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ABSTRACT

In this thesis I propose methods and strategies for the design of advanced model predictive control

designs. The contributions are in the areas of data-driven model based MPC, model monitoring and

explicit incorporation of closed-loop response considerations in the MPC, while handling issues

such as plant-model mismatch, constraints and uncertainty.

In the initial phase of this research, I address the problem of handling plant-model mismatch by

designing a subspace identification based MPC framework that includes model monitoring and

closed-loop identification components. In contrast to performance monitoring based approaches,

the validity of the underlying model is monitored by proposing two indexes that compare model

predictions with measured past output. In the event that the model monitoring threshold is breached,

a new model is identified using an adapted closed-loop subspace identification method. To retain

the knowledge of the nominal system dynamics, the proposed approach uses the past training data

and current input, output and set-point as the training data for re-identification. A model validity

mechanism then checks if the new model predictions are better than the existing model, and if they

are, then the new model is utilized within the MPC.

Next, the proposed MPC with re-identification method is extended to batch processes. To this end, I

first utilize a subspace-based model identification approach for batch processes to be used in model

predictive control. A model performance index is developed for batch process, then in the case

of poor prediction, re-identification is triggered to identify a new model. In order to emphasize
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on the recent batch data, the identification is developed in order to increase the contribution of the

current data. In another direction, the stability of data driven predictive control is addressed. To this

end, first, a data-driven Lyapunov-based MPC is designed, and shown to be capable of stabilizing a

system at an unstable equilibrium point. The data driven Lyapunov-basedMPC utilizes a linear time

invariant (LTI) model cognizant of the fact that the training data, owing to the unstable nature of the

equilibrium point, has to be obtained from closed-loop operation or experiments. Simulation results

are first presented demonstrating closed-loop stability under the proposed data-driven Lyapunov-

based MPC. The underlying data-driven model is then utilized as the basis to design an economic

MPC.

Finally, I address the problem of control of nonlinear systems to deliver a prescribed closed-loop

behavior. In particular, the framework allows for the practitioner to first specify the nature and

specifics of the desired closed-loop behavior (e.g., first order with smallest time constant, second

order with no more than a certain percentage overshoot, etc.). An optimization based formulation

then computes the control action to deliver the best attainable closed loop behavior. To decouple

the problems of determining the best attainable behavior and tracking it as closely as possible, the

optimization problem is posed and solved in two tiers. In the first tier, the focus is on determining

the best closed-loop behavior attainable, subject to stability and tracking constraints. In the second

tier, the inputs are tweaked to possibly improve the tracking of the optimal output trajectories given

by the first tier. The effectiveness of all of the proposed methods are illustrated through simulations

on nonlinear systems.
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Chapter 1

INTRODUCTION

1.1 Background and Motivation

The operation of chemical plants faces numerous challenges such as inherent nonlinearity, complex

variable interactions and process constraints. The most common control method that can handle

these challenges is model predictive control (MPC). While MPC is increasingly gaining acceptance,

several opportunities for advancements inMPC applications exist. For the sake of brevity, instead of

providing a general overview of MPC formulations, we focus in this section on specific unaddressed

issues with MPC designs.

In several industrial applications of MPC, a linear model is used, in part due to the simplicity of

developing linear models and in part due to the computational ease with using linear models. In

order to handle the resultant plant-model mismatch, robust MPCs and offset-free MPC approaches

have been developed. In robust MPC approaches, the control action is computed to handle the worst

case effect of the uncertainty [49, 63]. These include Lyapunov-based MPC which enables explicit

characterization of the region from where stability of the closed loop system under MPC controller
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is achievable in the presence of constraints and uncertainty [46]. In another approach, the so-called

offset-free MPC, the nominal model is integrated with augmented disturbance states to eliminate

offset in set-point tracking [57, 70].

While these approaches are often able to eliminate uncertainty at steady state operation, the closed-

loop performance certainly stands to improve if a better model is utilized in the control design. To

determine if the closed-loop system is behaving as expected, existing approaches have focused on the

area of control performance monitoring. In this direction, numerous MPC performance assessment

methods are proposed to monitor the closed-loop performance by comparing the controller with

a benchmark [11, 28, 65]. Most of these methods focus on tuning of the controller parameters to

remedy the performance degradation. In model predictive approaches, where the control action is

more directly dependent on the underlying model, there exists the necessity of explicitly monitoring

model validity.

There exist some results on MPC with re-identification (IMPC) where model validity is accounted

for by requiring excitation constraints to ensure that the model parameters remain identifiable [22].

In this approach, identification is performed at every time step. Furthermore, the approach requires

finding the right trade-off between the inevitable performance deterioration (due to excitation

conditions) and the possibility of loss of model validity. In [59] MPC Relevant Identification (MRI)

was extended to EnhancedMulti-step Prediction ErrorMethod (EMPEM). In [26] single input single

output IMPC was extended to improve performance of the output regulation by not disturbing the

plant when the model is deemed to have an acceptable precision. Acceptable precision is quantified

through bounds on the variance of parameter estimates and parameter convergence rate in the MPC

cost function. Explicit model monitoring based MPC designs for batch and continuous operation,

however, are not currently available.

In another direction, it is common to use the same process for different products in chemical

plants, with the different products achieved, say via grade transition in polymerization reactors.
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This product transition is usually done by set-point change for plant output[54, 66, 72]. In these

instances, a ‘desired’ process behavior could be specified as one where the transition to the new

specification is the fastest, and a resultant optimization problem that minimizes the transition time

is formulated and implemented [31].

AnMPC framework has recently been proposed that enables specifying desired closed-loop behavior

in more general terms for linear MIMO systems subject to input constraints [70], which is then

implemented in conjunction with offset-free model predictive control. The developed approach [70]

considers systems that are invertible (i.e. the inputs can be explicitly computed). A similar approach

was utilized in [73] for linear systems. There does not exist a formulation, however, that allows

the ability to explicitly prescribe the nature of the closed-loop behavior and have the formulation

determine the best achievable closed-loop behavior for nonlinear systems.

With regard to stability characterization of MPC, in early MPC designs, the objective function

was often utilized as a parameter to ensure closed-loop stability. In subsequent contributions,

Lyapunov-based MPC was proposed where feasibility and stability from a well characterized region

was built into the MPC [46, 50]. With increasing recognition (and ability) of MPC designs to

focus on economic objectives, the notion of Economic MPC (EMPC) was developed for linear and

nonlinear systems [4, 7, 40], and several important issues (such as input rate-of-change constraint and

uncertainty) addressed. The key idea with the EMPC designs is the fact that the controller is directly

given the economic objective to work with, and the controller internally determines the process

operation (including, if needed, a set point) [53]. Most of the existing MPC formulations, economic

or otherwise, have been illustrated using first principles models. In a recent result, an EMPC using

empirical model was proposed [1]. The approach relies on a linearization approach, resulting in

closed-loop stability guarantees for regions where the plant-model mismatch is sufficiently small,

and illustrate results on stabilization around nominally stable equilibrium points. In summary, data

driven MPC or EMPC approaches, that utilize appropriate modeling techniques to identify data
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from closed-loop tests to handle operation around nominally unstable equilibrium points remain

addressed.

1.2 Research Objectives and Thesis Outline

In Chapter 2, first, we address the problem of plant model mismatch by developing a model

monitoring and closed-loop re-identification based MPC design. In the chapter, first, the general

mathematical description for the systems considered in this work, and a representative formulation

for linear model predictive control are presented. Then the proposed approach for closed-loop

re-identification of plant is explained. The efficacy of the proposed method is illustrated through

formulations and implementations for a nonlinear polymerization continuous stirred-tank reactor

(CSTR) with input rate of change constraints and measurement noise.

In Chapter 3, we address the problem of plant model mismatch monitoring and evaluation and

re-identification based MPC design for batch processes. First, the general description for the

batch systems considered in this work, and a representative formulation for linear model predictive

control are illustrated. Then the re-identification approach of plant is explained. The efficacy

of the proposed method is illustrated through formulations and implementations for a nonlinear

polymerization continuous stirred-tank reactor (CSTR) with input rate of change constraints and

measurement noise.

In Chapter 4, we consider the problem of data driven model based economic MPC design. To this

end, first a data-driven Lyapunov-based MPC is designed, and shown to be capable of stabilizing a

system at an unstable equilibriumpoint. The data driven Lyapunov-basedMPCutilizes an LTImodel

cognizant of the fact that the training data, owing to the unstable nature of the equilibrium point,

has to be obtained from closed-loop operation or experiments. Simulation results are first presented

demonstrating closed-loop stability under the proposed data-driven Lyapunov-based MPC. The
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underlying data-drivenmodel is then utilized as the basis to design an economicMPC. The economic

improvements yielded by the proposed method are illustrated through simulations on a nonlinear

chemical process system example.

In Chapter 5, we address the problem of control design for nonlinear systems that allows prescribing

and determining the best achievable closed-loop behavior of a desired nature. First, the general

mathematical description for the types of nonlinear systems considered in this work, and a represen-

tative formulation for nonlinear model predictive control (NMPC) are presented. Then the proposed

bi-layer performance specification based nominal MPC scheme for achieving desired trajectories is

given. The proposed framework enables specifying a desired nature of the closed-loop behavior and

then determining the optimal feasible implementation of such behavior. Rigorous feasibility and

stability properties are established for a formulation to achieve the best first order trajectory. Other

formulations are also presented that demonstrate how, say a second order trajectory and input rate of

constraints can be accommodated. The efficacy of the proposed method is first illustrated through

formulations and implementations for a linear system subject to output feedback and a nonlinear

continuous stirred-tank reactor (CSTR) with input rate of change constraints and uncertainty and a

reactor separator plant.

Finally, Chapter 6 summarizes the main contributions of the research work, and recommendations

for related future work and research opportunities are presented.
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Chapter 2

MODEL PREDICTIVE CONTROLWITH

CLOSED-LOOP RE-IDENTIFICATION†

Abstract

In this work we address the problem of handling plant-model mismatch by designing a subspace

identification based MPC framework that includes model monitoring and closed-loop identification

components. In contrast to performancemonitoring based approaches, the validity of the underlying

model is monitored by proposing two indexes that compare model predictions with measured past

output. In the event that the model monitoring threshold is breached, a newmodel is identified using

an adapted closed-loop subspace identification method. To retain the knowledge of the nominal

system dynamics, the proposed approach uses the past training data and current input, output and

†The results in this chapter have been published in[36]:

• M. Kheradmandi and P. Mhaskar. Model predictive control with closed-loop re-identification. Computers &

Chemical Engineering, 109:249–260, 2018.
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set-point as the training data for re-identification. A model validity mechanism then checks if the

new model predictions are better than the existing model, and if they are then the new model is

utilized within theMPC. The effectiveness of the proposedmethod is illustrated through simulations

on a nonlinear polymerization reactor.

Keywords: system identification, subspace identification, closed-loop identification, model predic-

tive control, re-identification

2.1 Introduction

The operation of chemical plants faces numerous challenges such as inherent nonlinearity, complex

variable interactions and process constraints. The most common control method that can handle

these challenges is model predictive control (MPC). In several industrial applications of MPC, a

linear model is used, in part due to the simplicity of developing linear models and in part due

to the computational ease with using linear models. In order to handle the resultant plant-model

mismatch, robust MPCs and offset-free MPC approaches have been developed.

In robust MPC approaches, the control action is computed to handle the worst case effect of the

uncertainty [49, 63]. These include Lyapunov-based MPC which enables explicit characterization

of the region from where stability of the closed loop system under MPC controller is achievable

in the presence of constraints and uncertainty [46]. In another approach, the so-called offset-free

MPC, the nominal model is integrated with augmented disturbance states to eliminate offset in

set-point tracking [57, 70].

While these approaches are often able to eliminate uncertainty at steady state operation, the closed-

loop performance certainly stands to improve if a better model is utilized in the control design. To

determine if the closed-loop system is behaving as expected, existing approaches have focused on the

area of control performance monitoring. In this direction, numerous MPC performance assessment
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methods are proposed to monitor the closed-loop performance by comparing the controller with

a benchmark [11, 28, 65]. Most of these methods focus on tuning of the controller parameters to

remedy the performance degradation. In model predictive approaches, where the control action is

more directly dependent on the underlying model, there exists the necessity of explicitly monitoring

model validity.

There exist some results on MPC with re-identification (IMPC) where model validity is accounted

for by requiring excitation constraints to ensure that the model parameters remain identifiable [22].

In this approach, identification is performed at every time step. Furthermore, the approach requires

finding the right trade-off between the inevitable performance deterioration (due to excitation

conditions) and the possibility of loss of model validity. In [59] MPC Relevant Identification (MRI)

was extended to EnhancedMulti-step Prediction ErrorMethod (EMPEM). In [26] single input single

output IMPC was extended to improve performance of the output regulation by not disturbing the

plant when the model is deemed to have an acceptable precision. Acceptable precision is quantified

through bounds on the variance of parameter estimates and parameter convergence rate in the MPC

cost function.

In particular, in this method, autoregressive models with exogenous inputs are used and recursive

weighted least-squares algorithm is utilized to estimate model parameters. In order to solve the

trade-off between control performance and persistence of excitation, in a recent contribution [10, 58]

maximizing theMPC objective function is used instead ofminimization tomaximize signal variance

and address the feasibility and stability of MPC with re-identification.In another direction, in [5],

plant-model mismatch is detected by partial correlation analysis in order to determine the correlation

between model residual of each output and each manipulated variable with effect of disturbance

and other manipulated variables removed. This correlation may be significant in the presence of

plant-model mismatch. In [6] model-plant mismatch is quantified by comparison of actual and

achieved control quality. Note that in theses studies it is assumed that sufficient set-point excitation
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is available in order to calculate the plant-model mismatch. In the proposed approach, the set

point excitation is not necessary for the monitoring aspect. Furthermore, in these approaches,

the original training data is not retained in the new model identification, and these methods are

designed to address situations where the system is changed significantly and previous data are not

at all representative of the plant in question. In situations where plant model mismatch arises due to

change in operating condition (with the possibility of reverting back to the nominal plant operation),

it becomes useful to merge old and new plant data in the re-identification step.

Motivated by the above considerations, in this workwe address the problem of plantmodelmismatch

by developing a model monitoring and closed-loop re-identification based MPC design. The rest of

the manuscript is organized as follows: First, the general mathematical description for the systems

considered in this work, and a representative formulation for linear model predictive control are

presented. Then the proposed approach for closed-loop re-identification of plant is explained. The

efficacy of the proposed method is illustrated through formulations and implementations for a non-

linear polymerization continuous stirred-tank reactor (CSTR) with input rate of change constraints

and measurement noise. Finally, concluding remarks are presented.

2.2 Preliminaries

In this section, a brief description of the general class of processes that are considered in this study

is provided. Then, the orthogonal projection based subspace identification and a representative

MPC formulation is presented.
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2.2.1 Problem Statement

Consider a general multi-input multi-output (MIMO) controllable system, with y ∈ Rny denot-

ing the measured outputs, and u ∈ Rnu denoting the vector of constrained control (manip-

ulated) input variables, taking values in a nonempty convex subset U ⊂ Rnu , where U ={
u ∈ Rnu | umin ≤ u ≤ umax

}
, umin ∈ R

nu and umax ∈ R
nu denote the lower and upper bounds

of the input variables. In keeping with the discrete implementation of MPC, u is piecewise constant

and defined over an arbitrary sampling instance k as:

u(t) = u(k), k∆t ≤ t<(k + 1)∆t

where ∆t is the sampling time and xk and yk denote state and output at the kth sample time. We

consider the case where the MPC is implemented based on a linear (identified) model, identified

using subspace identification techniques, and address the problem of monitoring model quality

online, and triggering re-identification as appropriate, to maintain model validity and closed-loop

performance.

Subspace Identification

In this section the conventional state space subspace identification method is reviewed [27, 67, 76].

In the subspace identification approach, the goal is to determine the system matrices for a discrete

linear time invariant model of the following form:

xk+1 = Axk + Buk + wk (2.1)

yk = Cxk + Duk + vk (2.2)
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where x ∈ Rnx denotes the vector of state variables, y ∈ Rny denotes the vector of measured outputs,

w ∈ Rnx and v ∈ Rny are zero mean, white vectors of process noise and measurement noise with

the following covariance matrices:

E[
©­­«
wi

v j

ª®®¬
(
wT

i vT
j

)
] =

©­­«
Q S

ST R

ª®®¬ δi j (2.3)

where Q ∈ Rnx×nx , S ∈ Rnx×ny and R ∈ Rny×ny are covariance matrices, and, δi j is the Kronecker

delta function. To identify the system matrices, Hankel matrices are first constructed by stacking

the process variables as follows:

Up = U1|i =



u1 u2 . . . u j

u2 u3 . . . u j+1

. . . . . . . . . . . .

ui ui+1 . . . ui+ j−1


(2.4)

U f = Ui+1|2i =



ui+1 ui+2 . . . ui+ j

ui+2 ui+3 . . . ui+ j+1

. . . . . . . . . . . .

u2i u2i+1 . . . u2i+ j−1


(2.5)

where Up and U f denote the past and future input Hankel matrices. i is a user-specified parameter

that limits the order of the system (n) (which in itself is a user-specified parameter). Similar block-

Hankel matrices are made for output, process and measurement noises Yp,Yf ,Vp,Vf ∈ R
iny× j and

Wp,W f ∈ R
inx× j are defined in the similar way. The state sequences are defined as follows:

Xp =

[
x1 x2 . . . x j

]
(2.6)
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X f =

[
xi+1 xi+2 . . . xi+ j

]
(2.7)

furthermore with:

Ψp =


Yp

Up

 (2.8)

Ψ f =


Yf

U f

 (2.9)

The orthogonal projection of row space of matrix A onto row space of matrix B, (A/B) is defined

as:

A/B = AB†B (2.10)

where the superscript † stands for pseudo-inverse. By recursive substitution into the state space

model equations Eqs. (2.1,2.2), it is straightforward to show:

Yf = Γi X f + Φ
d
i U f + Φ

s
i W f + Vf (2.11)

Yp = Γi Xp + Φ
d
i Up + Φ

s
i Wp + Vp (2.12)

X f = Ai Xp + ∆
d
i Up + ∆

s
i Wp (2.13)
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where:

Γi =



C

CA

CA2

...

CAi−1


(2.14)

Φ
d
i =



D 0 0 . . . 0

CB D 0 . . . 0

CAB CB D . . . 0

. . . . . . . . . . . . . . .

CAi−2B CAi−3B CAi−4B . . . D


(2.15)

Φ
s
i =



0 0 0 . . . 0 0

C 0 0 . . . 0 0

CA C 0 . . . 0 0

. . . . . . . . . . . . 0 0

CAi−2 CAi−3 CAi−4 . . . C 0


(2.16)

∆
d
i =

[
Ai−1B Ai−2B . . . AB B

]
(2.17)

∆
s
i =

[
Ai−1 Ai−2 . . . A I

]
(2.18)

Eq. (2.11) can be rewritten in the following form to have the input and output data at the LHS of

the equation([71]):

[
I −Φd

i

] 
Yf

U f

 = Γi X f + Φ
s
i W f + Vf (2.19)
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By orthogonal projecting of Eq. (2.19) onto Ψp:[
I −Φd

i

]
Ψ f /Ψp = Γi X f /Ψp + Φ

s
i W f /Ψp + Vf /Ψp (2.20)

The last two terms in RHS of Eq. 2.20 are orthogonal projection of the future noise onto the row

space of Ψp, and since the noise terms are independent, these two term are equal to zero. Thus

Eq. (2.20) is simplified as follows:

[
I −Φd

i

]
Ψ f /Ψp = Γi X f /Ψp (2.21)

Equation (2.21) indicates that the column space of Γ is equal to column space of LHS of the

Equation (2.21), and the row space of X f /Ψp is the same as the row space of left hand side of the

equation [27, 29].This equation can be solved using singular value decomposition (SVD), and the

system matrices can be calculated from the results. This is the essence of the open-loop subspace

identification method which assumes that future inputs are independent of the future disturbances.

Note that this assumption does not hold for data under closed-loop control, and can result in biased

results [29]. To deal with this, the subspace identification approach was adapted by utilizing a

new variable, denoted as an instrument variable, as part of the identification procedure. The new

instrument variable, that satisfies the independence requirement, is used to project both side of

the Equation 2.20 and the result is used to determine LTI model matrices. In existing results, the

innovation form of the LTI model is used, as follows:

xk+1 = Axk + Buk + Kek (2.22)

yk = Cxk + Duk + ek (2.23)

where ek is the innovation term, and, K is filter gain. In these methods, after determining the

A matrix, B and K are estimated using least squares. In contrast to the existing results, in this
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work we first estimate the noise terms, then calculate noise covariance matrices and based on these

covariances the observer gain is calculated.

The system identification procedures require input signal to be quasi-stationary and persistently

exciting of order 2i [41, 60]. In the system identification step, only the observable part of a system is

identified therefore the LTI model is always observable. Also note that, the order of the LTI system

n is selected in a way that the identified system is controllable and the prediction of validation data

is acceptable.

2.2.2 Model Predictive Control

The MPC formulation uses the identified model to determine the optimum control action. In order

to handle plant-model mismatch, often an offset-free mechanism is utilized. Thus the identified

model is augmented with integrating disturbances, d as follows.


xk+1

dk+1

 =

A Bd

0 I



xk

dk

 +

B

0

 uk (2.24)

yk =

[
C Cd

] 
xk

dk

 + Duk (2.25)

where d ∈ Rnd is the vector of augmented disturbances, and Bd andCd are matrices with appropriate

dimensions. TheMPC computations require estimation of the subspace and disturbance states. One

way to estimated these is to use a Luenberger observer as follows:


x̂k+1

d̂k+1

 =

A Bd

0 I



x̂k

d̂k

 +

B

0

 uk − L(yk −

[
C Cd

] 
x̂k

d̂k

 − Duk) (2.26)
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where L is predictor gain matrix. In this study, a Luenberger observer is utilized to estimate LTI

model states and augmented disturbance states. Also note that other kinds of state estimators such

as Kalman filter or moving horizon estimation (MHE) can be used in the proposed framework.

In the Offset-free MPC at each sample time l, the control action is computed as follows:

min
ũk,...,ũk+P

P∑
j=1
| | ỹk+ j − ySPk+ j | |

2
Qy
+ | |ũk+ j − ũk+ j−1 | |

2
Rdu

subject to:

x̃k+1 = Ax̃k + Bd d̃k + Bũk

d̃k+1 = d̃k

ỹk = Cx̃k + Cd̃k + Dũk

ũ ∈ U, ∆ũ ∈ Uδ, x̃(k) = x̂l

(2.27)

where P denotes the prediction horizon, ySPk is the desired output (asymptotically constant reference

signal), and, ỹk is the predicted output trajectory at the time k∆t. Qy ∈ Rn×n is a positive definite

matrix, and, Rdu is a positive semi-definite matrix, and they are chosen so the nominal closed-loop

system is stable. For the conditions required to ensure offset free tracking, see, e.g, [43].

Remark 2.1. Note that there are different versions of the offset-free MPC approach, including those

where stability constraints are utilized. We present here a generic offset-free MPC approach to

simply illustrate our model monitoring and re-identification approach.

2.3 Model Monitoring based MPC Implementation

In this section, we present the model monitoring based MPC implementation. To this end, we first

describe the model monitoring approach, followed by the trigger for re-identification. Subsequently,
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a variation of the closed-loop subspace identification method is presented.

2.3.1 Model Monitoring and Re-Identification Trigger

AnMPCcomputes the control action byminimizing an objective function along a prediction horizon,

by predicting the output trajectory using the current state of the system, and candidate input moves.

The validity of the process model is therefore critical to, although not the only factor in achieving

good closed-loop performance. Most of the existing approaches focus on control performance

monitoring. In the present manuscript, we instead directly focus on the model prediction error as

one of the root causes of performance degradation. In this section, we describe an approach that

monitors the health of the process model, and propose a couple of triggers for re-identification.

The key idea behind model monitoring is to compare model predictions with observed behavior.

Before we present the details of the proposed method, let us consider other possibilities that will

not allow a model validation online. The first of these recognitions is that at any point in time,

predicting ahead (either as part of the MPC or otherwise), will not provide any information about

model validity, because future process variables are simply not yet available. Therefore, the only

recourse to assess the model prediction is to ’go back’ to a past data point, and predict ahead up

to the current time. The ability to ‘go back to a past data point’ however, depends on several

factors.The first depends on the nature of the model. If the model being utilized in the MPC is

a nominal model (without augmented states), and state measurements are available, then starting

from the measured states in the past, and utilizing the known input values, the predictions can be

computed, and compared with process measurements. Furthermore, even in that case, the trajectory

computed by the MPC at the past point in time can not be utilized as the basis for comparison,

because the actual input trajectory implemented on the plant will likely be different due to the

feedback and receding horizon implementation of MPC. For cases where a subspace model is being

utilized (along with augmented disturbance states), then further care should be taken to enable an
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appropriate model validity comparison, primarily by ensuring that the best known values of the

state estimates (known at the point in time in the past) are utilized instead of recomputing those (as

with moving horizon estimation approaches). See Remark 2 for further discussion on this.

A schematic is presented in Fig. 2.1 to illustrate the monitoring approach. In particular, model

monitoring at a sample time k is achieved by going back to the sample time k − P, where P is the

chosen ‘lookback’ horizon and using the state estimate generated by the state estimator at time step

k − P (x̂k−P) and inputs from k − P to k − 1 to predict the output trajectory from ȳk−P to ȳk−1. Then

the predicted past output trajectory is compared with the measured output of plant and based on this

comparison, the model accuracy is evaluated.

k

Time

y

Prediction HorizonPrediction Horizon

FuturePast

Figure 2.1: MPC with model prediction monitoring scheme([Measured Output:− −], [Past Pre-
dicted Output:− −], [Future Predicted Output:− −], [Setpoint:−−], [Past Input:−], [Future Pre-
dicted Input:..])

In the schematic in Figure 2.1, the line (− −) is the predicted output trajectory that is calculated

using the augmented identified LTI model with estimated state at the sample time k − P (stored at
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each sample time for the purpose of model monitoring) and the implemented input from k − P to

k − 1 (the continuous line(−)). The measured outputs of the system are shown by the line [− −].

In the deterministic case with no model mismatch, the measured output and the predicted output

by the MPC model would be exactly the same. Due to model mismatch, these two lines would

be different. The dashed line(−) is the set-point. The dotted line (..) is the future predicted input

and the line (− −) is the future predicted output, calculated by the MPC at the current time step.

Note, that the MPC calculations at the current time step are not required for the model monitoring

at the current time step. Finally, the model monitoring computations do not require the solution of

any optimization problem.A block diagram of the MPC with closed-loop re-identification approach

is shown in Fig. 2.2. At the re-identification step, models with the number of states close to the

original model order should be explored, and among the observable and controllable models, the

model which has the best prediction on the validation data set should be chosen as the new model.

In order to evaluate model accuracy at each sample time l, the updated state xl−P which was stored

after calculation by state estimator at sample time l − P and implemented input trajectory from ul−P

to ul−1 are utilized as follows:

ȳ j = Cx̄ j + Du j

x̄ j+1 = Ax̄ j + Bu j

where j = l − P, . . . , l − 1

x̄l = x̂l−P

(2.28)

where ȳ and x̄ are predicted output and state. Having obtained the predictions for the process

outputs, more than one indexes are possible to be formulated to represent model accuracy. Here,
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two illustrative indexes are proposed to evaluate MPC model prediction:

MPE k =
1
P

k−1∑
j=k−P

(|y j − ȳ j |)

EPPE k = |yk−1 − ȳk−1 |

(2.29)

where MPEk ∈ Rny is the vector of mean prediction error, which is the mean value of prediction

error along the past horizon at sample time k, EPPE k ∈ Rny is the vector of end-point prediction

error at sample time k, and, ȳ is the corresponding output prediction.

The re-identification triggers when the MPCmodel performance index exceeds a specific threshold.

This threshold can be set using training/validation data of the initial model by using Eq. (2.29) with

the data. The index is calculated at each sample time and compared with the threshold to trigger

re-identification. For re-identification, the recent data needs to be appropriately augmented with

the past data to obtain the model. The details are presented in the next section.

After re-identification, a new observer gain is calculated. Then the new observer will utilize recent

data to estimate current state to have the most up to date state to predict the plant behavior in MPC.

Remark 2.2. Note that both the proposed approach and the moving horizon estimation (MHE),

which is a state estimation technique, utilize past output and input data, albeit with different

objectives and in different ways. In MHE the past input, output and model are used for the purpose

of state estimation, where the state is estimated to minimize (along with other terms) the error

between the observed and the predicted output. In contrast, the proposed approach does not

change, but uses the state estimate that was computed at the past time instance, to predict forward

up to the current time, and utilizes the difference between predicted and observed outputs as a model

monitoring index.
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2.3.2 Closed-Loop Identification

Having formulated the model monitoring and triggering approach, the next step is the utilization of

an appropriate identification method that can handle the nature of data availability. As mentioned

earlier, most of the open-loop identification methods are based on the assumption that input and

process disturbances are not correlated [18, 61, 68]. Under feedback control, the future input is

correlated with noise signals, which may result in biased estimation of the model in the standard

open-loop identification methods [60].

The following short-hand notation is used in closed-loop method:

Ψpr =


R f

Ψp

 (2.30)

where R f is data-Hankel matrix of set-point. Huang et al. in [29] showed that by using Ψpr as

an instrument subspace variable, the bias error of open-loop methods for closed-loop data can be

avoided. Therefore by projecting Eq. (2.19) onto Ψpr :[
I −Φd

i

]
Ψ f /Ψpr = Γi X f /Ψpr + Φ

s
i W f /Ψpr + Vf /Ψpr (2.31)

Since the future process and measurement noises are independent of the past input/output and future

setpoint Eq. (2.20), the noise terms would be equal to zero, and the resultant equation would have

the following form:

[
I −Φd

i

]
Ψ f /Ψpr = Γi X f /Ψpr (2.32)
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By multiplying Eq. (2.32) by the extended orthogonal observability Γ⊥i , the state term is eliminated:

(Γ⊥i )
T

[
I −Φd

i

]
Ψ f /Ψpr = 0 (2.33)

Therefore the column space of Ψ f /Ψpr is orthogonal to the row space of
[
(Γ⊥i )

T −(Γ⊥i )
TΦd

i

]
. By

performing singular value decomposition (SVD) of Ψ f /Ψpr :

Ψ f /Ψpr = UΣV =
[
U1 U2

] 
Σ1 0

0 0



V1

T

V2
T

 (2.34)

where Σ1 contains dominant singular values of Ψ f /Ψpr and theoretically it has the order of the

nui+n and the order of the system can be determined by the number of the dominant singular values

of the Ψ f /Ψpr [71]. The orthogonal column space of Ψ f /Ψpr is U2M , where M ∈ R(ny−n)i×(ny−n)i

is any constant nonsingular matrix and is typically chosen as an identity matrix. Huang et al. in

[29], proposed the following steps to solve for the LTI model:

(

[
Γ⊥i −Γ⊥i Φ

d
i

]
)T = U2M (2.35)

From Eq.(2.35), Γi and Φd
i can be estimated.


Γi
⊥

−(Φd
i )

TΓi
⊥

 = U2 (2.36)

which results in (using MATLAB matrix index notation):


Γ̂i = U2(1 : nyi, :)⊥

Φ̂d
i = −(U2(1 : nyi, :)T )

†
U2(nyi + 1 : end, :)T

(2.37)
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The past state sequence can be calculated as follows:

X̂i = Γ̂
†

i

[
I −Φ̂d

i

]
Ψ f /Ψpr (2.38)

The future state sequence can be calculated by changing data Hankel matrices as follows [29]:

R f = Ri+2|2i (2.39)

Up = U1|i+1 (2.40)

Yp = Y1|i+1 (2.41)

U f = Ui+2|2i (2.42)

Yf = Yi+2|2i (2.43)

⇒ X̂i+1 = Γ̂
†

i

[
I −Ĥ

d
i

]
Ψ f /Ψpr (2.44)

where Γ̂i is obtained by eliminating the last ny rows of Γi, and Hd
i is obtained by eliminating the

last ny rows and the last nu columns of Hd
i . Then the model matrices can be estimated using least

square:


Xi+1

Yi |i

 =

A B

C D




Xi

Ui |i

 +

Wi |i

Vi |i

 (2.45)

The system matrices can be calculated as follows:


Â B̂

Ĉ D̂

 =

Xi+1

Yi |i




Xi

Ui |i


†

(2.46)

As mentioned before, the utilized closed-loop method is based on the recently presented subspace

orthogonal projection identification method (CSOPIM) [29]. The difference between these two
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methods is that, in CSOPIM the innovation form of the LTI model is used to formulate the identi-

fication method. In CSOPIM, first the innovation term E is estimated using residual of measured

output and estimated output (CXi + DUi |i), then the innovation gain (K) is calculated using least

square. This method may cause a situation where A − KC of the identified model ends up having

eigenvalues out of the unit circle, therefore the LTI model with filter is not going to be stable.

In order to avoid this problem, the presented approach uses a discrete-time linear time invariant

state-space model for the closed-loop formulation and covariance matrices are calculated using the

estimated residuals of state and output prediction instead of incorporating K in the LTI model.

With the proposed approach, process and measurement noise Hankel matrices can be calculated as

the residual of the least square of Eq. 2.45:


Ŵi |i

V̂i |i

 =

Xi+1

Yi |i

 −

Â B̂

Ĉ D̂




Xi

Ui |i

 (2.47)

Then the covariances of plant noises can be estimated as follows:


Q̂ Ŝ

ŜT R̂

 = E(


Ŵi |i

V̂i |i


[
ŴT

i |i V̂T
i |i

]
) (2.48)

Note, that any closed-loop identification method which can handle batches of data with unequal

durations (for instance, closed-loop predictor-based subspace identification, see, e.g., [14]) can be

used in the proposed framework. The specific identification method used in the present paper is

chosen because it is non-iterative and no knowledge of the controller dynamics is required.
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2.3.2.1 Formation of Batch Data Hankel Matrices

The proposed re-identification method intends to utilize past training data (used to create initial

model) and recent plant data. In order to assimilate recent data with past training data, the different

data sets are recognized as different batches of process data. Since these data are not continuous

block of data, these data can not be handled as one block of data. The way these batches of data

are handled is that the Hankel matrices for each single batch is concatenated horizontally and thus

the pertinent properties for subspace identification are retained [62]. For each batch of data b with

input variable define the Hankel sub-matrix as:

U(b)p = U(b)1|i =


u(b)1 u(b)2 . . . u(b)

j(b)

...
...

...
...

u(b)i u(b)i+1 . . . u(b)
i+ j(b)−1


(2.49)

The overall pseudo-Hankel matrix is formed by concatenating Hankel matrices horizontally:

Up =

[
U(1)p U(2)p . . . U(B)p

]
(2.50)

where B is the total number of the data batches. The described system identification utilizes the

concatenated data-Hankel matrices created as explained in Eq. 2.50 to identify an LTI model for

MPC.

Remark 2.3. Note that data-Hankel matrices can not be used in the form of Equation 2.49 because

it can only include one batch of data. Also, the other batch of data can not be added to the initial

Hankel matrix because the identification method would treat the entire data as one single block of

data, which would be incorrect. Therefore in order to create data-Hankel matrices without requiring

that the end point of one batch of data is the beginning of next batch of data, Hankel matrices are

created with horizontally concatenating data-Hankel matrices from the original data set and the
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recent data (y, u and r).

Remark 2.4. Note, that in contrast to existing re-identification methods, this framework enables

using prior training data, together with new data, in the identification of the new model. This allows

(and recognizes the fact), that the process may not have changed entirely, but is simply operating

in a region where the control calculations will be better served by tweaking the original model (but

not abandoning the original model altogether). One of the benefits of the proposed approach is that

if the initial training data satisfies persistently excitation condition for a certain system order, then

the new concatenated data will also be persistently exciting for that system order.

Remark 2.5. After re-identification the new identified model is augmented with disturbance states

and state estimator is designed for the new augmented system. Since the MPC objective function

and constraints only involves input and output terms, retuning of controller is not necessary.

Remark 2.6. In the case of a occasionally occurring disturbances, such as a ’gate-shaped’ dis-

turbance, if the disturbance lasts long enough to trigger re-identification, a new model will be

identified but after the disturbance passes, the model prediction index would violate the threshold

and a new model would be identified again, which would be more similar to the initial model. If the

disturbance keeps happening, this procedure would keep repeating. Note that this would happen

with any other adaptive model based control design as well. Repeat instances of such behavior

would indicate that the ‘time constant’ of large process disturbances is of the same order as the

‘time constant’ for the identified model, in turn necessitating the identification of the model at a

smaller time scale.

Remark 2.7. In order to achieve smooth, bump-less, transition after re-identification, two mecha-

nisms are utilized in the present approach. The first is that recent data is utilized to first update the

states of the new model, at the time of switching in the new model. This avoids the initial fluctuation

of the state estimation by the observer, in turn avoiding a jump in input calculation by controller.

The second mechanism is the use of constraints on the rate of change of the input.

Remark 2.8. The initial training data would be used in all of the re-identification steps, and since
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the identification method is capable of handling different batches of data, the windows of data

which indicated poor prediction of the previous models can also be included for the re-identification

purpose, thus ensuring that the new model better captures the new changed dynamics. In order to

handle memory issues, the more recent data, if sufficiently rich, may be used to replace the training

data.

2.4 Illustrative Simulation Results

In this section, we implement the proposed MPC with closed-loop re-identification on a polymer-

ization reactor example [10]. The state space equation of the reactor is nonlinear with 7 states, 2

outputs and 2 inputs. The list of the reactions that occurs in the reactor are presented in Table 2.1.

The mathematical model of the dynamic system is as follows:

ÛCI =
QiCI f −QtCI

V
− kdCI

ÛCM =
QMCMf −QtCM

V
− kpCMCP

ÛT =
Qt(T f − T)

V
+
(−∆H)
ρcp

kpCMCP −
hA
ρcpV

(T − Tc)

ÛTc =
Qt(Tc f − Tc)

Vc
+

hA
ρcccpVc

(T − Tc)

ÛD0 = 0.5ktC2
p −

Qt D0
V

ÛD1 = MmkpCMCp −
Qt D1

V

ÛD2 = 5MmkpCMCp +
3MM k2

p

kt
C2

M −
Qt D2

V

(2.51)
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where

CP = (
2 fi kdCI

kt
)0.5

k j = A j exp (
−E j

T
), j = d, p, t

Qt = Qi +Qs +Qm

(2.52)

The measured outputs are reactor temperature (T) and the intrinsic viscosity (η), related to the

process states as:

η = 0.0012(Mm
D2
D1
)0.71 (2.53)

The manipulated variables are the cooling liquid flow rate (Qc) and monomer feed flow rate (Qm).

The process parameters and steady state condition for the CSTR are presented in Table (2.2) and

Table (2.3).

In order to identify the process model, PI controllers (pairing η with Qc and T with Qm) are

implemented on the reactor. In particular, pseudo-random binary signals are used as set-point for

PI controllers. The training data is shown in Figures (2.4 and 2.5).

The proposed variation on the closed-loop identification algorithm uses these data to identify an

LTI model. The order of the identified LTI is selected as n = 4 and i = 12. Model validation results

Table 2.1: List of Reactions in the Reactor

No. Reaction Description

1 I
kd
−−→ 2R Initiator Decomposition

2 M + R
ki
−→ P1 Chain Initiation

3 Pn + M
kp
−−→ 2R Propagation

4 Pn + Pm
ktd
−−→ Tn + Tm Termination by Disproportionation

5 Pn + Pm
ktc
−−→ Tn+m Termination by Combination
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Table 2.2: List of Process Parameters for the Polymerization Process [3]

Variable Description Units Value

Ad Frequency factor for initiator decomposition h−1 2.142 × 1017

Ed Activation energy for initiator decomposition K 14897
Ap Frequency factor for propagation reaction L/(mol.h) 3.816 × 1010

Ep Activation energy for propagation reaction K 3557
At Frequency factor for propagation reaction L/(mol.h) 3.816 × 1010

Et Activation energy for termination reaction K 843
fi Initiator efficiency − 0.6
−∆Hr Heat of polymerization J/mol 6.99 × 104

hA Overall heat transfer coefficient J/(K.h) 1.05 × 106

ρcp Heat capacity of reactor fluid J/(K.L) 1506
ρccpc Heat capacity of cooling jacket fluid J/(K.L) 4043
Mm Molecular weight of the monomer g/mol 104.14

under a new set of set-point changes is presented in Figure 2.3.

In the model validation step, initially a steady state Kalman filter is used to update state estimate

until t = 300hrs and after convergence of the states (gauged via convergence of the outputs), the

model and the input trajectory (without the state estimator) is utilized to predict the future output.

As shown in Figure 2.3 the model prediction is acceptable. This model is used as an initial model

to design an MPC. In order to handle model mismatch, the model is augmented with disturbance

states. The disturbance model in the simulation example is constructed with Bd chosen as B and Cd

chosen as the identity matrix [69].

In order to make sure that the re-identification trigger is not overly sensitive to disturbance or

measurement noise, or minor plant-model mismatch, the re-identification is triggered only when

the error index threshold is violated for a certain number of conservative sample times. Note,

that 4 consecutive sample times is specific to the present case study, and was chosen to avoid

unnecessary re-identification (a smaller number resulted in too many re-identifications, while larger

numbers made the approach sluggish, and did not yield performance improvements). For other

applications, an appropriate number should similarly be chosen. The simulation results are presented
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Table 2.3: List of Steady-State Operational Condition for the Polymerization Process [3]

Variable Description Units Value

CI f Concentration of initiator in feed mol/L 0.5888
CMf Concentration of monomer in feed mol/L 8.6981
CI Concentration of initiator in the reactor mol/L 6.6832 × 10−2
CM Concentration of monomer in the reactor mol/L 3.3245
D0 Molar concentration of dead polymer chains mol/L 6.7547 × 10−4
D1 Mass concentration of dead polymer chains g/L 16.110
Qi Flow rate of initiator L/h 108
Qs Flow rate of solvent L/h 459
Qm Flow rate of monomer L/h 378
Qc Flow rate of cooling jacket fluid L/h 471.6
T f Temperature of reactor feed K 330
Tc f Inlet temperature of cooling jacket fluid K 295
T Temperature of the reactor K 323.56
Tc Temperature of cooling jacket fluid K 305.17
V Reactor volume L 3000
Vc Volume of cooling jacket fluid L 3312.4

in Figures (2.6-2.9). At sample time k = 57 (time = 28.5) the model prediction error violated the

specified εMPE threshold for model prediction accuracy (thresholds are reported in Table 2.4) and

re-identification is triggered and the model is replaced with a new model with the same order. The

new model also is augmented and the state of the new model is estimated using the recent data by

utilizing the observer with recent data. The LTI model parameters are presented in Table 2.5.

For subsequent comparison of the proposed methods a cost variable defined as follows:

j =
Nt∑

k=t1

| |yk − ySPk | |
2
Qy
+ | |uk − ũk−1 | |

2
Rdu

(2.54)

where t1 is the sample time the re-identification is triggered, and Nt is the total number of sample

times, the values of this variable is evaluated for five simulations with different measurement noise

and are presented in Table 2.6. The realized objective function of MPC is shown in Figure. 2.10,

and indicates an improved closed-loop performance. The summation of the stage cost over the
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Figure 2.2: MPC with closed-loop re-identification

entire simulation time is used as a measure of closed-loop performance. The prediction error

indexes in Figures (2.6 and 2.7) with re-identification decays faster than the case with no re-

identification (except at some very few isolated points). Also, note that evenwithout re-identification

the error indexes decay because in the offset-free MPC, the LTI system is augmented with integrated

disturbances to eliminate offset. With re-identification the prediction error, and in turn the closed-

loop performance, improves faster because re-identifying ‘jump starts’ the offset-free mechanism

with the updatedmodel. As can be seen, the closed-loop behavior is improvedwherein the oscillation

of the outputs are reduced significantly, and input changes are less aggressive. Furthermore, the

realized MPC objective function, which used the implemented input, and realized output of the

plant to calculate the objective function is less than nominal MPC.
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Figure 2.3: Model validation results under PI controller

2.5 Conclusions

In this study, a novel MPC with closed-loop re-identification approach is developed that enables

monitoring and updating the model used in the MPC using both past training data and current data.

The proposed approach is described and compared against a representative offset-free MPC and

shown to be able to provide improved closed-loop behavior through implementation on an example

of a polymerization CSTR model subject to measurement noise.
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Figure 2.4: Model training data: measured outputs
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Figure 2.5: Model training data: manipulated inputs under PI controller
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Figure 2.6: Model mean prediction error for the measured variables with re-identification (dash
dotted line) and without re-identification (continuous line), the square indicates the re-identification
trigger point and index threshold (dashed line)

Table 2.4: Controller parameters

Variable Value

kp

[
40.4 1.93

]
kI

[
1.96 0.258

]
Qy

[
50 0
0 5

]
Rdu

[
0.01 0

0 0.01

]
P 15
umin [71.6,78]
umax [870,670]
∆umin [-20,-20]
∆umax [20,20]
εMPE [3.04,1.72]
εEPPE [5.70,3.22]
Observer Poles [0.06, 0.11, 0.16, 0.21, 0.26, 0.31]
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Figure 2.7: Model end-point mean prediction error for the measured variables with re-identification
(dashed line) andwithout re-identification (continuous line), the square indicates the re-identification
trigger point and index threshold (dashed line)
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Table 2.5: LTI Model Parameters

Variable Initial Model Re-Identified Model with MPE

A


1.0083 −0.0460 0.0784 −0.0852
0.2095 1.1222 0.0035 0.0967
−0.2993 −0.0278 0.7651 0.0901
0.3255 0.1666 0.0774 0.9329




0.9525 0.1490 0.0599 0.0903
−0.2883 1.0229 −0.4248 0.0352
−0.2922 0.0962 0.5473 0.0619
−0.2197 0.4309 −0.2987 1.1981


B × 103


0.1544 −0.0269
−0.4656 −0.5520
−0.0060 1.5984
−0.2566 0.8176




0.0855 0.9243
0.1887 0.7452
0.1632 0.7534
−0.0486 0.5613


C

[
−0.1569 −0.2260 0.0429 0.2802
0.2115 0.1361 0.5661 −0.2891

] [
0.0547 0.2300 −0.5896 −0.0713
−0.0099 −0.5014 −0.3965 0.1270

]
Q × 104


0.0221 −0.0575 −0.0107 −0.0309
−0.0575 0.2147 0.0348 0.1155
−0.0107 0.0348 0.0095 0.0189
−0.0309 0.1155 0.0189 0.0647



0.0433 0.0338 0.0087 0.0657
0.0338 0.0603 0.0225 0.0412
0.0087 0.0225 0.0105 0.0084
0.0657 0.0412 0.0084 0.1733


R × 105

[
0.1384 0.0667
0.0667 0.0619

] [
0.0245 −0.0416
−0.0416 0.4416

]

Table 2.6: Comparison of nominal MPC and MPC with closed-loop re-identification (mean values)

Controller Cost

Nominal MPC with t1 = 140 136.5
Re-identification with MPE 110.8
Nominal MPC with t1 = 139 148.1
Re-identification with EPPE 127.7

Page 37



M. Kheradmandi, Ph.D. Thesis Chemical Engineering | McMaster University

0 20 40 60 80 100

Time(hr)

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

(L
/g

)

0 20 40 60 80 100

Time(hr)

321

321.5

322

322.5

323

323.5

324

324.5

T
(K

)

60 80 100

3.175

3.18

3.185

60 80 100
322.6

322.65

322.7

Figure 2.8: Comparison of the trajectories for the measured variables obtained from the proposed
MPC with re-identification (dash dotted line with MPE, dashed line with EPPE) and conven-
tional method (continuous line) and set-point (dotted line), the square and circle indicate the
re-identification trigger points with MPE and EPPE indexes respectively

Page 38



M. Kheradmandi, Ph.D. Thesis Chemical Engineering | McMaster University

0 20 40 60 80 100

Time(hr)

300

350

400

450

500

550

Q
c
(L

/h
)

0 20 40 60 80 100

Time(hr)

150

200

250

300

350

400

Q
m

(L
/h

)

Figure 2.9: Closed-loop profiles of the manipulated variables obtained from the proposed MPC
with re-identification (dash dotted line with MPE, dashed line with EPPE) and conventional method
(continuous line), the square and circle indicate the re-identification trigger points with MPE and
EPPE indexes respectively
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Figure 2.10: Closed-loop trajectories of the realized MPC objective function obtained from the
proposed MPC with re-identification (dash dotted line with MPE, dashed line with EPPE) and
conventional method (continuous line)
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Chapter 3

MODEL PREDICTIVE CONTROLWITH

RE-IDENTIFICATION OF BATCH

PROCESSES†

Abstract

The present work addresses the problem of loss of model validity in batch process control via online

monitoring and adaptation basedmodel predictive control. To this end, a state space subspace-based

model identification method suitable for batch processes is utilized and then a model predictive

controller is designed. To monitor model performance, a model validity index is developed for

batch processes. In the event of poor prediction (observed via breaching of a threshold by the model

validity index), re-identification is triggered to identify a new model, and thus adapt the controller.

