Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/23432
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorMhaskar, Prashant-
dc.contributor.authorKheradmandi, Masoud-
dc.date.accessioned2018-10-22T15:46:49Z-
dc.date.available2018-10-22T15:46:49Z-
dc.date.issued2018-
dc.identifier.urihttp://hdl.handle.net/11375/23432-
dc.description.abstractIn this thesis I propose methods and strategies for the design of advanced model predictive control designs. The contributions are in the areas of data-driven model based MPC, model monitoring and explicit incorporation of closed-loop response considerations in the MPC, while handling issues such as plant-model mismatch, constraints and uncertainty. In the initial phase of this research, I address the problem of handling plant-model mismatch by designing a subspace identification based MPC framework that includes model monitoring and closed-loop identification components. In contrast to performance monitoring based approaches, the validity of the underlying model is monitored by proposing two indexes that compare model predictions with measured past output. In the event that the model monitoring threshold is breached, a new model is identified using an adapted closed-loop subspace identification method. To retain the knowledge of the nominal system dynamics, the proposed approach uses the past training data and current input, output and set-point as the training data for re-identification. A model validity mechanism then checks if the new model predictions are better than the existing model, and if they are, then the new model is utilized within the MPC. Next, the proposed MPC with re-identification method is extended to batch processes. To this end, I first utilize a subspace-based model identification approach for batch processes to be used in model predictive control. A model performance index is developed for batch process, then in the case of poor prediction, re-identification is triggered to identify a new model. In order to emphasize on the recent batch data, the identification is developed in order to increase the contribution of the current data. In another direction, the stability of data driven predictive control is addressed. To this end, first, a data-driven Lyapunov-based MPC is designed, and shown to be capable of stabilizing a system at an unstable equilibrium point. The data driven Lyapunov-based MPC utilizes a linear time invariant (LTI) model cognizant of the fact that the training data, owing to the unstable nature of the equilibrium point, has to be obtained from closed-loop operation or experiments. Simulation results are first presented demonstrating closed-loop stability under the proposed data-driven Lyapunov-based MPC. The underlying data-driven model is then utilized as the basis to design an economic MPC. Finally, I address the problem of control of nonlinear systems to deliver a prescribed closed-loop behavior. In particular, the framework allows for the practitioner to first specify the nature and specifics of the desired closed-loop behavior (e.g., first order with smallest time constant, second order with no more than a certain percentage overshoot, etc.). An optimization based formulation then computes the control action to deliver the best attainable closed loop behavior. To decouple the problems of determining the best attainable behavior and tracking it as closely as possible, the optimization problem is posed and solved in two tiers. In the first tier, the focus is on determining the best closed-loop behavior attainable, subject to stability and tracking constraints. In the second tier, the inputs are tweaked to possibly improve the tracking of the optimal output trajectories given by the first tier. The effectiveness of all of the proposed methods are illustrated through simulations on nonlinear systems.en_US
dc.language.isoenen_US
dc.subjectSystem identificationen_US
dc.subjectSubspace identificationen_US
dc.subjectClosed-loop identificationen_US
dc.subjectModel predictive controlen_US
dc.subjectRe-identificationen_US
dc.subjectLyapunov-based model predictive controlen_US
dc.subjectEconomic model predictive controlen_US
dc.subjectNonlinear model predictive controlen_US
dc.titleADVANCES IN MODEL PREDICTIVE CONTROLen_US
dc.typeThesisen_US
dc.contributor.departmentChemical Engineeringen_US
dc.description.degreetypeDissertationen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Kheradmandi_Masoud _201806_PhD.pdf
Access is allowed from: 2019-06-20
4.29 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue