “optimal fuel timing” case consumes more fuel energy

instead of electrical energy than in “fix fuel timing” case, so its SOC ends up with a
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higher level. Because the two energy management strategies use the same structure

of cost function and identical constant costate, the integrals of cost function can be

introduced to compare total equivalent fuel consumption instead of only actual fuel

consumption. In order to calculate the total energy cost, the following equation is

utilized by integrating Equation 2.18.

Ftotal =
∑
ṁf (t)∆t+ λ(SOC(t)− SOC(t0)) t ∈ [t0, te] (2.18)

Here, te and t0 are the end time and initial time. As mentioned, equal value of λ in

both cases is used to convert electrical energy to fuel energy.
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Figure 2.10: Comparison of split ratio behavior in variable fuel timing strategy and

fixed fuel timing strategy
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Figure 2.12 shows the calculated equivalent fuel consumption in the FTP75 cycle.
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It turns out that “optimal fuel timing” case has 665 g equivalent fuel cost, which is

43 g less than 708 g in “fixed fuel timing” case.

2.4.2 Results considering NOx emission

This part shows performances of SOC, NOx on conditions of different γ in Equa-

tion 2.17. γ is chosen from [0, 0.01, 0.1]. Similarly, two control strategies are compared

as follows.

Figure 13 shows the accumulated NOx emission mass by integrating instantaneous

NOx mass flow rate in two control strategies. No matter how parameter γ changes,

the behaviors of accumulated NOx are almost the same in “fixed fuel timing” and

“optimal fuel timing” strategies. The final NOx productions in Table 2.2 indicate

that using both strategies NOx emissions end up with less than 0.5% difference.
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Figure 2.13: Integrated NOx mass versus time using strategies when γ=0, 0.01, 0.1
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fuel control strategies when γ=0.1

Table 2.2: NOx emission mass at the end of driving cycle

Control Strategy γ values Final NOx mass(g)

Optimal fuel timing 0 75.7

0.01 75.5

0.1 74.9

Fixed fuel timing 0 75.5

0.01 75.7

0.1 75.3

Figure 2.14 plots curves of NOx fraction (%), fuel injection timing, and power split

ratio when costate γ is set to 0.1. From the curves of power split ratio, we can see

decisions of power distribution made in both strategies. At 840 s, 860 s, and 905 s, the
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difference of two power split ratios indicates that in “optimal fuel timing” case engine

consumes more fuel (also see Figure 2.8) but decreases NOx fraction. This proves the

consistence with the “trade-off” on BSFC and NOx emission maps in Figure 2.4.

At time 830 s and 950 s, both power split ratio curves are very close. Although

fuel injection timings have obvious differences, NOx fraction hardly changes. Thus,

fuel injection timing has quite little impact on NOx emission. This is also consistent

with the conclusion discussed in Figure 2.5.

2.5 Conclusions

This paper proposes an energy management strategy for a parallel hybrid pow-

ertrain with a naturally aspirated diesel engine. Fuel injection mass and timing are

considered as two control variables for the diesel engine due to their influence on

BSFC and NOx emission. Therefore, characteristics of BSFC, NOx emission, and

engine torque with regard to fuel injection mass and timing are calibrated through

GT-SUITE models. To demonstrate the effects of fuel injection control on HEV pow-

ertrain system, two optimization-based algorithms, one with fixed fuel timing and

another with optimal fuel timing, are developed. The idea of PMP is adopted to

solve the optimal control problem of minimizing fuel consumption. In addition, NOx

emission is also considered in the development of energy management strategy. The

total fuel consumption is calculated by adding engine fuel consumption and equivalent

fuel cost from the electrical path. Comparative simulation results in the FTP75 cycle

show that the strategy with optimal fuel injection timing has 5% less total equiva-

lent fuel consumption than that in fixed fuel timing strategy. The results considering

NOx emission demonstrate that the variation of fuel injection timing has very limited

38



Ph.D. Thesis - Yi Huo McMaster - Mechanical Engineering

influence on NOx production in the proposed range of fuel injection timing.
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Symbol I

PID are defined in the Symbol II as coefficients that directly multiplies the speed

error, and the integral, derivative of speed error. The calculated products should

multiply vehicle mass before they are used in the simulation.

Af frontal area 1 m2

f the studied system state equation

g gravitational acceleration 9.8 m/s2

ṁf fuel flow rate

rw tire rolling radius 0.3 m

u control input

Cr rolling resistance coefficient 0.015

Cd air drag force coefficient 0.32

Fdrive driving force provided by powertrain

Fdrag drag force

Fm fuel injection mass

Fm,min minimum fuel injection mass 0 mg/cycle

Fm,max maximum fuel injection mass 40 mg/cycle

Ft fuel injection timing

Ft,min minimum fuel injection timing -16 crank angle

Ft,max maximum fuel injection timing 8 crank angle

H Hamiltonian equation

I the circuit current

Mv vehicle mass 1900 kg

Pmec,m motor output power
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Pmot,req motor power demand

Pele,m motor electrical power

Pmot,min motor minimum power limit -25 kw

Pmot,max motor maximum power limit 25 kw

Ptot,req total power demand

Peng,req engine power demand

Qb capacity of battery 20 A-h

Rdis battery internal resistance when discharging

Rcha battery internal resistance when charging

Rp power split ratio

SOC battery state of charge

SOCini initial battery state of charge 0.6

SOCmin minimum SOC limit 0.2

SOCmax maximum SOC limit 0.8

Teng engine output torque

Tmec,m motor output torque

Tmec,max motor maximum torque limit

Tmec,min motor minimum torque limit

V vehicle speed

Voc open circuit voltage

Vb battery output voltage

γ the weight of NOx emission in cost function

η motor efficiency

ηm motor efficiency when providing power
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λ costate variable in cost function 1200 g/h

ρ air density 1.225 kg/m3

ωmec,m motor speed rad/s

PID PID controller parameters in driver model P=1,I=0.1,D=0
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MPC-based energy management

strategy considering engine air

path transients

This chapter includes the following published paper:

Huo, Yi, and Fengjun Yan. “A Predictive Energy Management Strategy for Hy-

brid Electric Powertrain with a Turbocharged Diesel Engine.” Journal of Dynamic
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I proposed a model predictive control mechanism to solve this problem. Prof. Yan

helped me clarify the contribution of this paper and correct some mistakes made by

me at the beginning. He also helped me with the revisions of the paper.

Abstract

This paper proposes an energy management strategy for a Hybrid Electric Ve-

hicle with a turbocharged diesel engine. By introducing turbocharger to the HEV

powertrain, air path dynamics of engine becomes extremely complex and critical to

engine torque response during transient processes. Traditional strategy that adopts

steady–state–map based engine model may not work properly in this situation as a

result of its incapability of accurately capturing torque response. Thus, in this paper

a physical-law based air path model is utilized to simulate turbo “lag” phenomenon

and predict air charge in cylinder. Meanwhile, engine torque boundaries are obtained

on the basis of predicted air charge. A receding horizon structure is then implemented

in optimal supervisory controller to generate torque split strategy for the HEV. Sim-

ulations are conducted for three cases: the first one is rule–based torque–split energy

management strategy without optimization; the second one is online optimal control

strategy using map–based engine model; the third one is online optimal control strat-

egy combining air path loop model. The comparison of the results shows that the

proposed third method has the best fuel economy of all and demonstrates consider-

able improvements of fuel saving on the other two methods.

Keywords: Air path dynamics, Turbocharger, HEV, Model predictive con-

trol, Transient process
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3.1 Introduction

Hybrid Electric Vehicles(HEVs) exhibit a great capability of improving fuel econ-

omy compared with conventional vehicles by introducing an on–board electrical en-

ergy storage device to the powertrain system. The presence of the additional en-

ergy source gives another degree of freedom in delivering the requested power that

is used for driving the vehicle. The coordinative control of both internal combus-

tion engine(ICE) and electric motor(EM) gives potentials to increasing the overall

efficiency of the system. Among different HEV powertrain topologies, parallel is a

simple configuration that can be easily realized with minor modification on traditional

vehicles [1] [2]. Several major automakers, such as Honda, GM and VW all have par-

allel Hybrid Electric Vehicles in the market. The energy management strategy for

a parallel configuration is also named as torque split strategy because engine and

motor speeds are coupled most of time and their torques can be distributed freely [3].

Many papers have proposed different methods of optimally realizing torque split,

which can be categorized into three classes: dynamic programming (DP), Pontrya-

gin minimization principle (PMP) and equivalent consumption management strategy

(ECMS) [4] [5] [6] [7]. DP is promised to be a globally optimal solution to general

problems. However, the huge computational load and the request for a complete prior

information of driving cycle make its real–time implementation highly improbable;

PMP is usually considered as a necessary condition of global optimization which can

be derived from DP, paper [8] shows properly tuned PMP can obtain very similar

results to DP. ECMS is a simplified way to realize PMP if the equivalent factor is

appropriately chosen [9]. Although ECMS can be applied as close–loop controller in

order to reduce the effect of model uncertainties, the instantaneous optimization in
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ECMS still lacks abilities of predicting system behaviors. From this point of view,

some researchers propose strategies based on model predictive control (MPC) and

apply dynamic optimization over a finite moving horizon [10] [11] [12], which shows

good fuel economy performance under standard driving cycles.

So far as known, the efficiency of an ICE in ground vehicle application is aver-

agely around 20% and drifts within a large range depending on operating points.

However, the electrical path including battery, motor and converter, has much higher

and steadier efficiency performance than the fuel energy source. This implies that the

efficiency improvements on engine may have more notable effects on vehicle system.

There are varieties of cutting–edge technology applied on modern ICEs to reduce

fuel consumption and emissions, such as variable valve timing, exhaust gas recircu-

lation, turbocharger, direct injection, etc. To be noted, in recent years turbocharger

becomes more and more prevalent in the automotive industry to serve the purpose

of downsizing ICEs and improving fuel efficiency. In general, a turbocharged engine

makes use of exhaust gas energy and boosts the air charge to increase output torque

and power. As a result, engine operating efficiency is increased and its displacement is

allowed to be shrunk due to the existence of turbocharger. Obviously, this advantage

aligns with the needs of engine in the HEV applications since a smaller engine can

save space and reduce weight without losing power.

However, turbocharger technology also brings challenges to supervisory controller

design attributed to its transient characteristic. In fact, engine torque may not re-

spond fast enough to drivers requirement due to the sluggish effect of a turbocharger.

In paper [13] and [14] engine torque behavior in 0–100% load transient process is

investigated. The results show that in the worst case it lasts nearly 8 second for
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the torque to reach steady state due to the slow increase of cylinder air charge. In

order to visually explain the issue, a simulation test in similar operating conditions

is conducted in GT–Power. Fig. 3.1 illustrates a process during 50% to 100% load

step change at 1500 engine speed by shifting fuel injection per cycle from 40mg to

80mg. The output torque trajectory can be divided into two sequential portions.

The first one represents the duration of fast response during which almost an instant

torque change occurs, because the torque rise in this duration mainly depends on the

fuel injection rise and fuel injection dynamics is very fast. The second portion is the

slow response, where the torque continues increasing for about 5 seconds until it is

stable. The air charge in this duration limits the fuel injection mass and the output

torque. Therefore, the slower torque response is a reflection of the air charge dynam-

ics. Meanwhile, an evident BSFC(Brake Specific Fuel Consumption) fluctuation in

this process is also shown and it has an effect on the final fuel consumption.

In most of aforementioned energy management strategies, BSFC maps are nor-

mally involved to calculate fuel consumption. Control signals in those strategies are

derived under the assumption that the engine can instantly provide the same torque

as that in steady state by giving the same demand. The inaccuracy of the steady–

state model in transient processes may lead to mismatch between the expected fuel

consumption given by the controller and the actual one. In other words, the potential

of improving fuel economy is concealed by an inadequate accuracy of model. Moti-

vated by the problem discussed above, an effective transient model of a turbocharged

engine is employed and MPC based supervisory controller is developed in this pa-

per. The contribution primarily lies on systematically incorporating engine transient

torque model including air path dynamics with an online optimization–based energy
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management mechanism.
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Figure 3.1: Torque and fuel consumption behavior of a turbocharged engine

responding to full load input at constant engine speed

In the following sections, details of the proposed approaches are presented. Section

II describes the models of major components in hybrid electric vehicle. Section III

demonstrates the procedure of energy management algorithm design, mainly focusing

on implementation of model predictive control. Section IV shows simulation results

of three developed algorithms. A comprehensive analysis is discussed based on differ-

ences among the comparative results. Finally, in Section V the paper is summarized
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and conclusions are drawn briefly.

3.2 HEV powertrain model

Fig. 3.2 shows the studied hybrid powertrain setup. In this paper a typical parallel

hybrid powertrain topology is introduced. A diesel engine is connected to one end

of the clutch and an electric motor is connected to the other end. The powers from

the engine and motor can be decoupled or coupled by the clutch. The output shaft

of motor is connected to the transmission and can drive the vehicle independently.

The diesel engine has a turbocharger controlled by a wastegate. In the following

subsections, the models of major powertrain components are described.

TransmissionTransmission
Electric 
Motor

Electric 
Motor

PinPin

PexPex

cm

tm

wgu

cylm

fu

wgm

Compressor

Turbine Engine 
Cylinder

Intake manifold

Exhaust manifold

Ambient

Ambient

mT

Figure 3.2: A P2 hybrid powertrain architecture with a turbocharged diesel engine
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3.2.1 Vehicle model

A longitudinal dynamic model for vehicle is considered and described in Equ.(3.1)–

(3.4) [7]. Fd is the traction force on vehicle. The resistance force includes road friction,

air drag force and the force due to road slope. g is gravitational constant. u is road

friction coefficient. Cdrag is drag coefficient, ρair is air density, Afront is the effective

area of air drag force. Rtire is the equivalent tire radius when vehicle is moving. mveh

is vehicle mass. mtire is the equivalent mass of rotational components, which are

mainly considered as four tires. mtire is calculated by Equ.(3.3).

(mveh +mtire)
dV

dt
= Fd − (mvehgu+

1

2
CdragρairV

2Afront +mvehg sin θ) (3.1)

Fd =
Twheel
Rtire

(3.2)

mtire = 4
Jwheel

Rtire
2 (3.3)

Treq =
Twheel
igif

, ωreq = ωwheeligif (3.4)

Transmission, differential and other drive shafts are simplified as gear ratios and

their inertias are all lumped into vehicle inertia. If vehicle speed is predefined, the

wheel torque and speed can be calculated and scaled to transmission input shaft by

Equ.(3.4). Treq and ωreq are the requested torque and speed of transmission input

shaft that are needed in supervisory controller. ig is transmission gear ratio and if is

final drive ratio. Table 3.1 shows the specification of major components in the studied
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HEV powertrain.

Table 3.1: Major parameters of the hybrid vehicle powertrain

Engine 1.4 L Turbocharged 200Nm 1800-4000RPM

Electrical

Motor

Maxpower: 50kw

MaxTorque: 400Nm

Battery Lithium–ion Battery 6.5 Ah

Transmission 4–speed GearRatio: 2.125,1.25,1,0.72

Final Drive Ra-

tio

3.2

Vehicle Curb weight 1900kg

3.2.2 Electric motor model

Electric motor uses an efficiency map to describe the relationship among motor

torque, motor speed and consumed electrical power . The effects of inertia elements

are ignored so that motor torque is assumed to instantly respond to the demand.

Equ.(3.5) demonstrates the electric motor model [4].

Pele =
Pm

ηm(Tm, ωm)

= Pm · ηm(Tm, ωm)

, Tm > 0

, Tm < 0

(3.5)

Tm,min(ωm) ≤ Tm ≤ Tm,max(ωm) (3.6)
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Pm is output mechanical power of motor. Pele is input electrical power. η is motor

efficiency map with respect to motor torque and speed. Motor torque also has upper

and lower bound Tm,min(ωm) and Tm,max(ωm), which are functions of motor speed.

3.2.3 Battery model

Battery is simplified to be a resistance circuit illustrated in Fig. 3.3. The circuit

current can be derived from circuit principles shown in Equ.(3.8). Voc is open circuit

voltage. Rin is the resistance of battery. Thus, the dynamics of battery state of

charge (SOC) is modeled as shown in Equ.(3.9). Qbatt is battery capacity. Open

circuit voltage and internal resistance are basically functions of SOC. In this paper,

these parameters are obtained from Toyota Prius Battery pack [15].

VocPele

Rin I

Figure 3.3: A simple equivalent circuit of a battery

The electric power in discharging mode that can be provided by battery should
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be limited by Equ.(3.7), which also implies a potential upper bound of motor torque.

The minimum value should be selected as the upper bound of motor torque between

maximum torques from Equ. (3.6) and (3.7). This paper also assumes that no

restriction on battery power is considered when battery is charging.

Pele =
Tmωm

η
sign(Tm)
m

≤ V 2
oc

4Rin

(3.7)

I =
Voc −

√
V 2
oc − 4RinPele

2Rin

(3.8)

SȮC = − I

Qbatt

(3.9)

3.2.4 Engine model

This paper aims to deal with energy management problems regarding engine

torque response in transient processes so that an efficiency or BSFC map based engine

model is no longer suitable. More detailed information should be included: torque

generation related to both fuel injection and air charge; air path loop dynamics as-

sociated with turbocharger mechanism, such as intake and exhaust manifold pres-

sures and turbine speed. Some papers have proposed Mean Value Models (MVMs)

for this purpose that shows the effectiveness of capturing turbocharger character-

istics [16] [17]. Considering the trade-off between model accuracy and complexity,

MVMs are adopted and several small simplifications are made. The detailed model-

ing procedure is discussed in the remaining part of this section.
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Basically, the turbocharger dynamics contains three states, intake manifold pres-

sure, exhaust manifold pressure and turbine speed. In paper [18] engine speed is also

treated as a state, which is, however, not necessary in this study. Normally, in a

parallel HEV, engine output shaft is rigidly connected to the drive line and engine

speed is determined by vehicle speed profile and gear ratio. The control inputs of

the engine are fuel injection mass and waste gate diameter. The three states and two

controls are combined in Equ.(3.10) to form a nonlinear system.

dPin
dt

=
RaTin
Vin

(ṁc − ṁcyl)

dPex
dt

=
ReTex
Vex

(ṁcyl + ṁf − ṁt − ṁwg)

dωt
dt

=
(Wt −Wc)

Jtωt

(3.10)

Here, Pin , Pex , ωt are intake manifold pressure, exhaust manifold pressure and

turbine speed (rad/s); Ra and Re are gas constants of ambient air and exhaust gas;

Vin and Vex are volumes of intake and exhaust manifold; Tin , Tex are the temperature

in intake and exhaust manifold. ṁc and ṁt are the mass flow rate through compressor

and turbine. ṁcyl, ṁf are the air and fuel mass flow rate into cylinder. ṁwg is air

mass flow rate through waste gate which can be controlled by waste gate valve. Wc

and Wt are compressor power and turbine power, which are calculated in Equ. 3.11.

Here, cpa and cpe are specific heat capacity at constant pressure of air and exhaust

gas; γa and γe are specific heat capacity ratio of air and exhaust gas; ηc and ηt are
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compressor and turbine efficiency.

Wc =
ṁccpaTamb((Pin/Pamb)

γa−1
γa − 1)

ηc

Wt = ṁtcpeTexηt(1− (Pamb/Pex)
γe−1
γe )

(3.11)

Several reasonable assumptions regarding air path loop model should be notified

before further discussion.

Assumption:

1. Intake manifold pressure and temperature equal to outlet pressure and temper-

ature of compressor; meanwhile, exhaust manifold pressure and temperature

equal to inlet pressure and temperature of turbine

2. Inlet pressure and temperature of compressor equal to ambient pressure and

temperature; this rule also applies on outlet pressure and temperature of tur-

bine.

3. Volumetric efficiency in Equ. (3.13) is considered as a constant.

4. Engine torque has fast response as long as fuel injection mass does not exceed

its maximum value defined by stoichiometric air fuel ratio [19]. See in Equ.

(3.16).

Fuel rate in cylinder is defined in Equ. (3.12)

ṁf =
4ufNe10−6

120
(3.12)
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Air flow rate in cylinder is calculated by Equ. (3.13)

ṁcyl =
NeVdPinηvol
120TambRa

(3.13)

Where Ne is the engine rotational speed, Vd is the displacement of one working

cycle, ηvol is relative volumetric efficiency.

Wastegate flow rate is considered as a typical orifice model in Equ.(3.14).

ṁwg =
Pex√
RexTex

uwgAwgawg

√
1− (

Pamb
Pex

)
bwg

(3.14)

Where Awg is the maximum effective area of waste gate orifice. uwg is the waste

gate control signal which regulates the effective area. awg and bwg are the tuning

coefficients of orifice model.

Exhaust temperature Tex is simplified as a polynomial function with respect to

fuel injection mass and engine speed, which is calibrated by steady–state simulation

data from GT–Power.

The mass flow through compressor and turbine, the pressure ratios between the

outlet and inlet of compressor and turbine, and turbine shaft speed are major charac-

ters in compressor and turbine maps. Some researchers use functions to fit compressor

and turbine maps in MVMs to remove discontinuities and implement the functions in

optimal control tool box [18]. Here, in this paper we did it in the another way. Orig-

inal data from those maps are directly used to avoid losing accuracy due to function

fitting. The curves and points within the region of the map are all linearly interpo-

lated from the data set points. The original characteristic maps of compressor and

turbine are shown in Fig. 3.4 and 3.5.
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In turbine and compressor maps, mass flow rates are all corrected by inlet pressures

and temperatures in Equ.(3.15). In this equation, ṁc,correct and ṁt,correct are corrected

mass flows of compressor an turbine. ṁc,act and ṁt,act are actual mass flows; Pc,ref

and Pt,ref are the reference pressures at which the compressor and turbine map are

measured; Pc,inlet and Pt,inlet are the actual inlet pressures of compressor and turbine

for correcting mass flows. Therefore, actual mass flow rates of turbine and compressor

have to be calculated reversely before inputting to other equations.

ṁc,correct = ṁc,act
Pc,ref
Pc,inlet

√
Tc,inlet

Tc,ref

ṁt,correct = ṁt,act
Pt,ref
Pt,inlet

√
Tc,inlet
Tt,ref

(3.15)

Base on Assumption 4, engine torque is modeled as a stationary map with respect

to fuel injection mass and engine speed but fuel injection is saturated by cylinder air

charge. Thus, the relationship between engine torque and cylinder air flow is clarified

in Equ.(3.17) and (3.18). To be clear, the BSFC map in steady state corresponding

with the maximum torque curve is given in Fig. 3.6 to show the engine performance.

The maximum torque starting from 1800 RPM is restricted to 200Nm by controlling

wastegate flow and intake manifold pressure. For this purpose, the wastegate diameter

uwg is limited by an upper bound according to different engine speeds, which is

described in Table 3.2.

ṁf,max =
1

AFR∗
ṁcyl (3.16)

Te = f(uf ), uf ≤ uf,max (3.17)
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uf,max =
120ṁf,max

4Ne10−6 (3.18)
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Figure 3.6: BSFC map in steady state with respect to engine speed and load
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Table 3.2: Calibrated maximum wastegate diameters with respect to engine speed

Engine RPM Wastegate Diameter (mm)

1000 0

1400 0

1800 0

2000 5.1887

2200 7.2782

2500 9.3180

2800 11.1503

3000 12.1713

3200 12.9709

3500 13.9679

4000 14.9245

3.3 Model predictive control based supervisory con-

troller design

The objective of HEV energy management is to minimize the fuel consumption

during a driving mission with all constraints satisfied. Meanwhile, energy manage-

ment strategy should be incorporated with a feedback control scheme to compensate

the model disturbance and inaccuracy. In this paper, Model predictive control based

architecture is utilized and shown in Fig. 3.7. The MPC based supervisory controller

(MPCSC) predicts future trajectories of system states based on measurements at first
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step and control sequences in each prediction horizon. The best control sequence can

be found by minimizing the cost function, which is also the goal of HEV energy man-

agement, subject to all the constraints. Afterwards, the MPCSC implements the first

step of the optimal control sequence and makes the prediction horizon move one step

forward. This process is repeated until the end of driving mission.

To be noted, MPCSC is only activated when engine and motor torque are coupled

and positive vehicle power is required. In other words, engine and motor are controlled

independently when clutch is disengaged. For example, at the stages of vehicle start

and engine idles, the motor provides all the requested power for driving vehicle; during

gear shifting, clutch is off, and engine torque is reduced to a constant and the motor

gives zero torque.

MPC based 

supervisory 

controller

fu

wgu

mT

vehV

Driver 

model(PID)
refV

reqT

Vehicle speed

Requested Torque

Fuel mass

Wastegate 
diameter

Motor torque
Electric Motor 

Vehicle

HEV Plant

Reference vehicle speed
Diesel engine

Measured states

Figure 3.7: Control architecture of the proposed HEV powertrain

3.3.1 Problem Formation

When engine and motor are coupled, the studied system are formulated with four

states x, intake pressure, exhaust pressure, turbine speed and SOC; three controls

u, fuel injection mass, waste gate diameter and motor torque; and three exogenous
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inputs v engine speed, requested torque and gear ratio. The gear shift strategy is

predefined according to engine speed so that gear ratio is also an known parameter.

The system dynamic equation is written in state-space form ẋ = F (x,u,v).

The cost function in kth prediction horizon is defined as total equivalent con-

sumption in Equ. 3.19. It consists of engine fuel consumption as the first term of

right hand side, and equivalent fuel due to battery energy cost as the second term.

Coefficient µ is the equivalent ratio between fuel energy and electrical energy.

J(k) =
P∑
i=0

ṁf (tk + i)∆t+ µ(SOC(tk + P )− SOC(tk)) (3.19)

The constrain functions includes:

1. System dynamic equations in (3.9)(3.10)

2. Path constraints

Te(uf , ωe) + Tm = Treq (3.20)

uf ≤ uf,max(Pin) (3.21)

3. Boundaries of state and control variables

SOCmin ≤ SOC ≤ SOCmax (3.22)

Pin,min ≤ Pin ≤ Pin,max (3.23)

67



Ph.D. Thesis - Yi Huo McMaster - Mechanical Engineering

Pex,min ≤ Pex ≤ Pex,max (3.24)

Nt,min ≤ Nt ≤ Nt,max (3.25)

uf ,min ≤ uf ≤ uf ,max (3.26)

uwg,min ≤ uwg ≤ uwg,max (3.27)

Tm,min ≤ Tm ≤ Tm,max (3.28)

3.3.2 MPC algorithm implementation

To implement MPC algorithm the future vehicle speed reference is required. In

this paper, we assume that this information can be obtained from a given driving cy-

cle. Besides, the requested torque that makes vehicle track the reference speed can be

predicted from vehicle model. Specifically, in the first step of each prediction horizon,

total requested torque inherits the output from driver model (a PID controller). Then

the actual vehicle speed is assumed to catch up reference speed within the first step.

Starting from the second step, the requested torque is predicted by the Equ.(3.29)
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which is derived from Equ.(3.1)-(3.4).

Treq =
Rtire

igif
[(mveh +mtire)

dVref
dt

+ (mvehgu+
1

2
CdragρairV

2
refAfront +mvehg sin θ)]

(3.29)

Fig. 3.8 shows the steps of solving dynamic optimization problem in one prediction

horizon. The iteration number i counts from 0 to P indicating the prediction steps.

At each step control variables are meshed within their permissible boundaries that

satisfies all constraints based on the states at first step. The system dynamics are

calculated exhaustively in the prediction horizon under a certain resolution to generate

multiple possible state trajectories. Finally, the values of cost function are compared

to find the optimal solution to the current problem. The proposed method is processed

numerically all the way without having to ensure the differentiability of mathematical

expressions in analytical models. This update-predict-implement scheme repeats and

continues until completing the driving cycle. In order to maintain the final SOC in

a reasonable range, or usually called charge sustaining, the simulation needs to be

conducted multiple times by tuning the equivalent ratio µ.
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Figure 3.8: The flow chart of MPCSC implementation in a prediction horizon
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3.4 Simulation results and discussion

To demonstrate the effectiveness of the proposed controller, three strategies are

developed in the same HEV powertrain model and compared. They are MPC-based

supervisory control with engine air path dynamic model, optimal supervisory control

with a map-based engine model and rule-based supervisory control [20] [21]. Three

methods share the same engine start-stop and gear shift strategies in UDDS cycle. For

convenience, all three controllers are noted as MPCSC, MBSC and RBSC respectively

in further discussions.

In Fig. 3.9, the actual and reference vehicle speed curves are compared in all three

strategies demonstrating that the tracking demand are well satisfied. Fig. 3.10 shows

the engine On/Off and gear shift status are also identical in three different methods.
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Figure 3.9: Vehicle speed tracking performance of three strategies
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Figure 3.10: Comparison of engine speed and transmission input speed for three

strategies

Fig. 3.11 plots demand engine torque generated from three controllers and the

corresponding actual torque calculated from plant model. MPCSC has the best engine

torque estimation among three as a result of the predictive engine model with air

path dynamics. In some time slots such as 100s∼200s and 400s∼450s, MBSC has

relatively large error between demanded torque and actual torque. However, in most

of time MBSC has quite similar torque curves as in MPCSC where the error between

desired and actual torque is little. That means the advantage of MPCSC may not

always take effect but depends on the engine torque demand. For example, during

cruising the total power demand to maintain the vehicle speed is small as seen in Fig.

3.13 from 0s to 100s, whereas during rapid acceleration process(150s∼200s) the total

power demand is much larger. The quantity of total power demand also influences the
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torque split strategies in MPCSC and MBSC and therefore engine torque demand.

Actually, the predictive engine model mentioned in section III mainly estimates the

upper bound of engine torque. When the demanded engine torque does not exceed

this bound, the actual torque can reach to the demand by giving correct fuel injection

signals. Otherwise, the additional injection that aims to generate more torque turns

out to be a waste of fuel. It can be obviously seen in Fig. 3.12 the black line is higher

than blue line during 150s∼200s. Moreover, RBSC is the worst case at this point

because its intuitive solution of torque split makes engine torque demand go beyond

its limit more frequently.
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Figure 3.11: Engine demand torque and actual torque comparison in three strategies
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Figure 3.13: Comparison of total requested power from driver demand for the three

strategies

Fig. 3.13 shows that in 150s∼200s total requested power in MPCSC is lower
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than MBSC which is another advantage of MPCSC. As mentioned above, MPCSC

is able to avoid overestimating engine maximum permissible torque and deriving an

unreachable torque command so that the total power requirement in MPCSC can be

fulfilled by actual engine torque and motor torque. Thus, total power requirement

from driver model (PID controller) does not necessarily increase to compensate the

gap between desired and actual vehicle acceleration performance. In contrast, total

power requirement inflates in MBSC and RBSC due to the inaccuracy of the engine

model. Besides, the amount of power increase depends on the error of engine torque

prediction. In Fig. 3.14 the actual motor torques for three strategies are shown.

During 150s∼200s MPCSC tries to regulate motor torque cooperatively to help satisfy

the total power requirement.
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Figure 3.14: Comparison of electric motor torque for the three strategies
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Fig. 3.15 and Fig. 3.16 plot the SOC trajectories and accumulate fuel consump-

tions in the whole cycle. In order to compare fuel consumptions of three methods,

the SOCs at the beginning of driving cycle are all set to 0.6 and are tuned to be suffi-

ciently close at the end (2% difference). Fig. 3.16 indicates that fuel consumption of

MPCSC is the lowest one even it has more charge in the battery than the other two.

This fuel economy improvement reveals the benefits from a transient engine model

used in prediction and proper optimal torque split strategy incorporating with this

model. Fuel consumption difference between MPCSC and MBSC verifies the strong

potential of transient engine model, especially in rapid acceleration where total power

requirement is high. It is also not exaggerate to expect that the benefits will be more

significant if more rapid speed changing occurs in driving cycle.

0 200 400 600 800 1000 1200 1400

time(s)

0.5

0.52

0.54

0.56

0.58

0.6

0.62

S
O

C

MPCSC

RBSC

MBSC

1290 1300 1310 1320 133013401350 1360 1370

0.565

0.57

0.575

0.58

0.585

0.59

0.595

0.6 0.5975

0.5847

0.5932

Figure 3.15: Comparison of SOC trajectory for three strategies

76



Ph.D. Thesis - Yi Huo McMaster - Mechanical Engineering

time(s)
0 200 400 600 800 1000 1200 1400

F
ue

l c
on

su
m

pt
io

n(
kg

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
MPCSC
RBSC
MBSC
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3.5 Conclusions

A hybrid powertrain system with a turbocharged diesel engine is studied in this

paper. A fairly calibrated engine transient model is built in order to simulate air

path dynamics and engine torque response during the altering of operating condi-

tion. Then model predictive control based strategy considering the transient model

is developed for solving energy management problem and reducing fuel consumption.

Three different strategies, namely rule-based strategy without explicit optimization,

instantaneous optimal control using map-based engine model and MPC based optimal

strategy considering transient engine model, are compared by implementing them in

UDDS cycle with the same engine on/off and gear shift strategies. Results shows the

third method has the best fuel economy without compromising vehicle performance.
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A considerable fuel (about 6%) of this strategy is saved by comparing it to the second

one. Even almost 30% fuel consumption is reduced from the first method. Clearly, the

properly designed optimal control strategy and transient engine model contributes to

this improvement.
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Symbol II

PID are defined in the Symbol I as coefficients that directly multiplies the speed

error, and the integral, derivative of speed error. The calculated products should

multiply vehicle mass before they are used in the simulation.

awg coefficients of wastegate model 0.6857

bwg coefficients of wastegate model 3.5811

cpa specific heat capacity of air,constant pressure 1007 J/(kg-K)

cpe specific heat capacity of exhaust gas,constant pressure 1250 J/(kg-K)

g gravitational acceleration 9.8 m/s2

ig transmission gear ratio

if final drive ratio 3.2

ṁf fuel flow rate

mveh vehicle mass 1900 kg

ṁc,correct corrected mass flows of compressor

ṁt,correct corrected mass flows of turbine

ṁc mass flow rate through compressor in map

ṁt mass flow rate through turbine in map

ṁc,act actual mass flows of compressor

ṁt,act actual mass flow of turbine

ṁcyl cylinder air flow rate

ṁwg air mass flow rate through wastegate

u road friction coefficient 0.015

uf fuel injection mass

uf,min minimum fuel injection mass 0 mg/cycle
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uf,max maximum fuel injection mass 60 mg/cycle

uwg wastegate diameter

uwg,min minimum wastegate diameter 0 mm

uwg,max maximum wastegate diameter

Awg maximum effective area of wastegate orifice 706.85 mm2

Afront effective area of air drag force 2 m2

AFR∗ stoichiometric air fuel ratio 15

Cdrag drag coefficient 0.32

Fd traction force

Jwheel single wheel inertia 1.25 kg-m2

Jt turbocharger inertia 7e-5 kg-m2

Ne engine speed RPM

Nt turbine speed RPM

Pm output mechanical power of motor

Pele input electrical power of motor

Pin intake manifold pressure

Pex exhaust manifold pressure

Pc,ref reference pressure for compressor 96 kpa

Pt,ref reference pressure for turbine 101 kpa

Pc,inlet actual inlet pressure of compressor

Pt,inlet actual inlet pressure of turbine

Qbatt capacity of battery 6.5 A-h

Rtire tire radius 0.3 m

Ra gas constants of ambient air 287 J/kg-K
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Re gas constants of exhaust gas 287 J/kg-K

SOC battery state of charge

SOCini initial battery state of charge 0.6

Tin intake manifold temperature

Tex exhaust manifold temperature

Tc,ref reference temperature for compressor 302 K

Tt,ref reference temperature for turbine 873 K

Treq total requested torque

Te engine output torque

Tm motor output torque

Tm,max motor maximum torque limit

Tm,min motor minimum torque limit

V vehicle speed

Voc open circuit voltage

Vd displacement of one working cycle 0.0014 m3

Vin volume of intake manifold 0.005 m3

Vex volume of exhaust manifold 0.0008 m3

Wt the gas power to drive turbine

Wc the consumed power on compressor

η motor efficiency

ηc compressor efficiency

ηt turbine efficiency

ηvol relative volumetric efficiency 0.98

γa specific heat capacity ratio of air 1.4
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γe specific heat capacity ratio of exhaust gas 1.289

µ penalty of SOC change in cost function 2806 g/h

ρair air density 1.225 kg/m3

ωt turbine speed rad/s

ωreq requested speed rad/s

PID PID controller parameters in driver model P=1,I=0.1,D=0
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Chapter 4

ACLMPC-based HEV energy

management
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the paper.

Abstract

As an essential problem for a hybrid electric vehicle (HEV), the powertrain energy

management has been studied extensively to reduce HEV fuel consumption. Model

predictive control (MPC) has been proved to be a promising solution for this prob-

lem by formulating its performance index as the powertrain energy cost. The control

horizon selection in MPC is crucial for its performance. Most of previous research

work that adopts MPC in HEV energy management problems, obtains the control

action by solving an optimal control problem in multi–step prediction horizon and

applying the first element of the derived control sequence. In fact, the large imple-

mented control step may lead to poorer control performance, because of the error

accumulation. However, it can also reduce the total computational load of MPC

since the number of prediction stage is decreased. To balance the needs of two issues,

this paper proposed a novel learning mechanism to adaptively select control horizon

according to its previous performance. The proposed mechanism was utilized for

a turbocharged–engine–incorporated HEV powertrain, considering engine transients.

With an automatic control–step regulator, the proposed method demonstrated a sim-

ilar performance with the best constant control step, and meanwhile largely reduced

the computational load. To test the robustness of the proposed method, a mean–

squared deviation was introduced to show the control performance changes associated
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with driving–cycle variants. The effectiveness of the proposed control strategy was

verified through simulations in a GT–SUITE/Simulink platform.

Kewwords: Hybrid electric vehicle, energy management, model predic-

tive control, control step learning, turbocharger, optimal control

4.1 Introduction

Hybrid electric vehicles (HEVs) comprise two energy sources in their powertrain

systems, which are internal combustion engine (ICEs) and electric motors (EMs).

Comparing to conventional vehicles where engines are the only power source, HEVs

provide a new degree of freedom for delivering requested power, that is, the total

power for driving the vehicle can be realized by either one of the power sources or

their combination [1] [2]. Therefore, the problem of properly distributing the power

demands for ICE and EMs is significant in HEV powertrain control. It is referred

as energy management strategy (EMS) or supervisory control (SC), which has been

studied extensively over the past two decades [3–9].

Driver 
demand

Reference 
vehicle speed

Actual 
vehicle speed

Required 
Power Energy management,

 or supervisory control

ICE 
control

EM 
control

ICE 
command

EM 
command

ICE control 
signals

EM control 
signals

Low levelHigh level 

Figure 4.1: A HEV powertrain control structure.
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Fig. 4.1 depicts a classic two-level control scheme for HEVs. The low-level con-

troller aims to fulfill drivers demand for speed tracking. The torque or speed com-

mands of ICE and EM generated from the high-level controller are fed into the low

level as references. The low-level control law is designed to make the actual torque

or speed converge to their references [11]. To solve this problem, some work [12–15]

involves various techniques of disturbance rejection in consideration of stability and

robustness. The high-level controller deals with the energy management problem. It

receives information from ICE and EM characteristics, driving cycle and actual vehi-

cle speed, and derives setpoints for ICE and EMs in a way that the fuel consumption

in the whole driving cycle is minimized and the vehicle speed profile is fairly tracked

concurrently. Some solutions for energy management problems are mainly based

on optimal control theories and can be classified into dynamic programing (DP),

equivalent consumption management strategy (ECMS) and Pontryagin minimization

principle (PMP) [16–19].