In order to capture the most recent process dynamics, the identification is appropriately designed

to emphasize more the recent process data. The efficacy of the proposed method is demonstrated
†The results in this chapter have been submitted to: Industrial & Engineering Chemistry Research
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using an electric arc furnace as a simulation test bed.

Keywords: Model Predictive Control, Batch Process Control, Subspace-Based Identification,

Electric Arc Furnace

3.1 Introduction

Optimal operation of batch processes is essential to achieve consistent and high-quality products,

and to avoid wasted batches. The operation and control of batch processes, however, has to deal with

involves numerous challenges such as nonlinearity, complex variable interactions and constraints

[9, 12, 16, 17, 37]. One control method well suited to handling these challenges is model predictive

control (MPC). In MPC, an optimization problem is solved at each sampling instance over a finite

time horizon, subject to the dynamic model of the plant and process constraints, to compute the

control action. Regardless of the nature of the model used (mechanistic or data driven), the resultant

plant-model mismatch remains unavoidable.

One approach to address the plant model mismatch is through robust/offset free MPC design. In

robust MPC approaches, the manipulated input action is calculated to handle the worst case scenario

of the uncertainty [49, 63]. In one formulation, Lyapunov-based stability constraint is utilized that

enables explicit characterization of the robust stability region (region from where stability of the

closed-loop system is guaranteed in the presence of constraints and uncertainty) [47]. In another

approach, plant model mismatch is handled by integrating disturbances by so-called offset-free

MPC, to overcome offset in set-point tracking [57, 70].

While these control algorithms are designed to reject disturbances at steady state, the possibility of

improved dynamic closed-loop performance motivates online model monitoring (and correction).

In this direction, the main focus of most of the existing contributions was on controller perfor-
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mance monitoring. Many controller performance assessment approaches are based on comparing

the controller performance with an ideal benchmark [11, 28, 65]. The prescribed remedy for poor

performance is controller parameter retuning. In another direction [36] model prediction perfor-

mance is directly monitored for continuous processes. In the case of poor model performance

re-identification is triggered to achieve model improvement.

There also exist other MPC approaches with re-identification built-in (IMPC). In most of these

results, excitation constraints are included to ensure that the recent data possesses sufficient richness

for determining the model parameters. Early results using this approach [22] require identification

at every time step. In later contributions [26, 59], input excitation constraint is implemented based

on a trigger, activated on poor model prediction. In a recent contribution, in order to avoid additional

constraints in MPC, previous data was also used in re-identification step with recent data of the

plant. In this method, the controller looks back in time to evaluate model prediction performance.

Then, in the case of poor prediction, the re-identification is triggered and earlier data and recent

plant data are augmented for the purpose of model identification in continuous operation. In the

context of batch process operation, the problem of model validity monitoring and re-identification,

however, remains addressed. Note that every new batch goes through a learning phase, where a

direct application of the ideas from [36] would result in unnecessary re-identification. Furthermore,

the results in [36] do not account for the need to emphasize current batch data more than previous

data, and need to be appropriately adapted for batch processes.

Motivated by the above considerations, in this work we address the problem of model prediction

performance monitoring and adaptive model for MPC design of batch processes. The rest of the

manuscript is organized as follows: First, the general description for the batch systems considered

in this work, a subspace identification approach and a representative formulation for linear MPC

are reviewed. Then the proposed model monitoring, triggering and re-identification approach

are presented. The efficiency of the proposed MPC with re-identification for batch processes is
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illustrated by implementation on a nonlinear electric arc furnace (EAF) simulation example. Finally,

concluding remarks are presented.

3.2 Preliminaries

This section presents a brief description of the general class of processes that are considered in this

manuscript, followed by a review of subspace identification and a conventional MPC formulation.

3.2.1 System Description

Consider a general multi-input multi-output (MIMO) batch process, with measured outputs denoted

by y ∈ Rny , and manipulated input variables denoted by u ∈ Rnu , taking values in a nonempty

convex subset U ⊂ Rnu , where U =
{
u ∈ Rnu | umin ≤ u ≤ umax

}
, umin ∈ R

nu and umax ∈ R
nu

denote the lower and upper bounds of the input variables. A discrete implementation of MPC is

utilized, thus u is piecewise constant and defined over an arbitrary sampling instance k as:

u(t) = u(k), k∆t ≤ t<(k + 1)∆t

where ∆t is the sampling time and xk and yk denote state and output at the kth sample time. We

consider the case where the MPC is implemented based on a linear (identified) model, identified

using subspace identification techniques, and address the problem of monitoring model quality

online, and triggering re-identification as appropriate, to maintain model validity and closed-loop

performance.
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3.2.2 Subspace-Based Identification

In this section, a representative subspace based identification method is presented and reviewed

[27, 67, 76]. The goal of the state space subspace identification methods is to determine the linear

time invariant model matrices for a discrete LTI model of the following form:

xk+1 = Axk + Buk (3.1)

yk = Cxk + Duk (3.2)

where x ∈ Rnx and y ∈ Rny denote the vector of state variables and measured outputs. In order to

calculate A, B, C and D matrices, data-Hankel matrices are first constructed using the input and

output variables as follows:

Up = U1|iH =



u1 u2 . . . u j

u2 u3 . . . u j+1

. . . . . . . . . . . .

uiH uiH+1 . . . uiH+ j−1


(3.3)

U f = UiH+1|2iH =



uiH+1 uiH+2 . . . uiH+ j

uiH+2 uiH+3 . . . uiH+ j+1

. . . . . . . . . . . .

u2iH u2iH+1 . . . u2iH+ j−1


(3.4)

where Up and U f denote the past and future input Hankel matrices. iH is a user-specified parameter

that limits the order of the system (n) (which in itself is a user-specified parameter). Similarly

block-Hankel matrices are defined for outputs whereYp,Yf ∈ R
iHny× j are defined similar to the input
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Hankel matrices. The state sequences matrices are defined as follows:

Xp =

[
x1 x2 . . . x j

]
(3.5)

X f =

[
xiH+1 xiH+2 . . . xiH+ j

]
(3.6)

furthermore, the following variables are used in the approach:

Ψp =


Yp

Up

 (3.7)

Ψ f =


Yf

U f

 (3.8)

By recursive substitution into the state space model equations Eqs. (3.1,3.2), it is straightforward to

show:

Yf = ΓiH X f + Φ
d
iHU f (3.9)

Yp = ΓiH Xp + Φ
d
iHUp (3.10)

X f = AiH Xp + ∆
d
iHUp (3.11)

where:

ΓiH =



C

CA

CA2

...

CAiH−1


(3.12)
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Φ
d
iH =



D 0 0 . . . 0

CB D 0 . . . 0

CAB CB D . . . 0

. . . . . . . . . . . . . . .

CAiH−2B CAiH−3B CAiH−4B . . . D


(3.13)

∆
d
iH =

[
AiH−1B AiH−2B . . . AB B

]
(3.14)

Solving for X f in Eq. 3.9 yields

X f =

[
Γ†iH −Γ†iHΦiH

] 
Yf

U f

 (3.15)

where Γ†iH denotes the pseudo-inverse of Γi. It can be concluded from Eq. 3.15 that the row space of

X f is comprised within the row space of
[
YT

f UT
f

]T
. Similarly, Xp can be calculated from Eq. 3.10

and by substituting into Eq. 3.11, we can write:

X f =

[
AiHΓ†iH ∆iH − AiHΓ†iHΦiH

] 
Yp

Up

 (3.16)

From equation 3.16 it can be concluded that the row space of X f is contained within the row space

of
[
YT

p UT
p

]T
. Then, X f can be calculated from the intersection between the past and future data:

span
(
X f

)
B row space

©­­­«

Yf

U f


ª®®®¬ ∩ row space

©­­­«

Yp

Up


ª®®®¬ (3.17)

In [52], a computationally efficient method was proposed to estimate state sequence using singular

value decomposition (SVD) method. Then, LTI model parameters can be calculated using the state
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sequence [62].

3.2.2.1 Formation of batch data Hankel matrices

For batch processes training data are taken from different batches with different duration to ensure

data richness. Therefore in constructing data-Hankel matrices, input and output data can not be

handled as one block of data. In order to handle this issue, in [62], it was proposed to construct

data-Hankel matrix for each batch b with input variable as the Hankel sub-matrix as:

U(b)p = U(b)1|iH
=


u(b)1 u(b)2 . . . u(b)

j(b)

...
...

...
...

u(b)iH
u(b)iH+1 . . . u(b)

iH+ j(b)−1


(3.18)

The overall data-Hankel matrix is constructed by concatenating these sub-Hankel matrices horizon-

tally:

Up =

[
U(1)p U(2)p . . . U(B)p

]
(3.19)

where B indicates the total number of the batches. By utilizing the described data-Hankel matrix,

the illustrated subspace identification can compute the LTI model matrices to be used in MPC.
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3.2.3 Model predictive control

A representative model predictive control formulation for trajectory control of batch processes is as

follows:

min
ũk,...,ũnt

nt∑
j=k

| | ỹk+ j − ỹSPk+ j | |
2
Qy
+ | |ũ2

j−1 − ũ2
j−2 | |

2
Rdu
,

subject to:

x̃k+1 = Ax̃k + Bũk,

ỹk = Cx̃k + Dũk,

ũ ∈ U, x̃(k) = x̂l,

(3.20)

where nt denotes the end of the batch, ỹSPk is the desired output (desired trajectory), and, ỹk and ũk

are the predicted output trajectory and input at the time k∆t. Qy ∈ Rn×n and Rdu are positive definite,

and, positive semi-definite matrices respectively, and they are chosen so the nominal closed-loop

system is stable [34]. x̃ and x̂ are predicted and the estimate of the subspace state, obtained using

an appropriate state estimator. For illustrative purposes (and for the simulations in this paper), a

Kalman filter is employed for state estimation. The state estimator has the following form:

x̂−k = Ax̂k−1 + Buk

P−k = APk−1 AT +Q

Kk = P−k CT
(
CP−k CT + R

)−1

x̂k = x̂−k + Kk

(
yk − Cx̂−k

)
Pk = (I − KkC) P−k
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where x̂−k and P−k indicate state and covariance matrix prediction at sample time k. Q and R are

state and output covariance matrices, Kk is the Kalman filter gain at sample time k and I i denotes

the identity matrix.

Remark 3.1. Note that there exist different MPC formulations for batch processes, including those

where end point constraints are utilized, and those that achieve quality control. A generic MPC

formulation is employed to simply illustrate the proposed MPC with re-identification approach. By

the same token, the control design could be implemented coupled with other estimation approaches

such as the moving horizon estimation, and the Kalman filter is simply being used for illustrative

purposes.

3.2.4 Model monitoring and re-identification under continuous operation

We next review a recently proposed monitoring based MPC formulation [36]. In this formulation,

at a sample time k, the updated state estimate archived at sample time k − h, i.e., x̂k−h and the

input sequence uk−h,uk−h+1, . . . ,uk−1, where h denotes the monitoring horizon for the model are

utilized to compute the ‘predicted’ behavior of the plant (ŷk−h, ŷk−h+1, . . . , ŷk−1). Since the true

plant output is measured and stored for this period, this prediction is used to evaluate model

prediction performance. A schematic presentation of this approach is presented in Figure (3.1). In

the schematic in Figure 3.1, the predicted output trajectory is calculated utilizing the state space

LTI model with estimated state vector at the sample time k − h ( which is stored at each sample

time for the purpose of model monitoring) and the implemented input from k − h to k − 1. The

difference between measured and predicted output is ascribed to plant-model mismatch. The future

computed input trajectory and the the future predicted output, are calculated by the MPC at the

current sample time. Finally, note that the model monitoring does not need solving an optimization

problem, but only requires the integration of the identified model with known initial condition and

input trajectory.
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k

Time

y

Prediction HorizonPrediction Horizon

FuturePast

Figure 3.1: A schematic depicting an MPC implementation with re-identification for continuous
operation − − denotes the measured output, − − denotes the past predicted output, − − denotes
the Future Predicted Output, −− denotes Setpoint, − denotes Past Input, .. denotes Future Predicted
Input)

From a model monitoring perspective, the key difference between continuous operation and batch

processes is appropriately accounting for the batch nature of process data. In general, a direct

application of the model monitoring approach for continuous operation will lead to erroneous

conclusions for batch operation. The model performance evaluation and re-identification approach

for batch processes is presented next.

3.3 Model monitoring and re-identification based model pre-

dictive batch process control

In this section, we first present a model monitoring approach for batch processes. Then, a re-

identification approach that enables greater emphasis on recent data is presented.
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3.3.1 Model performance index

In [36], two model prediction perforce indexes were proposed, end point prediction error (EPPE)

and mean prediction error (MPE). In this work the MPE index is adapted for quantifying model

mismatch in batch processes. The MPE index is calculated as follows:

MPE k =
1
h

k−1∑
j=k−h

(|y j − ȳ j |) (3.21)

where MPEk ∈ Rny is the mean prediction error, and is calculated as the mean value of prediction

error along the model monitoring horizon at sample time k and, ȳ is the corresponding output

prediction. As opposed to performance monitoring indexes, the proposed index directly tests the

predictive capability of the model. One of the key differences in batch implementation is the

determination of the threshold. One proposed approach for threshold determination is as follows:

MPE k,i = max{MPE (1)k,i , . . . ,MPE (B)k,i }, For i = 1, . . . ,ny (3.22)

Thus, the threshold at each sample time is chosen as the maximum value of the index among all the

batches, at the same time in the training batches.

Remark 3.2. The definition of the index where it depends on the time into the batch renders the

ability to set time varying threshold. This however, would not be readily implementable for batches

with different duration. In such cases, an alignment variable could be used, or a threshold, which

is the maximum over the training batches, could be used. Other alternatives include one where the

error threshold is computed based on the proximity in state space in the training batches.
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3.3.2 Model monitoring

Beyond the definition of the threshold, the other key difference in the batch process monitoring is the

requirement to wait for the state estimator to converge before starting the process monitoring. The

schematic presentation ofMPCwith re-identification for batch processes is presented in Figure (3.2).

In order to evaluate model prediction performance at each sample time l, the estimated state vector

T=kT=k-h

Monitoring 

Horizon

y
k

-h
y

k

T=tend

y
d

e
s

MPC 

Horizon

Time

O
u

tp
u

t

Figure 3.2: MPC with re-identification for batch systems ([Measured Output:continuous line], [Past
Predicted Output: dashed line], [Future Predicted Output:dashed-dotted line])

xl−h at sample time l − h and the input trajectory from ul−h to ul−1 are used to calculate the past

output prediction as follows:

ȳ j = Cx̄ j + Du j

x̄ j+1 = Ax̄ j + Bu j

where j = l − h, . . . , l − 1

x̄l = x̂l−h

(3.23)
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where ȳ and x̄ are predicted output and state. Model monitoring, however, is only initiated after a

certain time into the batch (denoted by sampling index k∗). One of the criterion for determining

k∗ is that the state estimator achieve a required convergence. The state estimator is said to have

converged at sample time k if:

|yi,k − ŷk | < ε∗i For i = 1, . . . ,ny (3.24)

where ε∗ denotes the vector of acceptable output prediction error, and ko represents the smallest

sample time at which condition in equation 3.24 is satisfied.

ko = in f {k | |yi,k − ŷk | < ε∗i For i = 1, . . . ,ny} (3.25)

Furthermore, in order to have enough data to fill a column in Hankel matrices, a certain number of

samples need to have been collected(iH in Equation (3.18)). Therefor, k∗ is determined as follows:

k∗ = h + max{ko, iH} (3.26)

Remark 3.3. The requirement to wait a certain number of samples before initiating model monitor-

ing is consistent with model predictive control implementations in batch processes. In particular,

the subspace model based predictive control designs are set to activate only after the state estimates

have converged, providing reliable state estimates, and predictive capability. The model monitoring

needs to wait possibly longer for two reasons. The first one being the requirement for the state

estimates to have converged, and a reasonable amount of time have to have passed after the con-

vergence of the estimates to test model predictions. The second requirement ensures that sufficient

data has been collected to re-identify, should the re-identification be triggered.
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3.3.3 Re-identification for batch systems

At any sampling instance where the index breaches its threshold, a re-identification is carried out. In

the re-identification step, the current batch measurements are concatenated with past training data

horizontally to create Hankel matrices. More importantly, to emphasize more the recent dynamics,

the measurements from the current batch are repeated in the Hankel matrix as follows:

Up =

[
U(1)p U(2)p . . . U(B)p U(B)p . . . U(B)p

]
(3.27)

The number of repetitions is a tuning parameter and can be informed by the number of batches in

initial training data, in a way to make sure that recent data is dominant. For instance, in the present

work, the number of repetition are chosen so the recent data amounts to twenty percent of the total

data in the augmented Hankel matrix.

Remark 3.4. Note that in the proposed method the computation of the past output prediction is

for a purpose different from the moving horizon estimation (MHE) method, which estimates past

states using an optimization problem. The MHE approach can not be utilized to check for model

validity, because in the MHE approach, the state values at the past point in time are computed (the

state values are one of the decision variables in the optimization problem), and done in a way that

minimizes the error between the predictions and observed variables. While it is an excellent state

estimation technique, the computation of the state estimate defeats the model monitoring objective.

In contrast, in the proposed approach, the state estimates generated by the state estimator is used

to focus on the model validity aspect. That said, the MHE can be readily utilized instead of the

Kalman filter for the purpose of state estimation.

Remark 3.5. The key advantage of the use of the pseudo-Hankel matrices formed by the concate-

nation of batch data is that it allows the ability to ‘naturally’ emphasize the recent data by simply

creating multiple instances of the recent data. Such a natural concatenation does not readily apply
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in the continuous time setting. The other advantage of concatenating horizontally is that the data-

Hankel matrices can consists of batches with different durations, without the need of the existence

of an appropriate alignment variable.

At each sample time model prediction is evaluated and the LTI model used by MPC is updated only

if the initial LTI model prediction is poor (i.e., the threshold is breached) and the new model has

improved prediction [36]. After model identification, the previous measured outputs of the current

batch are utilized with the new model to calculate current state with the new model using Kalman

filter, both for model prediction checking, and to initialize the MPC (see the algorithm in the next

section for a better understanding).

3.3.4 Model monitoring and re-identification basedMPC for batch processes

In this section, we briefly describe through an algorithm the implementation of the re-identification

based MPC. The algorithm describes the sequence of steps after a model (denoted by M1) has been

identified using training data, and the thresholds for model monitoring determined.

1. Initialize the Kalman filter using the existing model and a guess for the initial state (see

Remark 3.6 below for further discussion on this point), and run the process under open-

loop/PID controller up until the outputs converge.

2. After the outputs converge, engage the MPC, and check conditions for model prediction

testing.

3. Upon satisfaction of the model prediction testing criteria, initiate model monitoring.

4. If at any time during the batch, the prediction monitoring threshold is breached successively

more than b∗ times, where b∗ is a user defined parameter

(a) Re-identify a model (denoted by M2) by concatenating the training data with repeats of
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the current batch data.

(b) Using a guess for an initial state from the start of the batch, run the Kalman filter with the

new model, up-until h time steps back from the current time and evaluate the predictive

capability of the newmodel over h sample times (see Remark 3.7 on why this is needed).

(c) If the new model has improved prediction, then continue the Kalman filtering to deter-

mine the state estimate at the current time, and using this state estimate, compute the

control action under the MPC.

5. Continue monitoring, checking step 4, until batch termination.

Remark 3.6. In general, the initial state of a new batch remains an unknown quantity (only the

outputs are directly measured). That said, starting from an initial guess that might be closer

to the ‘true’ value of the subspace states for that particular batch would certainly help with the

convergence of the state estimation scheme and favor early engagement of the MPC. One way to

determine an initial guess that will possibly be closer to the true state values invokes the assumptions

that most batches (with their initial conditions) are designed to be sufficiently close to each other.

Thus, in this work, the initial state estimate guess (that is utilized to initialize the Kalman filter) is

determined by averaging the initial state value (computed at the time of model identification) over

the training batches.

Remark 3.7. The parameter b∗ serves to prevent repetitive re-identification. Thus, re-identification

is triggered only after the threshold is breached a certain number of times (with values typically

being about half the monitoring horizon). Furthermore, before engaging the new model, one needs

to determine if the new model predicts better than the previous model for the current batch. To do

this, one must be able to ‘predict’ using the new model over the past h time steps. To perform this

prediction, and to have a fair comparison with the old model, the new model must be provided state

estimates that are consistent with the new model. To achieve this, step 4b requires the appropriate

estimation of the states for the new model, and using those state estimates with the new model to
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test the predictive capability.

3.4 Application to the Electric Arc Furnace

In this section, first an electric arc furnace (EAF) process is described, then the efficiency of

the identification is demonstrated. Finally, the identified state space LTI model is utilized in the

proposed model predictive control with re-identification approach, and simulation results on a test

bed indicates improvement in closed-loop behavior.

3.4.1 Electric arc furnace process description

Electric arc furnace (EAF) process is used to produce steel from recycling scrap and direct reduced

iron. The EAF process is a batch process, which starts with scrap metal being loaded inside the

furnace. The duration of each batch is about one to two hours. EAF utilizes a high intensity

electric arc, in order to melt the scrap metal. The electric arc is usually the largest energy consumer

in the EAF process. After most of the metal has been melted, in order to create iron oxide and

carbon monoxide, raw carbon and oxygen gas are injected into the molten steel. The batch is

terminated when the desired steel composition and temperature are obtained (detailed explanation

of EAF process and modeling details and formulations can be found in [62], and are omitted here

for brevity). A list of the process output variables are given in Table 3.1, and the inputs are listed

in Table 3.2. The outputs y1, y5, y6 and y7 are controlled outputs. The controller ensures that the

controlled outputs follow their set-point trajectory.
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Table 3.1: List of Output Variables of the EAF Process

Variable Name Variable Description Units

y1 T Temperature of Molten Steel K
y2 xFe Mass Fraction Iron in Molten Steel kg/kg
y3 xC Mass Fraction Carbon in Molten Steel kg/kg
y4 xSlag Mass Fraction Lime/Dolime in Slag kg/kg
y5 xFeO Mass Fraction Iron Oxide in Slag kg/kg
y6 xSiO2 Mass Fraction Silicon Dioxide in Slag kg/kg
y7 P Relative Pressure Pa
y8 xCO Mass Fraction Carbon Monoxide in Gas kg/kg
y9 xCO2 Mass Fraction Carbon Dioxide in Gas kg/kg
y10 xN2 Mass Fraction Nitrogen in Gas kg/kg

Table 3.2: List of Manipulated Variables for the EAF Process

Variable Name Variable Description Units

u1 mgas Off-gas Turbine Flow kg/s
u2 mO2 Oxygen Lanced kg/s
u3 mDRI DRI Additions kg/s
u4 mSlag Slag Additions kg/s
u5 E Electric Arc Power kW
u6 mC Carbon Injected kg/s

3.4.2 Electric arc furnace model identification

As a test bed, a first principles EAF [8] process model is utilized. 40 normal operation batches

of varying durations between 60 to70 sample times are assumed to be available for training.