Model predictive control (MPC) has established itself as a promising solution for

multi-input-multi-output (MIMO) system control problems. Its application in HEV

energy management problems can be found in [10, 21–23]. In conventional HEV

EMSs, ICE is normally modeled by an efficiency map with regard to the torque and

speed. It implies that the transient characteristics of the engine are not involved in the

high-level controller and the generated optimal setpoints is based on quasi–steady–

state assumption. Then, the transient behavior at the current time can influence the

decision of EMS in the future because the engine operating point might not be realized

on time as expected. Our previous work [20] has addressed this issue for a HEV

powertrain with a turbocharged diesel engine. A detailed engine model including
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the air path dynamics was incorporated into an online HEV energy management

strategy, and a model predictive control (MPC) structure was adopted to solve it.

Some comparative results have shown that the proposed method considerably reduces

fuel consumption.

In MPC implementations, some parameters, such as the prediction and control

horizons, weights on outputs and inputs, etc., need to be properly determined to ob-

tain the desired control performance. A few heuristic off–line tuning methods have

been provided for dynamic matrix control (DMC) based on the approximation or

simulation of the system delay time, either by giving explicit formulas for various pa-

rameters [24,25] or their bounds [26]. A comprehensive review about MPC controller

tuning strategies can be found in [27]. Some more recent work proposed automatic

tuning strategies, in which parameters are updated along with the optimization al-

gorithm instead of human experience [28–31]. For example, paper [29] combined a

genetic algorithm with fuzzy decision–making to automate the process of trail–and–

error, and determine the parameters that best matched the desired results. In [30],

Ashraf et al. proposed an on–line parameter tuning method for linear MPC, by ob-

taining analytical expressions for the sensitivity of the closed–loop MPC response

with respect to input and output weight. Those strategies facilitate the use of MPC

controller by avoiding tedious procedures of manually regulating coefficients. Though

some heuristic or optimization approaches have been presented to select the step of

prediction and control horizon [27], the on–line self–tuning algorithm of those is not

a widely reported topic in the literature.

The prediction and control step are directly related to the stability and robustness

of MPC. Moreover, they can also significantly influence the computational load of
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implementing MPC, especially for the nonlinear, MIMO problems which are normally

solved by complex mathematical programming approaches [34]. For one thing, a

larger prediction step leads to better system stability but increases the time of each

prediction and the whole process. For another, implementing more control steps can

decrease the occurrence of prediction to complete the process and the total computing

time, however, at a risk of compromising the stability. Therefore, for a finite receding

process as in MPC, if the predictive model is accurate enough in some portion of the

process, the control step can be set large, but no larger than the prediction step, to

reduce the total computing time; meanwhile, if the model error and disturbance is

large in some portion, the control step should be reduced to avoid stability problems.

Motivated by aforementioned discussions, this paper proposes an adaptive control–

step learning MPC (ACLMPC) to make a trade–off between the concerns of the MPC

stability and computational load. The prediction step is still determined in an intu-

itive manner according to the simulation results. The major contribution lies on the

adaptive selection of the control step by considering both the control performance and

computational cost. The principle of ACLMPC is that, a “Confidence” function was

employed to evaluate the dependability of predicted control inputs based on previ-

ous control performance before entering into the next prediction stage. Then, another

cost function minimized a cost combining weighted computing time and “Confidence”

to find the best control step for future actions. The proposed controller was applied

to solve the energy management problem in a HEV powertrain with a turbocharged

diesel engine.

This paper is organized as follows: Section II briefly introduces models of the
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studied HEV powertrain; Section III formulates the nonlinear model predictive con-

trol problem without considering the control step regulation; Section IV presents the

details of ACLMPC method; Section V shows GT–Suite–Simulink co–simulation re-

sults for ACLMPC and discusses its major advantages; Section VI demonstrates the

adaptability of the proposed method to the variation of driving cycle; Section VII

draws conclusions.

4.2 HEV modeling

Fig. 4.2 shows a parallel hybrid powertrain topology with an electric motor being

placed between a clutch and a transmission. A turbocharged diesel engine is involved

as another power source. The turbocharger is waste–gate controlled.
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Figure 4.2: The studied parallel HEV powertrain structure.
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4.2.1 Vehicle model

This paper adopts a longitudinal dynamic model for the vehicle described by

Newtons second law in equation 4.1. Fd is the traction force. The drag force includes

friction resistance, air drag force and grade resistance. g is gravitational constant.

rf is road friction coefficient. Cdrag is air drag coefficient. ρair is air density, Afront

is the effective area of air drag force. Rtire is the dynamic tire radius when the

vehicle is moving. mvehis the vehicle mass. mtire is the equivalent mass of rotational

components.

(mveh +mtire)
dV

dt
= Fd − (mvehgrf +

1

2
CdragρairV

2Afront +mvehg sin θ) (4.1)

The inertias of Transmission, Differential and other drive shafts are lumped into

vehicle inertia. Thus, the torque on wheels is the product of transmission input

torque, gear ratio and final drive ratio.

4.2.2 Electric motor model

This paper adopts an efficiency-map-based model for electric motor. The motor

output torque is assumed to be capable of instantly responding to its demand. Equa-

tion 4.2 describes the EM model [32]. Pm, Tm, ωm are motor output power, torque

and speed. Pele is the consumed electric power. ηm is motor efficiency. Tm has upper

and lower bounds related to motor speed.

Pele =
Pm

η
sign(Tm)
m

=
Tmωm

η
sign(Tm)
m

(4.2)
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4.2.3 Battery model

An equivalent resistance circuit is utilized in this paper to model the battery. The

circuit current I is calculated from equation 4.3. Voc is open circuit voltage. Rin

is internal resistance. Thus, the battery SOC is modeled as in equation 4.4, where

Qbatt is the battery capacity. The parameters of battery model are adopted from 2004

Toyota Prius battery pack [16].

I =
Voc −

√
V 2
oc − 4RinPele

2Rin

(4.3)

SȮC = − I

Qbatt

(4.4)

4.2.4 Engine model

The engine model includes air path dynamics associated with the turbocharger.

Three state variables, intake manifold pressure Pin, exhaust manifold pressure Pex

and turbine shaft speed ωt, are presented in equation 4.5. Here, Ra and Re are gas

constants of ambient air and exhaust gas; Vin and Vex are volumes of intake and

exhaust manifold; Kin, Kex are temperatures in intake and exhaust manifold. ṁc

and ṁt are mass flow rates through the compressor and turbine. ṁcyl and ṁf are air

and fuel mass flow rate into the cylinder. ṁwg is air mass flow rate through waste

gate. Wt and Wc are the input powers of turbocharger shaft from the turbine and

compressor, Jt is the shaft inertia. The details of the model, including the calculations

of above mass flows and engine torque can be found in Mean Value Models (MVMs)

proposed by [33]. Besides, the maximum torque at speed 1800∼4000RPM is restricted
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to 200Nm by controlling wastegate diameter at full load and the induced intake

manifold pressure at full load. The corresponding maximum wastegate diameters

at each engine speed setpoint are listed in Table 4.1. The major parameters of the

vehicle are listed in Table 4.2.

dPin
dt

=
RaKin

Vin
(ṁc − ṁcyl)

dPex
dt

=
ReKex

Vex
(ṁcyl + ṁf − ṁt − ṁwg)

dωt
dt

=
(Wt −Wc)

Jtωt

(4.5)

Table 4.1: Maximum wastegate diameters at each engine speed setpoint

Engine RPM Wastegate Diameter (mm)

1000 0

1400 0

1800 0

2000 5.1887

2200 7.2782

2500 9.3180

2800 11.1503

3000 12.1713

3200 12.9709

3500 13.9679

4000 14.9245

96



Ph.D. Thesis - Yi Huo McMaster - Mechanical Engineering

Table 4.2: Major model parameters of the studied HEV

Parameters Values

Vehicle

Vehicle mass (kg) 1900

Frontal area (m2) 2

Air drag coefficient 0.32

Tire dynamic radius (m) 0.3

Road friction coefficient 0.015

Engine
Displacement (L) 1.4

Maximum torque (N-m) 200@1800-4000RPM

Electric motor
Motor maximum torque (N-m) 400

Motor maximum power (Kw) 50

Battery Capacity (A-h) 6.5

Transmission
Gear ratio 2.125/1.25/1/0.72

Final drive ratio 3.2

4.3 Problem formation

The aim of the energy management strategy is to optimize the fuel consumption in

a given driving cycle, and meanwhile to satisfy other requirements, including tracking

reference vehicle speed profile, SOC charge sustaining, physical constraints of power

components, system dynamics constraints, etc.. Due to the existence of a clutch

and a fixed–gear transmission, engine power and motor power are supposed to be

decoupled by disengaging clutch in the stages of vehicle start–up and gear shifting.
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To simplify the problem, EMS is not activated in these situations and the control in

the couple–decouple transition periods is not in the scope of this paper.

System dynamics

Combining battery SOC dynamics and engine air path dynamics, a four-state-

three-input nonlinear system is formed in equation 4.6. Here, [Pin, Pex, ωt, SOC] is

the state vector representing intake manifold pressure, exhaust manifold pressure,

turbine speed and SOC respectively. [uf , uwg, Tm] is the input vector representing

fuel injection mass, wastegate diameter and motor torque. [Ne, Treq] is the exogenous

parameter vector representing engine speed and total requested torque. f1, f2, f3 are

functions of air path dynamics equivalent to equation 4.5. f4 is the SOC dynamics

equivalent to equation 4.4.



ẋ1 = f1 (Pin, ωt, Ne, Treq)

ẋ2 = f2 (Pin, Pex, ωt, uf , uwg, Ne, Treq)

ẋ3 = f3 (Pin, Pex, ωt, Ne, Treq)

ẋ4 = f4 (SOC, Tm)

(4.6)

Path constraints

The path constraints are equality and inequality mixed functions of state and

control variables, which are applied on part of optimization horizon [34]. There are

two path constraints involved in this study. Equation 4.7 describes that the sum

torque of engine and motor should meet the torque requested from the driver in

order to satisfy the requirement of vehicle speed tracking. Equation 4.8 illustrates the

relationship between fuel injection mass and intake manifold pressure as a consequence

of air–fuel–ratio(AFR) control. The calculation of uf,max is presented in equation 4.9.
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Te(uf , ωe) + Tm = Treq (4.7)

uf ≤ uf,max(Pin) (4.8)

Vd is engine displacement, ηvol is the relative volumetric efficiency, and Tamb is the

ambient temperature. AFR∗ is the lower bound of air–fuel ratio, which is set to 15

in this paper.

uf,max =
1

4× 10−6

VdPinηvol
AFR∗TambRa

(4.9)

Physical constraints

The state and control variables all have their physical limits, which are described

in equation 4.10. X = [Pin, Pex, ωt, SOC], U = [uf , uwg, Tm]. These bounds are set

to reasonable constants.

Xmin ≤X ≤Xmax

Umin ≤ U ≤ Umax

(4.10)

MPC-based EMS formation

When the clutch is engaged and the acceleration demand occurs, the MPC-based

EMS is active. The energy consumption in a prediction horizon is minimized by

equation 4.11. It consists of both total costs from fuel and electrical path. Coeffi-

cient µ is the weighting factor between them. P is the length of prediction horizon.

The minimization is constrained by system dynamic, path constraints and physical

constraints.

J(k) =
P∑
i=0

ṁf (tk + i)∆t+ µ(SOC(tk + P )− SOC(tk)) (4.11)
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The exogenous input Treq is predicted by equation 4.12 inside the MPC based

supervisory controller, except for the first step of prediction where Treq is provided by

the PID controller. Engine speed and all states are assumed to be measurable. Vref

is the reference vehicle speed. ig and if are the gear ratio and final drive ratio.

Treq =
Rtire

igif
(mveh +mtire)

dVref
dt

+ (mvehgrf +
1

2
CdragρairV

2
refAfront +mvehg sin θ)

(4.12)

TEC = Fuelcons(T ) + λ(SOC(T )− SOC(0)) (4.13)

Since a constrained, highly nonlinear optimal control problem should be solved

in the supervisory controller, dynamic programming is found to be the most reli-

able solution based on our research. A forward DP algorithm is implemented and

demonstrated in Appendix B. Some preliminary results have been presented in our

previous work [20] to prove the effectiveness of fuel saving for the MPC based EMS.

Its primary advantage is the ability of predicting the cylinder air charge and engine

torque in transients.

In addition, a total equivalent consumption (TEC) is defined in equation 4.13 to

compare different results in Section V. tf indicates the end time of driving mission.

λ is the conversion factor which has the same value and unit as µ in equation 4.11.

4.4 Adaptive control–step learning MPC

In MPC algorithms, a few steps of inputs are implemented after calculating the

best control sequence in a prediction horizon. Then, the process moves forward by
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the executed control inputs and repeats the prediction until the process is completed.

For example, in Fig. 4.3, the prediction steps of Case 1 and 2 are all set to 3 and their

control steps are 3 and 2 respectively. Assuming the length of the process is 6 steps,

Case 2 needs to conduct 3 times of prediction, but Case 1 only needs twice. In other

words, Case 1 consumes one third less computational resource than Case 2. Following

this idea, the computational cost costcal can be parameterized as in equation 4.14.