Before proceeding with model identification, full row rank of input Hankel matrix was ascertained.

Subsequently, an LTI model with 12 states is identified.

For validation, a different batch of data was utilized. The model validation results are presented

in Figures (3.3 & 3.4). Since the initial state of LTI model is not available for new batch, Kalman

filter is utilized for initial sample times and after output convergence, open-loop prediction is used

for model validation. At a time 30 minutes into the batch, the output of Kalman filter converge
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to the plant output, and the identified LTI model in open-loop (without state update), along with

the known input trajectory, is utilized for output prediction with the remainder of the batch. The

results indicate that after convergence of model states, the model is capable of predicting the process

behavior reasonably well, and is suitable for an MPC implementation.
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Figure 3.3: Input profiles for the validation batch

3.4.3 Model predictive control of the electric arc furnace

The proposed MPC with monitoring and identification was implemented on new batches. For the

purpose of model monitoring, the parameters h and b∗ were chosen as 10, and 6, respectively. The

simulation results show comparison of three MPC formulations. The first is the standard MPC

without re-identification, the second is with re-identification, where, the recent data is simply added

to the training data and a model is identified. The third implementation is where the model is

identified using ten repetitions of the data from the current batch. Following the algorithm outlined

in Section 3.3.4, re-identification occurs at sample times 28,34, 40, 46 and 52, for both the MPC
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Figure 3.4: Validation batch: measured outputs (continuous line) and predicted output (dashed line)

implementations with re-identification. The multiple trigger re-identification is expected as the

batch process moves through significantly different dynamics.

As can be seen from Figures (3.5-3.7). the prosed MPC that emphasizes the recent data more is the

one that yields a trajectory closest to the reference trajectory (designed for four output variables).

The superior performance was also ascertained quantitatively, using the root mean square error of

all the controlled variables, and presented in Table (3.4). More importantly, the improved predictive

ability of the re-identified models can be seen from the lower values of the monitoring index in

Figure 3.7.

Remark 3.8. In the proposed method at each sample time k, state estimation xk−h and past input

uk−h, . . . ,uk−1 is utilized to calculate output trajectory, yk−h, . . . , yk−1. None of these variables (past

input trajectory and state estimates) need to be computed in the proposed framework but simply

need to be read from the data historian.

Page 61



M. Kheradmandi, Ph.D. Thesis Chemical Engineering | McMaster University

Table 3.3: Controller parameters

Variable Value

Qy


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


Rdu 0
Monitoring Horizon 10
k∗ 28
ε∗ 0.001

Table 3.4: Model validation results

Variable Name RMSEMPC RMSE1 RMSE10 Unit

y1 159.49 137.53 137.52 K
y5 0.0814 0.0685 0.0682 kg/kg
y6 0.0121 0.0101 0.0101 kg/kg
y7 0.7364 0.6624 0.6319 Pa

3.5 Conclusions

An MPC with re-identification framework is presented for batch processes that enables model pre-

diction performance monitoring and adapting the model used in the MPC using both initial training

data and data from the current batch. The MPC with re-identification method is demonstrated and

compared against traditional MPC using an EAF process simulation as a test bed. The simulations

illustrate the ability of the proposed method to improve closed-loop performance.
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Figure 3.5: Closed-loop profiles of the input variables obtained from the proposedMPC and nominal
MPC (Nominal MPC: dashed line, MPCwith re-identification with one repetition : continuous line,
MPC with re-identification with ten repetitions: dash-dotted line and lower and upper bounds on
the inputs: dotted lines)
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Figure 3.6: Comparison of the trajectories output variables obtained from the proposed MPC with
re-identification and nominal MPC (Nominal MPC: dashed line, MPC with re-identification with
one repetition : continuous line, MPC with re-identification with ten repetitions : dash-dotted line)
and set-point for the controlled outputs: dotted line
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Figure 3.7: Comparison of the index trajectories obtained from the proposed MPC with re-
identification and nominal MPC (Nominal MPC: dashed line, MPC with re-identification with
one repetition : continuous line, MPC with re-identification with ten repetitions : dash-dotted line
and threshold: dotted lines)
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Chapter 4

DATA DRIVEN ECONOMIC MODEL

PREDICTIVE CONTROL†

4.1 Introduction

Control systems designed to manage chemical process operations often faces numerous challenges

such as inherent nonlinearity, process constraints and uncertainty. Model predictive control (MPC)

is a well established control method that can handle these challenges. In MPC, the control action is

computed by solving an open-loop optimal control problem at each sampling instance over a time

horizon, subject to the model that captures the dynamic response of the plant, and constraints [63].

In early MPC designs, the objective function was often utilized as a parameter to ensure closed-loop

stability. In subsequent contributions, Lyapunov-based MPC was proposed where feasibility and

†The results in this chapter have been published in[35]:

• M. Kheradmandi and P. Mhaskar. Data driven economic model predictive control. Mathematics, 6(4), p.51,

2018.
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stability from a well characterized region was built into the MPC [46, 50].

With increasing recognition (and ability) of MPC designs to focus on economic objectives, the

notion of Economic MPC (EMPC) was developed for linear and nonlinear systems [4, 7, 40], and

several important issues (such as input rate-of-change constraint and uncertainty) addressed. The

key ideawith the EMPC designs is the fact that the controller is directly given the economic objective

to work with, and the controller internally determines the process operation (including, if needed,

a set point) [53].

Most of the existing MPC formulations, economic or otherwise, have been illustrated using first

principles models. With growing availability of data, there exists the possibility of enhancing MPC

implementation for situations where a first principles model may not be available, and simple ‘step-

test’, transfer-function based model identification approaches may not suffice. One of the widely

utilized approaches in the general direction of model identification are latent variable methods,

where the correlation between subsequent measurements is used to model and predict the process

evolution [23, 42]. In another direction, subspace-based system identification methods have been

adapted for the purpose of model identification, where state-space model from measured data are

identified using projection methods [24, 27, 38]. To handle the resultant plant model mismatch

with data-driven model based approaches, monitoring of the model validity becomes especially

important.

One approach to monitor the process is to focus on control performance [65], where the control

performance is monitored and compared against a benchmark control design. To focus more ex-

plicitly on the model behavior, in a recent result [33] an adaptive data-driven MPC was proposed

to evaluate model prediction performance and trigger model identification in case of poor model

prediction. In another direction, an EMPC using empirical model was proposed [1]. The approach

relies on a linearization approach, resulting in closed-loop stability guarantees for regions where

the plant-model mismatch is sufficiently small, and illustrate results on stabilization around nom-
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inally stable equilibrium points. In summary, data driven MPC or EMPC approaches, that utilize

appropriate modeling techniques to identify data from closed-loop tests to handle operation around

nominally unstable equilibrium points remain addressed.

Motivated by the above considerations, in this work we address the problem of data driven model

based predictive control at an unstable equilibrium point. In order to identify a model around

an unstable equilibrium point, the system is perturbed under closed-loop operation. Having iden-

tified a model, a Lyapunov-based MPC is designed to achieve local and practical stability. The

Lyapunov-based design is then used as the basis for a data driven Lyapunov-based EMPC design

to achieve economical goals while ensuring boundedness. The rest of the manuscript is organized

as follows: First, the general mathematical description for the systems considered in this work, and

a representative formulation for Lyapunov-based model predictive control are presented. Then the

proposed approach for closed-loop model identification is explained. Subsequently, a Lyapunov-

based MPC is designed, and illustrated through a simulation example. Finally, an economic MPC

is designed to consider economical objectives. The efficacy of the proposed method is illustrated

through implementation on a nonlinear continuous stirred-tank reactor (CSTR) with input rate of

change constraints. Finally, concluding remarks are presented.

4.2 Preliminaries

This section presents a brief description of the general class of processes that are considered in this

manuscript, followed by closed-loop subspace identification and Lyapunov basedMPC formulation.
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4.2.1 System Description

We consider a multi-input multi-output (MIMO) controllable systems where u ∈ Rnu denotes the

vector of constrained manipulated variables, taking values in a nonempty convex subsetU ⊂ Rnu ,

where U =
{
u ∈ Rnu | umin ≤ u ≤ umax

}
, umin ∈ R

nu and umax ∈ R
nu denote the lower and upper

bounds of the input variables, and y ∈ Rny denotes the vector of measured output variables. In

keeping with the discrete implementation of MPC, u is piecewise constant and defined over an

arbitrary sampling instance k as:

u(t) = u(k), k∆t ≤ t<(k + 1)∆t

where ∆t is the sampling time and xk and yk denote state and output at the kth sample time. The

central problem that the present manuscript addresses is that of designing a data driven modeling

and control design for economic MPC.

4.2.2 System Identification

In this section, a brief review of a conventional subspace-based state space system identification

methods is presented [29, 33, 60]. These methods are used to identify the system matrices for a

discrete-time linear time invariant (LTI) system of the following form:

xk+1 = Axk + Buk + wk (4.1)

yk = Cxk + Duk + vk (4.2)

where x ∈ Rnx and y ∈ Rny denote the vectors of state variables and measured outputs, and w ∈ Rnx

and v ∈ Rny are zeromean, white vectors of process noise andmeasurement noise with the following
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covariance matrices:

E[
©­­«
wi

v j

ª®®¬
(
wT

i vT
j

)
] =

©­­«
Q S

ST R

ª®®¬ δi j (4.3)

whereQ ∈ Rnx×nx , S ∈ Rnx×ny and R ∈ Rny×ny are covariancematrices, and, δi j is theKronecker delta

function. The subspace-based system identification techniques utilize Hankel matrices constructed

by stacking the output measurements and manipulated variables as follows:

U1|i =



u1 u2 . . . u j

u2 u3 . . . u j+1

. . . . . . . . . . . .

ui ui+1 . . . ui+ j−1


(4.4)

where i is a user-specified parameter that limits the maximum order of the system (n), and, j is

determined by the number of sample times of data. By using Eq. 4.4, the past and future Hankel

matrices for input and output are defined:

Up = U1|i, U f = U1|i, Yp = Y1|i, Yf = Y1|i (4.5)

Similar block-Hankel matrices are made for process and measurement noises Vp,Vf ∈ R
iny× j and

Wp,W f ∈ R
inx× j are defined in the similar way. The state sequences are defined as follows:

Xp =

[
x1 x2 . . . x j

]
(4.6)

X f =

[
xi+1 xi+2 . . . xi+ j

]
(4.7)
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furthermore these matrices are used in the algorithm:

Ψp =


Yp

Up

 , Ψ f =


Yf

U f

 , Ψpr =


R f

Ψp

 (4.8)

By recursive substitution into the state space model equations Eqs. (4.1,4.2), it is straightforward to

show:

Yf = Γi X f + Φ
d
i U f + Φ

s
i W f + Vf (4.9)

Yp = Γi Xp + Φ
d
i Up + Φ

s
i Wp + Vp (4.10)

X f = Ai Xp + ∆
d
i Up + ∆

s
i Wp (4.11)

where:

Γi =



C

CA

CA2

...

CAi−1


, Φd

i =



D 0 0 . . . 0

CB D 0 . . . 0

CAB CB D . . . 0

. . . . . . . . . . . . . . .