Na is the approximate total length of the process and Sc is the control step.

costcal =
Na

Sc
(4.14)

1 2 3 4 5 60 7

Case 1, control step =3
Case 2, control step =2

Prediction step

Control  step

P
re

d
ic

te
d

 v
al

u
e

Step

Figure 4.3: A diagram showing the effects of different control steps in the same

length of process

Another consideration in determining control step is originated from the evalua-

tion of confidence to the MPC controller. Since applying more control steps generated

from the prediction introduces more uncertainties, it may cause bigger mismatch be-

tween the actual and requested torque, and hence poorer speed tracking performance.
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In order to quantize this “confidence”, the actual vehicle speed in the next control

horizon should be estimated according to the information from the last control hori-

zon. The relationship between acceleration and requested torque are investigated

here. First, a generalized acceleration is defined in equation 4.15. Vact,old represents

the actual vehicle speed vector in the last control horizon and its dimension is Sc + 1.

Kold is the acceleration vector from the last control horizon.

Kold(j) =
Vact,old(j + 1)− Vact,old(j)

j + 1− j
, j = 1, ..., Sc (4.15)

Cmean =
Sc∑
i=1

C(i)/Sc

C(i) =
∣∣∣ Kold(j)
Treq,old(j)

∣∣∣ (4.16)

In equation 4.16, the vector of requested torque in the last horizon is stored in

Treq,old. Every element of vector C is the absolute value of corresponding ratio

between Kold(j) and Treq,old(j). Then, the mean value of C is calculated as Cmean.

Cmean is presumed to be constant in the two consecutive control horizons. Therefore,

in the next control horizon it can be used to predict the actual acceleration and speed

vectors, namely, Knew and Vact,new, based on the given new requested torque vector

Treq,new. The calculations are shown in equations 4.17 and 4.18.

Knew(i) = Treq,new(j) · Cmean (4.17)

Vact,new(j + 1) = Vact,new(j) + Knew(j) (4.18)
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The “Confidence” related to speed tracking performance is measured by Root-Mean-

Squared Error (RMSE) between actual speed Vact,new and reference speed Vref,new

shown in equation 4.19. High RMSE infers less confidence on the control inputs.

costconf =

√
(V T

act,new − V T
ref,new)(Vact,new − Vref,new)

dim(Vact,new)
(4.19)

To be noted, costconf is fundamentally a function of control step. The total cost

costsc, which is associated with the control step selection, is defined as the sum of

weighted costcal and costconf . Considering Na is also a constant, equation 4.20 is

formed. Here, Na is lumped into the weight γ on costconf . Since costcal yields a

dimensionless variable whose range is from 0 to 1, we can first normalize costconf by

dividing it with a measured costconf in a period of driving-cycle simulation. Then,

the two terms in equation 4.20 are quantified by the same magnitude, and it provides

convenience for choosing γ. According to Fig. 4.4, γ is finally set to 0.1 considering

both vehicle speed MSE and TEC.
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Figure 4.4: The effect of weighting factor γ on speed MSE and TEC in ACLMPC

103



Ph.D. Thesis - Yi Huo McMaster - Mechanical Engineering

costsc(Sc) =
1

Sc
+ γ · costconf (Sc) (4.20)

The proposed ACLMPC structure is illustrated in Fig. 4.5. Z−C represents the time

delay of one control horizon. Comparing to the regular MPC controller, ACLMPC

adds an adaptive control–step regulator that estimates the best control step at the

beginning of each prediction horizon.

Driver 
Model

MPC supervisory 
controller

Adaptive control 
step regulator

HEV plant
fu

wgu
mT

vehVActual vehicle speed

refV reqT

Measured states

Speed 
reference

Request 
torque

cS

control step

control inputs

refV

Z-C

Z-C

Figure 4.5: The scheme of ACLMPC

4.5 Results discussion for ACLMPC

First, the control performances of applying different prediction steps on the same

system and problem are compared in Table 4.3. One step represents one second in

the real world. The chosen prediction steps are integers ranging from 1 to 7, and

the control steps are all set to 1. The performance comparison of vehicle speed
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tracking, fuel consumption and SOC consumption is shown to empirically obtain the

best prediction step.

The values of fuel consumption and SOC at the end of driving cycle are listed

in column 3 and 4 of Table 4.3. We can see that the case whose prediction step

is 3 has the lowest TEC. Another indicator of control performance is vehicle speed

tracking. The mean squared errors (MSEs) between the reference and actual speed are

calculated. Their values are close since the Proportional–Integral–Derivative (PID)

parameters in driver model are identical for all seven cases. The same PID controller

can constantly regulate speed and maintain the similar error in each case, however,

the fuel and SOC consumption vary due to different prediction step. Considering

those performance indicators as a whole, this paper chooses 3 prediction step as an

“optimum”.

Table 4.3: MSEs of speed tracking, fuel consumption, SOC and TECs at the end of

driving cycle for different prediction steps

Prediction step MSE(km2/h2) Fuel consumption(kg) SOC TEC(kg)

1 2.0747 0.4735 0.5986 0.4738

2 2.0739 0.4708 0.5881 0.4737

3 2.0763 0.4735 0.5997 0.4736

4 2.0735 0.4736 0.5998 0.4737

5 2.0728 0.4721 0.5924 0.4739

6 2.0710 0.4730 0.5849 0.4766

7 2.0751 0.4732 0.5978 0.4737

The main advantage of ACLMPC is its ability of balancing the requirements of
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control accuracy and computational efficiency. In order to demonstrate the merits of

this method, three other cases with different constant control steps are also simulated

and compared with the proposed one. Other control parameters, such as PID in

driver model, factor µ in equation 4.11, etc, are identical in the four cases. The

prediction steps of them are set to 3 and control steps are 1, 2, 3 and adaptive.

Similarly, the trajectories of SOC, fuel consumption and speed tracking performance

etc. are considered as major performance indices and compared. In the legend of

figures in this section, “StepCtl” represents “control step” and “StepCtl Adaptive”

is the proposed ACLMPC.

Fig. 4.6 shows the SOC trajectories. Among the three cases with constant control

steps, the one with 3 control step is the worst case. It drains much more battery

energy than the other two and cannot maintain charge balance. “StepCtl=2” comes

at the second place and “StepCtl=1” is the best. Likewise, the fuel consumption

trajectories in Fig. 4.7 show the similar order from smallest to largest fuel consump-

tion. In Fig. 4.8, the sub–plot “Difference” of TECs gives a clearer picture of the

amount of total energy cost. This “Difference” is calculated by subtracting the TEC

of “StepCtl=1” from TECs of all cases. If the result is positive, it means that the

TEC of this case is more than “StepCtl=1”. Subsequently, the order of TECs, which

is “StepCtl=1”<“StepCtl=2”<“StepCtl=3”, validates our ideas that larger control

step could introduce more inferior fuel performance.
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Figure 4.6: Comparison of SOC trajectories for control step=1, 2, 3, Adaptive
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Figure 4.7: Comparison of fuel consumption at the end of driving cycle trajectories

for control step=1, 2, 3, Adaptive
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Figure 4.8: Total Equivalent Consumptions (TECs) for control step=1, 2, 3,

Adaptive
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3, Adaptive. “Speed error” is the difference between vehicle reference and actual

speed

For the fourth case, ACLMPC illustrates a close SOC and fuel consumption tra-

jectory compared to “StepCtl=1”. Its TEC is considerably better than “StepCtl=2”

and “StepCtl=3”, although not as good as “StepCtl=1”. Besides, the speed track-

ing performance in Fig. 4.9 shows that both “StepCtl=2” and “StepCtl=3” fails to

follow the reference vehicle speed in some portions of the driving cycle, i.e. during

150s∼180s and 570s∼590s. However, “StepCtl=Adaptive” demonstrates its decency

over the entire driving cycle. In case “StepCtl=Adaptive”, when the discrepancy

between the actual and reference speed is relatively small, the control step is set large

as shown in Fig. 4.10. Larger control step induces bigger accumulation of model

error and speed mismatch. Thus, the ACLMPC starts to reduce the control step and

maintain the speed tracking performance.

Meanwhile, larger mismatch also leads to higher total requested torque as shown in

Fig. 4.11, since the feedback control tends to compensate the mismatch by increasing

torque demand. Therefore, more energy should be consumed no matter how EMS
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distributes power demands of engine and motor. Sometimes the requested torque

rises incredibly and goes beyond the physical limit, such as 700Nm in 580∼585s for

“StepCtl=3”. Our proposed ACLMPC tactically avoids this kind of large mismatches

by properly regulating control step, and finally contributes to energy saving. The

detailed statistics of performance indices can be found in Table 4.4.

Table 4.4: Comparison of speed tracking MSEs, fuel consumptions, SOCs and TECs

at the end of driving cycle for “StepCtl 1”, “StepCtl 2”, “StepCtl 3”, “StepCtl

Adaptive”

Cases MSE(km2/h2) Fuel consumption(kg) SOC TEC(kg)

StepCtl 1 2.1064 0.4688 0.5997 0.4736

StepCtl 2 2.3316 0.4752 0.5402 0.4938

StepCtl 3 3.0459 0.4730 0.4377 0.5228

StepCtl Adaptive 2.1940 0.4750 0.5964 0.4757
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Figure 4.11: Total requested torque to drive vehicle for control step=1, 2, 3,

Adaptive

Evaluating the computing time of all energy management strategies is not easy,

because the measured time of simulation includes both the computing time of control

law and plant model. Here, we develop a reasonable, discrete method to analyze

the computational effort. Fig. 4.12 shows the sequences of applied control steps for

the four cases. Note that MPC supervisory controller is not always active due to

the parts of deceleration, low vehicle speed and gear shift in the driving cycle. The

control steps in those parts are arbitrarily set to “-1” to indicate that no prediction

process occurs. In fact, in those parts the duplicate, simple, computationally efficient

strategy is adopted to distribute requested torque in all four cases. We can see the

different switching points between the simple strategy and MPC strategy as a result

of different control–step selections. In addition, the computing time of the simple
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strategy in those parts is around 0.01 seconds for one control action on our computer

which has an Intel(R) Core(TM) i7–3770 CPU. The computing time for one 3–step

prediction in MPC based EMSs is 3.7 seconds according to the average test results.

The computing time of driving the plant model is nearly 2 seconds for 1 second in real

time. Thus, the time of the “fast”, simple strategy can be ignored when evaluating

the total time. Only the time of prediction in MPC algorithm counts.

Based on this idea, the numbers of incident of effective control steps (1, 2, or 3)

are obtained in Table 4.5. Each time of implementing those control steps associates

with a calculation of 3–step prediction. Therefore, the total time of implementing

control strategy can be approximated by the product of the number of predictions

and the computing time per prediction. From the 5th column of Table 4.5, we can

see that the case “StepCtl=1”, unsurprisingly, has the highest computational effort.

The burden of ACLMPC resembles the one with 2 control step and is almost only 1/2

of the one with 1 control step. The estimated time of implementing MPC is listed in

the 6th column of Table 4.5.
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Figure 4.12: Comparison of the control step selections for control step=1, 2, 3,

Adaptive

Table 4.5: Number of occurrence of different control steps existing in the four cases

StepCtl=1, 2, 3, Adaptive and their total number of prediction

Cases Number of

1 step

Number of

2 step

Number of

3 step

Number of

predictions

Estimated

comput-

ing time of

MPC(min)

StepCtl 1 384 0 0 384 23.68

StepCtl 2 0 197 0 197 12.15

StepCtl 3 0 0 117 117 7.22

StepCtl

Adaptive

65 74 69 208 12.83
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4.6 Adaptability test

Last section demonstrates the advantages of the proposed ACLMPC in both con-

trol performance and computational effort. This section aims to test its adaptability.

The adaptability defined in this paper is the strategy’s ability of not being affected

by the change of driving cycle. Three sets of vehicle speed profile are formulated to

serve this purpose. They are the original UDDS cycle, 105% and 95% speed of the

original UDDS cycle. Those speed profiles replace the one that is used for requested

torque prediction in equation 4.12, and all other control parameters related to energy

management remain the same. The reference speed for driver model is still the orig-

inal UDDS. In other words, the variation of driving cycle only affects the exogenous

variables in the energy management strategies. Because in this paper MPC strategies

integrate output feedback mechanism to be able to observe the requested torque at

each start of prediction, it is naturally inherited with some extent of adaptability. By

adding the new control–step regulator in ACLMPC, the adaptability can be improved

while maintaining relatively low computational burden.

Similarly, the aforementioned three sets of driving cycle are applied on “StepCtl

1”, “StepCtl 2”, “StepCtl 3” and “StepCtl Adaptive” cases, in which the prediction

steps are all 3. For each case, the MSEs of speed tracking and TECs are obtained in

Table 4.6. In order to show the difference of their adaptabilities, the mean-squared

deviation of performance indices in the perturbed UDDS cycles from those in the

original UDDS, are calculated. As shown in equation 4.21, MSDV2O represents the

mean squared deviation, Indi is any index for the perturbed driving cycle, and Indo

is any index for the original driving cycle. n is the number of total perturbed driving

cycles. MSDV2O implies the sensitivity of this method to the uncertainty of driving
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cycle. Larger MSDV2Os denotes higher sensitivity and hence lower adaptability.

MSDV 2O =
1

n

n∑
i=1

(Indi − Indo) (4.21)

Table 4.7 lists the calculated MSDV2Os for MSE of speed tracking and TEC in

the four cases. It is clearly observed that “StepCtl 1” has the lowest MSDV2O

by comparing both indices, which suggests its best adaptability to the variation of

driving cycle. It also shows that larger MSDV2O can be caused by elongating the

control horizon, meaning less robustness. The ACLMPC yields its MSDV2Os between

“StepCtl 1” and “StepCtl 2” and demonstrates a fairly competent adaptability.

4.7 Conclusion

In this paper, a novel MPC-based structure incorporating with an adaptive control–

step regulator has been adopted to solve an energy management problem for turbocharged-

diesel-engine HEV powertrain. The unitized engine model involves air path dynamics

of a turbocharger that can predict engine transient torque. Dynamic programing is

used to solve the induced optimal control problem in the prediction horizon. The

comparison of seven cases with different prediction steps is conducted to determine

that 3–step prediction has the best speed tracking and fuel performance. Then, the

proposed ACLMPC is designed and integrated into MPC structure. By comparing

it to the performances of constant control–step strategies, ACLMPC reveals a resem-

blance of fuel and SOC performances to the strategy with fixed 1 control step (the

best one), and meanwhile nearly halves its computational effort. The adaptability

test also shows an excellent adaptability of ACLMPC to the variation of driving cycle.
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Table 4.6: MSE of speed tracking, TEC for four cases “StepCtl 1”, “StepCtl 2”,

“StepCtl 3”, “StepCtl Adaptive”

Case
Speed no change Speed +5% Speed -%5

MSE TEC MSE TEC MSE TEC

StepCtl 1 2.1063 0.4736 2.1043 0.4724 2.1043 0.4724

StepCtl 2 2.3316 0.4938 2.3559 0.5012 2.2688 0.4938

StepCtl 3 3.0459 0.5228 2.9351 0.5187 3.0124 0.5159

StepCtl Adaptive 2.1958 0.4757 2.1697 0.4778 2.1596 0.4767

Table 4.7: Comparison of MSDV2O for four cases “StepCtl 1”, “StepCtl 2”,

“StepCtl 3”, “StepCtl Adaptive”

Case
MSDV2O

MSE TEC

StepCtl 1 2.64E-06 9.13E-7

StepCtl 2 1.51E-3 1.85E-5

StepCtl 3 4.46E-3 2.10E-5

StepCtl Adaptive 6.64E-4 1.83E-6

116



Reference

[1] Ali Emadi, Kaushik Rajashekara, Sheldon S Williamson, and Srdjan M Lukic.

Topological overview of hybrid electric and fuel cell vehicular power system ar-

chitectures and configurations. IEEE Transactions on Vehicular Technology,

54(3):763–770, 2005.

[2] CC Chan. An overview of electric vehicle technology. Proceedings of the IEEE,

81(9):1202–1213, 1993.

[3] Yalian Yang, Xiaosong Hu, Huanxin Pei, and Zhiyuan Peng. Comparison of

power-split and parallel hybrid powertrain architectures with a single electric

machine: dynamic programming approach. Applied Energy, 168:683–690, 2016.

[4] Zheng Chen, Bing Xia, Chenwen You, and Chunting Chris Mi. A novel energy

management method for series plug-in hybrid electric vehicles. Applied Energy,

145:172–179, 2015.

[5] Syuan-Yi Chen, Yi-Hsuan Hung, Chien-Hsun Wu, and Siang-Ting Huang. Op-

timal energy management of a hybrid electric powertrain system using improved

particle swarm optimization. Applied energy, 160:132–145, 2015.

117



Ph.D. Thesis - Yi Huo McMaster - Mechanical Engineering

[6] Chan-Chiao Lin, Huei Peng, Jessy W Grizzle, and Jun-Mo Kang. Power manage-

ment strategy for a parallel hybrid electric truck. IEEE transactions on control

systems technology, 11(6):839–849, 2003.

[7] Sebastien Delprat, Jimmy Lauber, Thierry-Marie Guerra, and Janette Rimaux.

Control of a parallel hybrid powertrain: optimal control. IEEE transactions on

Vehicular Technology, 53(3):872–881, 2004.

[8] Antonio Sciarretta and Lino Guzzella. Control of hybrid electric vehicles. IEEE

Control systems, 27(2):60–70, 2007.

[9] Lorenzo Serrao, Simona Onori, and Giorgio Rizzoni. A comparative analysis of

energy management strategies for hybrid electric vehicles. Journal of Dynamic

Systems, Measurement, and Control, 133(3):031012, 2011.

[10] Fengjun Yan, Junmin Wang, and Kaisheng Huang. Hybrid electric vehicle model

predictive control torque-split strategy incorporating engine transient character-

istics. IEEE transactions on vehicular technology, 61(6):2458–2467, 2012.

[11] Farzad Rajaei Salmasi. Control strategies for hybrid electric vehicles: Evolution,

classification, comparison, and future trends. IEEE Transactions on vehicular

technology, 56(5):2393–2404, 2007.

[12] Stefano Di Cairano, Diana Yanakiev, Alberto Bemporad, Ilya V Kolmanovsky,

and Davor Hrovat. An mpc design flow for automotive control and applications

to idle speed regulation. In Decision and Control, 2008. CDC 2008. 47th IEEE

Conference on, pages 5686–5691. IEEE, 2008.

118



Ph.D. Thesis - Yi Huo McMaster - Mechanical Engineering

[13] Chuan Hu, Rongrong Wang, Fengjun Yan, Yanjun Huang, Hong Wang, and

Chongfeng Wei. Differential steering based yaw stabilization using ismc for in-

dependently actuated electric vehicles. IEEE Transactions on Intelligent Trans-

portation Systems, 19(2):627–638, 2018.

[14] Rongrong Wang, Hui Zhang, and Junmin Wang. Linear parameter-varying con-

troller design for four-wheel independently actuated electric ground vehicles with

active steering systems. IEEE Transactions on Control Systems Technology,

22(4):1281–1296, 2014.

[15] Rongrong Wang and Junmin Wang. Actuator-redundancy-based fault diagnosis

for four-wheel independently actuated electric vehicles. IEEE Transactions on

Intelligent Transportation Systems, 15(1):239–249, 2014.

[16] Rui Wang and Srdjan M Lukic. Dynamic programming technique in hybrid

electric vehicle optimization. In Electric Vehicle Conference (IEVC), 2012 IEEE

International, pages 1–8. IEEE, 2012.

[17] Cristian Musardo, Giorgio Rizzoni, Yann Guezennec, and Benedetto Staccia.

A-ecms: An adaptive algorithm for hybrid electric vehicle energy management.

European Journal of Control, 11(4-5):509–524, 2005.

[18] Namwook Kim, Sukwon Cha, and Huei Peng. Optimal control of hybrid elec-

tric vehicles based on pontryagin’s minimum principle. IEEE Transactions on

Control Systems Technology, 19(5):1279–1287, 2011.

119



Ph.D. Thesis - Yi Huo McMaster - Mechanical Engineering

[19] Roberto Mura, Vadim Utkin, and Simona Onori. Energy management design

in hybrid electric vehicles: a novel optimality and stability framework. IEEE

Transactions on Control Systems Technology, 23(4):1307–1322, 2015.

[20] Yi Huo and Fengjun Yan. A predictive energy management strategy for hy-

brid electric powertrain with a turbocharged diesel engine. Journal of Dynamic

Systems, Measurement, and Control, 2018.

[21] Michiel Koot, John TBA Kessels, Bram De Jager, WPMH Heemels, PPJ Van den

Bosch, and Maarten Steinbuch. Energy management strategies for vehicular

electric power systems. IEEE transactions on vehicular technology, 54(3):771–

782, 2005.

[22] Hoseinali Borhan, Ardalan Vahidi, Anthony M Phillips, Ming L Kuang, Ilya V

Kolmanovsky, and Stefano Di Cairano. Mpc-based energy management of a

power-split hybrid electric vehicle. IEEE Transactions on Control Systems Tech-

nology, 20(3):593–603, 2012.

[23] Saida Kermani, Sebastien Delprat, Thierry-Marie Guerra, Rochdi Trigui, and

Bruno Jeanneret. Predictive energy management for hybrid vehicle. Control

Engineering Practice, 20(4):408–420, 2012.

[24] Rahul Shridhar and Douglas J Cooper. A tuning strategy for unconstrained mul-

tivariable model predictive control. Industrial & engineering chemistry research,

37(10):4003–4016, 1998.

120



Ph.D. Thesis - Yi Huo McMaster - Mechanical Engineering

[25] Ralph F Hinde Jr and Douglas J Cooper. A pattern-based approach to exci-

tation diagnostics for adaptive process control. Chemical engineering science,

49(9):1403–1415, 1994.

[26] Jorge Otávio Trierweiler and Luciano André Farina. Rpn tuning strategy for
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Symbol III

PID are defined in the Symbol III as coefficients that directly multiplies the speed

error, and the integral, derivative of speed error. The calculated products should

multiply vehicle mass before they are used in the simulation. More model-related

parameters are referred to Symbol II.

g gravitational acceleration 9.8 m/s2

ig transmission gear ratio

if final drive ratio 3.2

ṁf fuel flow rate

mveh vehicle mass 1900 kg

ṁc mass flow rate through compressor in map

ṁt mass flow rate through turbine in map

ṁcyl cylinder air flow rate

ṁwg air mass flow rate through wastegate

n total number of original and perturbed driving cycles

rf road friction coefficient 0.015

uf fuel injection mass

uf,min minimum fuel injection mass 0 mg/cycle

uf,max maximum fuel injection mass 60 mg/cycle

uwg wastegate diameter

uwg,min minimum wastegate diameter 0 mm

uwg,max maximum wastegate diameter

Afront effective area of air drag force 2 m2

AFR∗ stoichiometric air fuel ratio 15
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Cdrag drag coefficient 0.32

Cmean mean value of absolute ratios between acceleration and

torque vector

Costcal the cost related to computational load

Costconf the cost related to speed tracking performance

Fd traction force

Indi indices from perturbed driving cycles

Indo index from original driving cycle

Jt turbocharger inertia 7e-5 kg-m2

Kin intake manifold temperature

Kex exhaust manifold temperature

MSDV 2O mean squared deviation of index from original to per-

turbed driving cycle

Na approximate total length of the process

Ne engine speed RPM

Nt turbine speed RPM

P the length of prediction horizon 3 step(1 step for

1 second)

Pm output mechanical power of motor

Pele input electrical power of motor

Pin intake manifold pressure

Pex exhaust manifold pressure

Qbatt capacity of battery 6.5 A-h

Rin battery internal resistance
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Sc control step

SOC battery state of charge

Treq total requested torque

Te engine output torque

Tm motor output torque

V vehicle speed

Voc open circuit voltage

Vin volume of intake manifold 0.005 m3

Vex volume of exhaust manifold 0.0008 m3

Vref vehicle reference speed

Wt the gas power to drive turbine

Wc the consumed power on compressor

γ weight on the cost related to speed tracking performance 0.1

ηm motor efficiency

λ conversion factor of SOC 3003 g/h

µ penalty of SOC change in cost function

ρair air density 1.225 kg/m3

ωt turbine speed rad/s

PID PID controller parameters in driver model P=1,I=0.1,D=0
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Chapter 5

Linearization methods in

MPC-based energy management

strategy

This chapter is part of the thesis that involves neither published nor submitted

papers.

Since the computational effort is a big restriction to implement nonlinear MPC

algorithms in real-time control, this chapter proposes linearization to convert the

nonlinear problem in Chapter 3 into a linear programming (LP) problem.

5.1 Analytical model of HEV powetrain

The HEV models used in this chapter are basically the same as in Chapter 3. In

order to conduct linearization, all the models need to be built as analytical expres-

sions. Vehicle and battery model are already obtained in the right form as discussed
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in previous chapters. However, the engine and electric motor model does not because

part of these models are map-based. Thus, fitting methods should be adopted to

obtain equation-based models.

5.1.1 Vehicle model

Referred to Section 3.2.1. The parameters of vehicle model are also the same.

5.1.2 Battery model

Referred to Section 3.2.3. The parameters of battery model are also the same.

5.1.3 Analytical models for engine

The turbine and compressor maps in the studied engine model describe the char-

acteristics of turbocharger by turbine speed, mass flows and pressure ratios, and effi-

ciencies of them. It is usually difficult to thoroughly reflect these characteristics with

simple fitting equations, such as polynomial equations. Paper [1] suggests a lumped

model using dimensionless variables to represent turbine and compressor maps. It

shows fairly robust fitting performance for various turbochargers and the parameters

used in the fitting equations are easy to adjust.

Compressor map fitting

Firstly, this section introduces two dimensionless variables Ψc and Φc to charac-

terize the compressor map, which are named as pressure ratio related and mass flow

related coefficients respectively. They are defined in Equ. 5.1 and 5.2. Cpa is the

specific heat capacity of air at constant pressure, Rc is the radius of compressor. Πc
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is defined in Equ. 5.3 as the pressure ratio between the outlet and inlet of compressor.

ωt is the rotational speed of turbine shaft. γa is the specific heat ratio for air. Ra is

the gas constant of air. Tamb and Pamb are ambient temperature and pressure.

Ψc =
2CpaTamb(Π

1−1/γa
c − 1)

R2
cω

2
t

(5.1)

Φc =
ṁcRaTamb/pamb

πR3
cωt

(5.2)

Πc =
Pin
Pamb

(5.3)

(
Φc

kc1

)2

+

(
Ψc

kc2

)2

= 1 (5.4)

The relationship of two dimensionless variables are defined in Equ. 5.4. kc1 and kc2

are tuning coefficients of the “ellipse” model. The data sets of mass flow, pressure

ratio and turbine speed in the original compressor map are used to find the two

dimensionless variables, kc1 and kc2, by applying Nonlinear Regression approaches

[2, 3] on the fitting problem. Fig. 5.1 shows the comparative results of Ψc, Φc curves

between fitted model and raw data. The dimensionless variables associated with the

raw data are plotted at each constant turbine shaft speed.
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Figure 5.1: Comparison of Ψc VS Φc curves at different turbine speeds and the

fitted ellipse model for compressor map

Compared to the original compressor map in Fig. 3.4, one obvious advantage of

this model is that the influence of turbine speed is largely attenuated and multiple

constant speed lines nearly converge to one line in Ψc-Φc domain.

Compressor efficiency can also be modeled as ellipses in Equ. 5.5. Q is a 2-

by-2 positive semidefinite matrix, whose elements are obtained as Q11 = 82.3203,

Q12 = −3.0897, Q21 = −3.0897, Q22 = 0.1563. ηc,max is the maximum compressor

efficiency according to the raw data. The fitting error is shown in Fig. 5.2, which is

defined as the relative error by Fitted value−Real value
Real value

.

ηc = ηc,max −XTQX (5.5)
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X =

 ṁc − ṁc,max

Πc − Πc,max

 (5.6)
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Figure 5.2: Relative error between raw data and fitted data for compressor efficiency

using ellipse model
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Figure 5.3: Comparison of mass flow VS pressure ratios curves at different turbine

speeds and fitted model for turbine map
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Turbine map fitting

The analytical model of turbine is, however, simpler. Because the constant speed

lines in turbine map are close enough, it is straightforward to implement curve fitting

in mass flow and pressure ratio domain. Generally, the model for this purpose is

defined in Equ. 5.7. kt1 and kt2 are parameters to be fitted. Fig. 5.3 shows the

results of fitting performance.

ṁt = kt1

√
1− (

Pamb
Pex

)
kt2

(5.7)

Turbine efficiency depends on the blade speed ratio (BSR) according to Equ. 5.8.

BSR is defined as turbine blade tip speed divided by gas speed at the given turbine

pressure ratio Πt. BSR is described by Equ. 5.9. Rt is the radius of turbine blade. cpe

is specific heat capacity of exhaust gas at constant pressure. ct,eff is the coefficient

according to mechanical losses. After careful curve fitting, ct,eff is obtained as 0.0019

and BSRopt is 2.6785. The fitting error is shown in Fig. 5.4.

ηt = ηt,max − ct,eff (BSR−BSRopt)
2 (5.8)

BSR =
Rtωt√

2cpeTex(1− Π
1−1/γe
t )

(5.9)
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Figure 5.4: Relative error between raw data and fitted data for turbine efficiency

using ellipse model

Engine torque map fitting

The original engine torque map is a 2-D map with regard to fuel injection mass and

engine speed. At a constant engine speed, there is a linear relationship between fuel in-

jection and engine torque , and it is described in Equ. 5.10. i is the index of each speed

point on the map included in the set [1000,1100,1200,1300,1400,1500,1600,1700,1800,

2000,2200, 2500,2800,3000,3200, 3500]. For the speeds between two consecutive set-

points, linear interpolation is utilized to calculate corespondent coefficients, which is

shown in Equ. 5.11. kuf and buf are calculated slope and bias for the given engine

speed Ne. kuf,i and buf,i, kuf,i+1 and buf,i+1 are those for the two speed set points Ni,

132



Ph.D. Thesis - Yi Huo McMaster - Mechanical Engineering

Ni+1, which Ne is in between.

Te,i = kuf,iuf + buf,i i = 1, 2, ..., 16 (5.10)

kuf =
kuf,i − kuf,i+1

Ni −Ni+1

(Ne −Ni+1) + kuf,i+1

buf =
buf,i − buf,i+1

Ni −Ni+1

(Ne −Ni+1) + buf,i+1

(5.11)

Te = kuf (Ne)uf + buf (Ne) (5.12)

Then, with new coefficients the modeled torque is evaluated by Equ. 5.12 in which

kuf and buf are related to engine speed. Note that fuel injection mass uf should also

be limited by Equ. 3.18 as explained in Chapter 3.

5.1.4 Electric motor efficiency map fitting

The only “non-equation” part in electric motor model is its efficiency map. Thus,

motor efficiency is fitted by a polynomial function with regard to speed and torque.

The function is formulated as y = a1Nm + a2Tm + a3 and the parameters a1 =

5.56e − 06, a2 = 1.87e − 04, a3 = 0.87. The fitting performance is demonstrated in

Fig. 5.5. Relative error is also defined as Fitted value−Real value
Real value

.
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Figure 5.5: Comparison of fitted points and raw data points for motor efficiency

5.2 Linear MPC problem formation

5.2.1 Linearization and discretization

The problem stated in Section 3.3 from Equ. 3.19 to 3.28 is a constrained nonlinear

programming problem. All the state and constraint equations should be linearized in

order to simplify the problem. The four states are divided into two groups representing

the states of system 1 and system 2. They are marked as x1 := [Pin, Pex, Nt] and x2 :=

SOC. The corresponding control variables for the two groups are u1 := [uf , uwg] and

u2 := Tm respectively. The state equations are only denoted by symbols f1 and f2 for

convenience, which are shown in Equ. 5.13.

 ẋ1 = f1(x1,u1)

ẋ2 = f2(x2,u2)
(5.13)
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 ẋ1 = A1x1 +B1u1 + F1

ẋ2 = A2x2 +B2u2 + F2

(5.14)

A1 =

(
∂f1
∂x1

)
x10,u10

, A2 =

(
∂f2
∂x2

)
x20,u20

B1 =

(
∂f1
∂u1

)
x10,u10

, B2 =

(
∂f2
∂u2

)
x20,u20

F1 = f1(x10,u10)− A1x10 −B10u10, F2 = f2(x20,u20)− A2x20 −B20u20

(5.15)

Equ. 5.14 and 5.15 shows the linearized state equations. x10, u10 and x20, u20 are the

points where Taylor expansion is conducted for the two systems.

Then, the system states are discretized in time. Due to different frequencies of

system 1 and system 2, the discretization uses different time intervals, which are

∆1 = 0.001s and ∆2 = 1s. The state equations after discretization are shown in Equ.

5.16. In order to make the time intervals consistent for system 1 and 2, iterative

calculating of system-1 state equation are performed to get new coefficients Ā1, B̄1

F̄1. It yields the system in Equ. 5.17 which will be used in the remaining part of this

chapter. Note that the time intervals of the new system are all ∆2. m is the iteration

number calculated by ∆2

∆1
.

 x1(i+ 1) = Ã1x1(i) + B̃1u1(i) + F̃1

x2(i+ 1) = Ã2x2(i) + B̃2u2(i) + F̃2

Ã1 = A1∆1 + I, Ã2 = A2∆2 + I

B̃1 = B1∆1, B̃2 = B2∆2

F̃1 = F1∆1, F̃2 = F2∆2

(5.16)
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 x1(i+ 1) = Ā1x1(i) + B̄1u1(i) + F̄1

x2(i+ 1) = Ã2x2(i) + B̃2u2(i) + F̃2

Ā1 = Ãm1

B̄1 =
m∑
j=1

(A1∆1 + I)j−1B1

F̄1 =
m∑
j=1

(A1∆1 + I)j−1F1

(5.17)

Combining Equ. 3.20 and 5.12 yields the linearized equality path constraint in

Equ. 5.18. [
kuf (ωe) 0

] u1(i)

u2(i)

+ buf (ωe)− Treq = 0 (5.18)

Equ. 3.21 can further yield linear inequality Equ. 5.19 by substituting Equ. 3.13,

3.16 and 3.18.

[
− 106Vdηvol

120AFR∗TinRa
0 0

]
x1(i) +

[
1/30 0

]
u1(i) ≤ 0 (5.19)

Also, states and controls should be within reasonable ranges as defined in Equ.

3.22 to 3.28. They can be written in matrix format as shown in Equ. 5.20 and 5.21.



Pin,min

Pex,min

Nt,min

SOCmin


≤



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


 x1(i)

x2(i)

 ≤


Pin,max

Pex,max

Nt,max

SOCmax


(5.20)
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
uf ,min

uwg,min

Tm,min

 ≤


1 0 0

0 1 0

0 0 1


 u1(i)

u2(i)

 ≤


uf ,max

uwg,max

Tm,max

 (5.21)

Following the similar idea, cost function in Equ. 3.19 can be written as Equ. 5.22. P

stands for the number of steps of prediction horizon.

P∑
i=1

[
4Ne10−6

120
0

] u1(i)

u2(i)

∆2 + µ(x2(P )− x2(1)) (5.22)

From Equ. 5.17 to 5.22, a linear programming problem can be formed in prediction

horizon(i = 1, 2, ...P ) and can be written in Equ. 5.23. z is the variable vector to

be optimized and contains all states x(i) and controls u(i) sequences in the predicted

time. This kind of problem can be solved by many methods, such as simplex, inte-

rior point algorithm etc.. [4]. In Matlab there is a linear programming solver called

“linprog”, which is adopted in this study.

min J = Hz

Qz = 0

Wz ≤ 0

(5.23)

5.2.2 Discussion on linearization

The last section mentioned that linearization is Taylor expansion at certain points

of state and control variables. The linear time invariant problem formed in last section

also implies that Taylor expansion can only be conducted at the first step of prediction

horizon and the generated linear model coefficients should be constant during this
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period of time. If any of the coefficient is a function of states or controls which is

also time variant, it will become a nonlinear programming problem again and lose

the meaning of linearization.

The state variables at first step are measurable and can be directly used to evaluate

partial differentials. The control variables (uf , uwg and Tm) need to be selected

carefully. The difficulty in here is that the prior knowledge of control law cannot

be obtained before solving the problem, but some parameters of the problem are

related to control law. Luckily, the ranges of all control variables at first step are

obtainable so that one can choose the points within the ranges to do lineariaztion.

Considering linear approximation in Equ. 5.24, the shorter distance is between u and

a, the smaller error will be between actual and approximated function value. Here,

assuming a uniform distribution of u in its range at every time step, a straightforward

thinking is to choose a in the middle of this range.

f(u) = f(a) + f ′(a)(u− a) + h1(u)(u− a), lim
u→a

h1(u) = 0. (5.24)

Fig. 5.6 shows a test simulation, which compares the three state trajectories of

linear and nonlinear air path models. The linear model 1, 2, 3 are linearized at

uf0 = 20, 30, 10mg/cyl and their control signals of uf are all step signal 20mg/cyl.

It is clear in the figure that the linear model in which uf0 and uf are equal has the

closest trajectory to the nonlinear model. Table. 5.1 lists the relative errors of each

state at the end of its trajectory. The nonlinear model has no errors and the relative

errors of the three linear models are calculated. Other parameters for testing in Table.

5.1 is identical with Fig. 5.6.

The linearization in electrical path (system 2) has a little difference. As shown in
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Equ. 2.10 SOC dynamics is not a continuous function so that linearization should be

applied to the two piecewise functions. Based on the similar idea in air path model,

the value of Tm0 where Taylor expansion is conducted are listed in Equ. 5.25. Tm,min

and Tm,max are the same motor torque limits in Equ. 3.28.

Tm0 =

 abs(Tm,min)/2 Tm ≥ 0

abs(Tm,max)/2 Tm ≤ 0
(5.25)
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Figure 5.6: Comparison of trajectories of intake pressure,exhaust pressure and

turbine shaft speed in linear and nonlinear air path models during step change of

fuel injection mass
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Table 5.1: Relative error between linear model 1, 2, 3 and nonlinear model for states

of air path dynamics

Relative

error %

Nonlinear

Model

Linear Model

1

Linear model

2

Linear model

3

Pin – 1.47 2.28 1.63

Pex – 1.07 1.40 1.89

Nt – 2.67 4.25 2.97
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Figure 5.7: Nonlinear and piecewise linear models for SOC rate in the permissible

range of motor torque

Fig. 5.7 shows the comparison of SOC change rates for nonlinear and linear SOC

models. It can be seen that the error of linearization is larger during discharging than

that in charging mode. This is in accordance with the results in paper [5] because
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the battery parameters used in this study are also the same as those in the paper.

In order to demonstrate the effect of linearization on cost function, both original

and linearized cost function in Equ. 3.19 are evaluated at the first step of prediction

horizon(length P = 1) to obtain Fig. 5.8 and Fig. 5.9, which represent different

requested torques 110Nm and 50Nm respectively. As a consequence of the unattain-

ability of control variables in the remaining prediction horizon, the parameters of cost

function cannot be completely evaluated for more than one step. The characteristic

of cost function contains the dynamics of SOC so that it should also be linearized

according to discharge and charge mode separately.

This chapter introduces two methods to deal with the conjunction between the

two linear functions. The first one is that, using their cross point to make the curve

continuous. It is shown as solid dot in Fig. 5.8 and 5.9 and it is denoted by “cross

point”. The second one is that, regardless of continuity, extending linear lines to the

up-straight line of zero motor torque to obtain another point shown as triangles in the

figures. To clarify the notation in the second method, it is denoted by “zero point”.

We can see that in Fig. 5.8 the cross point is closer to the expected minimum point

in nonlinear cost function; however in Fig. 5.9 the zero point is a better approxima-

tion. To examine which method is better, comparative results in the driving cycle

simulation between them will be discussed in Section 5.3.
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Figure 5.8: The cost function curves of nonlinear and linear models at the first step

of prediction horizon. Engine speed Ne=2320RPM, request torque Treq=110Nm
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Figure 5.9: The cost function curves of nonlinear and linear models at the first step

of prediction horizon. Engine speed Ne=2320RPM, request torque Treq=50Nm
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Linearization using piecewise functions can introduce an issue in solving the linear

programming problem. Because the functions that form the problem are determined

by the sign of control variable Tm, one cannot know what kind of problem to solve

before giving the control signal. The method of dealing with this issue is that we can

form all the possible problems along multi-step prediction and compare the results of

them to find the best solution. Basically, the number of different linear programming

problems is exponentially related to number of predicted steps as in 2P . It considers

all the combinations of positive and negative Tm at each step in Table 5.2. Note that

if Tm,min ≥ 0 or Tm,max ≤ 0, the problems defined in [Tm,min,0] or [0,Tm,max] will be

invalid and not a concern in the comparison.

Table 5.2: Defined range of motor torque in different linear programming problems

Range of Tm

at step 1

Range of Tm

at step 2

Range of Tm

at step 3

...

Problem 1 [0,Tm,max] [0,Tm,max] [0,Tm,max] ...

Problem 2 [Tm,min,0] [0,Tm,max] [0,Tm,max] ...

Problem 3 [0,Tm,max] [Tm,min,0] [0,Tm,max] ...

... ... ... ... ...
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5.3 Case study

5.3.1 Comparison of MPC strategies using nonlinear and lin-

ear models

In this section, MPC based energy management strategies adopting both the non-

linear model and linear model are compared. They are labeled as “MPCNLPSC”

and “MPCLPSC” in this section. The two strategies use the same engine ON/OFF

and gear shifting method as discussed in Section 3.4. Also, the number of predicted

steps are all set to 3 in both cases, and one step represents one second in real-time

simulation. A third strategy that does not adopt transient but the steady-state en-

gine model is introduced here as a benchmark. This strategy is identical with the one

noted by “MBSC” and its control signals are implemented every one second. Here,

the third strategy is still noted by “MBSC”.
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Figure 5.10: Comparison of vehicle speed tracking performance in MPCNLPSC,

MPCLPSC and MBSC

Fig. 5.10 shows the vehicle speed tracking performance of the three strategies.

Basically, in the whole driving cycle the actual vehicle speeds of the three cases can

follow the reference UDDS cycle speed very well except for the time from 1240s to

1260s. The zoom-in figure in this time slot indicates that MBSC fails to catch up the

reference speed. The reason is the same as discussed in Section 3.4, which is that the

engine torque is not accurately predicted in MBSC. This phenomenon can be seen in

Fig. 5.11 during time 1240s∼1260s. Meanwhile, due to the mismatch between actual

speed and reference speed, the total requested torque has a sharp spike at time 1250s

(see in Fig. 5.13). Then, the requested motor torque is very high at this time and

exceeds the maximum torque that it can provide as shown in Fig. 5.12.
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Figure 5.11: Comparison of requested and actual engine torque in MPCNLPSC,

MPCLPSC and MBSC
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Figure 5.12: Comparison of expected and actual electric motor torque in

MPCNLPSC, MPCLPSC and MBSC
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Figure 5.13: Comparison of the total requested torque in MPCNLPSC, MPCLPSC

and MBSC

On the other hand, from Fig. 5.10 to 5.13, we can see that MPCNLPSC and

MPCLPSC have extremely close trajectories of engine, motor torque and vehicle

speed. This indicates the linearized model can give a good estimation on the major

characteristics of the original nonlinear model in the energy management problem.

In Fig. 5.14, it shows that SOC trajectories of MPCNLPSC and MPCLPSC have

very small difference and almost reach to the same SOC point at the end of driving

cycle. The error between the linear and nonlinear model leads to the change of

engine and motor torque prediction and therefore the torque distribution generated

from supervisory controller. However, SOC trajectory of MBSC has relatively large

difference compared to the other two strategies, which is mainly caused by its inability

of predicting driving cycle and engine transient torque. Fig. 5.15 compares the total

fuel consumptions in the three cases. We can see MPCNLPSC consumes the least

fuel and MPCLPSC comes the second. MBSC is the worst case among three in fuel

consumption and also it has more battery usage by comparing the final SOC in each

case.
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Figure 5.14: SOC trajectories in MPCNLPSC, MPCLPSC and MBSC
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5.3.2 Comparison of two linearization methods

In Section 5.2.2, it proposed two different methods for connecting piecewise lin-

earized functions. This section will apply those methods in cycle simulation and

compare the performance of them with that using the nonlinear model. For conve-

nience, the one using zero point is noted as “linear model one” and that using cross

point is noted as “linear model two”. Besides, the strategy using the nonlinear model

is used as a benchmark and is supposed to have the best performance. It is still

labeled as “MPCNLPSC”. The three approaches all use 3 prediction step.
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Figure 5.16: SOC trajectories in MPCNLPSC, linear model one and two
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Figure 5.17: Fuel consumptions in MPCNLPSC, linear model one and two

Fig. 5.16 and 5.17 show the SOC and fuel consumption trajectories of the three

strategies in UDDS cycle. Clearly, the difference between trajectories of the nonlinear

model and “linear model two” is smaller than that between the nonlinear model

and “linear model one”. Meanwhile, by comparing fuel consumptions at the end of

cycle, we can see that “linear model two” is also better that “linear model one”.

It means linearization method using cross point of two linear functions has better

performance in cycle simulation. This is because it has more accurate approximation

to the nonlinear model and can find control operations that are closer to MPCNLPSC.
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Figure 5.18: Comparison of vehicle speed tracking performances in MPCNLPSC,

linear model one and two
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Figure 5.20: Comparison of engine requested and actual torque in MPCNLPSC,

linear model one and two
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Figure 5.21: Comparison of requested motor torques in MPCNLPSC, linear model

one and two

In Fig. 5.19, during time slots 340∼380s and 440∼480s, the red dash curve rep-

resenting “linear model one” has more fluctuations than the other two curves. This
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is mainly because the strategy with “linear model one” gives poorer estimation on

engine output torque than the nonlinear model and “linear model two”. Therefore,

the requested torque cannot be fulfilled more accurately in “linear model one”, and

the actual vehicle speed of “linear model one” cannot follow the reference properly

either (see in Fig. 5.18). Moreover, the upper-level PID controller needs to regulate

the requested torque according to the speed error. As a result of the inaccurate engine

torque prediction, the engine and motor torque commands calculated from supervi-

sory controllers are also changed accordingly and shown difference among the three

cases, which is demonstrated in Fig. 5.20 and 5.21. Particularly, in “linear model

one” case during 340∼380s and 440∼480s, more motor torque is requested than other

two cases which leads to more SOC consumption shown in green cycle in Fig. 5.16.

Through the comparative analysis between the three strategies, it is not difficult to

see that the linear model with “cross point” has better approximation to the nonlinear

model in UDDS cycle simulation than that with “zero point”. Then, linear model

with “cross point” should be considered as a potential alternative to the nonlinear

model.

The major advantage of linearization is reducing the computational effort of

searching optimal solutions. So in Fig. 5.22 it compares the computing time of

predicting different number of steps for strategies using the nonlinear model and lin-

ear model two. The two problems are solved by giving the same initial conditions,

including vehicle speed, gear ratio, requested torque at first step, state variables SOC,

Pin, Pex, Nt, etc.. Also, the same vehicle speed profile is applied on the two prob-

lems, and one predict step lasts for one second for both of them. Apparently, the
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strategy with linear model has tremendous computational advantage over the non-

linear model, although up to 210 linear programming problems need to be solved.

One concern about solving piecewise LPs is that the number of problems increases

exponentially. As prediction horizon becomes longer enough the computing time can

be extremely large. Luckily, in our problem the prediction horizon is not necessarily

very long according to the discussion in Section 4.5.
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Figure 5.22: Comparison computing time in MPCNLPSC, linear model one

5.4 Conclusions

In order to reduce the computing time of solving nonlinear optimal control prob-

lem in the predict horizon, this chapter proposed a method by fully linearizing the

models that are used in the problem. With linearized state equations, cost function
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and constraint functions, the optimal control problem could be easily solved by con-

verting it into a linear programming problem. Compared with dynamic programming

algorithm, the linear method illustrated large advantage in saving computational re-

sources.

Besides, this chapter proposed two different approaches to deal with the conjunc-

tion of two piecewise equations for the cost function. They used “cross point” and

“zero point” to connect two consecutive linear functions, respectively. Results in

driving cycle simulation showed that the approach using “cross point” had better

accuracy of approximating the nonlinear model than the one using “zero point”, and

also revealed better fuel economy.
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Chapter 6

Conclusions and future work

6.1 Summary

The fueling control and turbocharger technology are widely used in diesel engines

aiming to reduce energy waste and improve engine efficiency. Fueling control includes

coordinative control of fuel injection mass and timing. Usually, a maximum engine

efficiency at the same engine speed and load can be reached by applying appropriate

fuel injection timing. Turbocharger is the device that uses energy from waste gas to

boost intake manifold pressure and increase power density and efficiency.

Traditional methods to deal with HEV energy management problems cannot make

use of the potentials of those technologies because most of them use efficiency-map

based engine model whose inputs are engine toque and speed. It implies that engine

control variables cannot effectively influence engine torque production and therefore

efficiency. The work in this thesis is mainly inspired by the idea that introducing

detailed engine models to energy management strategy design can yield more bene-

fits on HEV fuel economy. Since the objective system becomes complicated due to
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the extra degrees of freedom and control variables, this thesis has proposed control

techniques to properly deal with the fuel optimization in complex systems.

Chapter 2 proposed an on-line energy management method by using fueling control

for a diesel engine. Engine torque was mapped by fuel injection mass and timing.

The lowest BSFC at the same output torque and speed was able to be found by

searching different combinations of two fueling control variables. This advantage

was also exploited in PMP based energy management algorithm and demonstrated

considerable ability of reducing fuel consumption from cycle simulation results.

Chapter 3 designed MPC based supervisory control strategy incorporating with

engine torque transients. A detailed engine model was employed mainly to capture

the air path dynamics that can restrict the engine torque response. Through the

simulation results, the actual engine torque can be predicted more accurately than

the steady-state engine model. Fuel consumption was further reduced due to the

utilization of engine transient characteristics in the energy management strategy.

Chapter 4 proposed a novel control-step learning mechanism for model predictive

control and implemented it in the problem proposed in Chapter 3. It exploited

the information of control performance from the previous control horizon and used

that to evaluate the dependability of control step settings. The control step was

updated at the start of each prediction stage. The simulation results showed that the

proposed method demonstrated an excellent balance between control performance and

computational effort. Meanwhile, the results also proved the strategy’s adaptability

to the variation of driving cycle.

Chapter 5 mainly described linearization implementation on the energy manage-

ment strategy in Chapter 3 in order to reduce the computational burden. By properly
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linearizing all the functions in the optimal control problem, a linear programming

problem was constructed and solved. Two linear methods to deal with function con-

junctions were adopted to approximate the cost function, and they were also compared

with the nonlinear method. The proposed one showed fairly close performance to the

nonlinear method, but much less computing time.

6.2 Limitations and extensions of this research

The work in this thesis primarily focused on validating the idea of introducing

engine control techniques to reduce HEV fuel consumption. Gear shifting strategy

and clutch control were not particularly considered. For example, gear ratio and

shift strategy were predefined according to engine speed and vehicle speed. The

transient process during clutch engaging and disengaging was also neglected. So one

of directions to extend this research is to employ gear shift and clutch related controls

in fuel optimization problem.

Another potential improvement for this research could be implementing the pro-

posed method in power split HEV. In this topology engine speed should be considered

as another state instead of an exogenous variable coupled with vehicle speed in paral-

lel topologies. It may bring more opportunities of fuel saving when utilizing transient

models in the energy management strategy, since engine performance is sensitive to

engine speed. The biggest challenge here is that engine speed is no longer measured.

Thus, it need to be considered as a state in the optimal control problem. It will in-

troduce great complexity to the algorithm design and computational effort of solving

the problem.

A third extension will be focused on adding robustness to MPC based energy
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management strategy. The scope of uncertainty issue in this research is limited to

mismatch between MVMs and a tuned GT-SUITE model. In reality, an extensive

robustness analysis is needed given the highly complex and uncertain nature of ICE

dynamics. To this end, it is encouraging to introduce observer techniques to on-

line estimate states or important parameters. It is expected to bring more reliable

information to the optimal control problem.
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Appendix A

This appendix includes a figure that demonstrates the gear shift strategy used in

Chapter III and how to predict the gear ratio in the MPC based energy management

strategies.
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Appendix B

This appendix includes a figure that demonstrates the dynamic programming

procedure in Chapter IV.
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