CAi−2B CAi−3B CAi−4B . . . D


(4.12)

Φ
s
i =



0 0 0 . . . 0 0

C 0 0 . . . 0 0

CA C 0 . . . 0 0

. . . . . . . . . . . . 0 0

CAi−2 CAi−3 CAi−4 . . . C 0


(4.13)

∆
d
i =

[
Ai−1B Ai−2B . . . AB B

]
, ∆s

i =

[
Ai−1 Ai−2 . . . A I

]
(4.14)
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Eq. (4.9) can be rewritten in the following form to have the input and output data at the LHS of the

equation[71]:

[
I −Φd

i

] 
Yf

U f

 = Γi X f + Φ
s
i W f + Vf (4.15)

In open loop identification methods, in the next step, by orthogonal projecting of Eq. (4.15) onto

Ψp: [
I −Φd

i

]
Ψ f /Ψp = Γi X f /Ψp (4.16)

Note that, the last two terms in RHS of Eq. (4.15) are eliminated since the noise terms are indepen-

dent, or othogonal to the future inputs. Eq (4.16) indicates that:

Column_Space(W f /Wp) = Column_Space((Γi
⊥T

[
I −Hd

i

]
)

T

) (4.17)

Therefore Γi and Hd
i can be calculated using Eq (4.17) by decomposition methods. These can in

turn be utilized to determine the system matrices (some of these details are deferred to Section

4.3.1). For further discussion on system matrix extraction, the readers are referred to references

[29, 60].

4.2.3 Lyapunov-Based MPC

The Lyapunov-based MPC (LMPC) for linear system has the following form:

min
ũk,...,ũk+P

Ny∑
j=1
| | ỹk+ j − ySPk+ j | |

2
Qy
+

Nu∑
j=1
| |ũk+ j − ũk+ j−1 | |

2
Rdu

(4.18)
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subject to: (4.19)

x̃k+1 = Ax̃k + Bũk (4.20)

ỹk = Cx̃k + Dũk (4.21)

ũ ∈ U, ∆ũ ∈ Uδ, x̃(k) = x̂l (4.22)

V(x̃k+1) ≤ αV(x̃k) ∀ V(x̃k) > ε∗ (4.23)

V(x̃k+1) ≤ ε
∗ ∀ V(x̃k) ≤ ε

∗ (4.24)

where x̃k+ j , ỹk+ j , ySP
k+ j and ũk+ j denote predicted state and output, output set-point and calculated

manipulated input variables j time steps ahead computed at time step k, and x̂l is the current

estimation of state, and < 0α < 1 is a user defined parameter. The operator | |.| |2Q denotes the

weighted Euclidean norm defined for an arbitrary vector x and weighting matrix W as | |x | |2W =

xTW x. Further, Qy > 0 and Rdu ≥ 0 denote the positive definite and positive semi-definite

weighting matrices for penalizing deviations in the output predictions and for the rate of change

of the manipulated inputs, respectively. Moreover, Ny and Nu denote the prediction and control

horizons, respectively, and the input rate of change, given by ∆ũk+ j = ũk+ j − ũk+ j−1, takes values

in a nonempty convex subset Uδ ⊂ R
m, where Uδ =

{
∆u ∈ Rnu | ∆umin ≤ ∆u ≤ ∆umax

}
. Note

finally, that while the system dynamics are described in continuous time, the objective function

and constraints are defined in discrete time to be consistent with the discrete implementation of the

control action.

Eqs. 4.23 and 4.24 are representatives of Lyapunov-based stability constraint [48, 51], where V(xk)

is a suitable control Lyapunov function, and α, ε∗ > 0 are user-specified parameter. In the presented

formulation, ε∗ > 0 enables practical stabilization to account for the discrete nature of the control

implementation.

Remark 4.1. Existing Lypunov-based MPC approaches exploit the fact that the feasibilty (and

stability) region can be pre-determined. The feasibility region, among other things, depends on
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the choice of the parameter α, the requested decay factor in the value of the Lyapunov function

at each time step. If (reasonably) good first principles modesl are available, then these features

of the MPC formulation provide excellent confidence over the operating region under closed-loop.

In contrast, in the presence of significant plant-model mismatch (as is possibly the case with data

driven models), the imposition of such decay constraints could result in unnecessary infeasibility

issues. In designing the LMPC formulation with a data driven model, this possible lack of feasibility

must be accounted for (as is done in Section 4.3.2).

4.3 IntegratingLyapunov-basedMPCwithDataDrivenModels

In this section, we first utilize an identification approach necessary to identify good models for

operation around an unstable equilibrium point. The data driven Lyapunov- based MPC design is

presented next.

4.3.1 Closed-loop Model Identification

Note that when interested in identifying the system around an unstable equilibrium point, open-loop

data would not suffice. To begin with, nominal open-loop operation around an unstable equilibrium

point is not possible. If the nominal operation is under closed-loop, but the loop is opened to

perform step tests, the system would move to the stable equilibrium point corresponding to the

new input value, thereby not providing dynamic information around the desired operating point.

The training data, therefore, has to be obtained using closed-loop step tests, and an appropriate

closed-loop model identification method employed. Such a method is next described.

In employing closed-loop data, note that the assumption of future inputs being independent of future

disturbances no longer holds, and if not recognized, can cause biased results in system identification
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[29]. In order to handle this issue, the closed-loop identification approach in the projection utilizes

a different variable Ψpr instead of Ψp. The new instrument variable, that satisfies the independence

requirement, is used to project both side of the Equation 4.15 and the result is used to determine

LTI model matrices. For further details, refer to [29, 33, 61].

By projecting Eq. (4.15) onto Ψpr we get:[
I −Φd

i

]
Ψ f /Ψpr = Γi X f /Ψpr + Φ

s
i W f /Ψpr + Vf /Ψpr (4.25)

Since the future process and measurement noises are independent of the past input/output and future

setpoint in Eq. (4.25), the noise terms cancel, resulting in:

[
I −Φd

i

]
Ψ f /Ψpr = Γi X f /Ψpr (4.26)

By multiplying Eq. (4.26) by the extended orthogonal observability Γ⊥i , the state term is eliminated:

(Γ⊥i )
T

[
I −Φd

i

]
Ψ f /Ψpr = 0 (4.27)

Therefore the column space of Ψ f /Ψpr is orthogonal to the row space of
[
(Γ⊥i )

T −(Γ⊥i )
TΦd

i

]
. By

performing singular value decomposition (SVD) of Ψ f /Ψpr :

Ψ f /Ψpr = UΣV =
[
U1 U2

] 
Σ1 0

0 0



V1

T

V2
T

 (4.28)

where Σ1 contains dominant singular values of Ψ f /Ψpr and, theoretically it has the order nui + n

[29, 61].

Therefore the order of the system can be determined by the number of the dominant singular values
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of the Ψ f /Ψpr [71]. The orthogonal column space of Ψ f /Ψpr is U2M , where M ∈ R(ny−n)i×(ny−n)i is

any constant nonsingular matrix and is typically chosen as an identity matrix[29, 61]. One approach

to determine the LTI model is as follows [29]:

(

[
Γ⊥i −Γ⊥i Φ

d
i

]
)T = U2M (4.29)

From Eq.(4.29), Γi and Φd
i can be estimated.


Γi
⊥

−(Φd
i )

TΓi
⊥

 = U2 (4.30)

which results in (using MATLAB matrix index notation):


Γ̂i = U2(1 : nyi, :)⊥

Φ̂d
i = −(U2(1 : nyi, :)T )

†
U2(nyi + 1 : end, :)T

(4.31)

The past state sequence can be calculated as follows:

X̂i = Γ̂
†

i

[
I −Φ̂d

i

]
Ψ f /Ψpr (4.32)

The future state sequence can be calculated by changing data Hankel matrices as follows [29]:

R f = Ri+2|2i (4.33)

Up = U1|i+1 (4.34)

Yp = Y1|i+1 (4.35)

U f = Ui+2|2i (4.36)

Yf = Yi+2|2i (4.37)
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⇒ X̂i+1 = Γ̂
†

i

[
I −Ĥ

d
i

]
Ψ f /Ψpr (4.38)

where Γ̂i is obtained by eliminating the last ny rows of Γi, and Hd
i is obtained by eliminating the

last ny rows and the last nu columns of Hd
i . Then the model matrices can be estimated using least

square:


Xi+1

Yi |i

 =

A B

C D




Xi

Ui |i

 +

Wi |i

Vi |i

 (4.39)

Note that the difference between the proposed method in [29] and described method is that in order

to ensure that observer is stable (eigenvalues of A−KC are inside unit circle), instead of innovation

form of LTI model, Equations (4.1,4.2) are used[33] to derive extended state space equations. The

system matrices can be calculated as follows:


Â B̂

Ĉ D̂

 =

Xi+1

Yi |i




Xi

Ui |i


†

(4.40)

With the proposed approach, process and measurement noise Hankel matrices can be calculated as

the residual of the least square solution of Eq. 4.39:


Ŵi |i

V̂i |i

 =

Xi+1

Yi |i

 −

Â B̂

Ĉ D̂




Xi

Ui |i

 (4.41)

Then the covariances of plant noises can be estimated as follows:


Q̂ Ŝ

ŜT R̂

 = E(


Ŵi |i

V̂i |i


[
ŴT

i |i V̂T
i |i

]
) (4.42)
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Model identification using closed-loop data has a positive impact on the predictive capability of the

model (see the simulation section for a comparison with a model identified using open-loop data).

4.3.2 Control Design and Implementation

Having identified an LTI model for the system (with its associated states), the MPC implementation

first requires a determination of the state estimates. To this end, an appropriate state estimator

needs to be utilized. In the present manuscript, a Luenberger observer is utilized for the purpose of

illustration. Thus, at the time of control implementation, state estimates x̂k are generated as follows:

x̂k+1 = Ax̂k + Buk + L(yk − Cx̂k) (4.43)

where L is the observer gain and is computed using pole placement method, and yk is the vector of

measured variables (in deviation form, from the set point).

In order to stabilize the system at unstable equilibrium point, a Lyapunov-based MPC is designed.

The control calculation is achieved using a two tier approach (to decouple the problem of stability

enforcement and objective function tuning). The first layer calculates the minimum value of

Lyapunov function that can be reached subject the constraints. This tier is formulated as follows:

Vmin = min
ũ1
k

(V(x̃k+1))

subject to:

x̃k+1 = Ax̃k + Bũ1
k

ỹk = Cx̃k + Dũ1
k

ũ1 ∈ U, ∆ũ1 ∈ Uδ, x̃(k) = x̂l − xSP

(4.44)
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where x̃, ỹ are predicted state and output and ũ1 is the candidate input computed in the first tier.

xSP is underlying state setpoint (in deviation form from the nominal equilibrium point) which here

is the desired unstable equilibrium point (and therefore zero in terms of deviation variables). For

setpoint tracking this value can be calculated using target calculation method; readers are referred

to [57] for further details.

Note that the first tier has a prediction horizon of 1, because the objective is to only compute the

immediate control action that would minimize the value of the Lyapunov function at the next time

step. V is chosen as a quadratic Lyapunov function with the following form:

V(x̃) = x̃T Px̃ (4.45)

where P is a positive definite matrix computed by solving the Riccati equation with the LTI model

matrices as follows:

AT PA − P − AT PB(BT PB + R)−1 +Q = 0 (4.46)

where Q ∈ Rnx×nx and R ∈ Rnu×nu are positive definite matrices. Then in the second tier this

minimum value is used as a constraint (upper bound for Lyapunov function value at the next time
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step). The second tier is formulated as follows:

min
ũ2
k
,...,ũ2

k+Np

Ny∑
j=1
| | ỹk+ j − ỹSPk+ j | |

2
Qy
+ | |ũ2

k+ j − ũ2
k+ j−1 | |

2
Rdu

subject to:

x̃k+1 = Ax̃k + Bũk

ỹk = Cx̃k + Dũk

ũ2 ∈ U, ∆ũ2 ∈ Uδ, x̃(k) = x̂l

V(x̃k+1) ≤ Vmin ∀ V(x̃k) > ε∗

V(x̃k+1) ≤ ε
∗ ∀ V(x̃k) ≤ ε

∗

(4.47)

where Np is the prediction horizon and ũ2 denotes the control action computed by the second tier.

In essence, in the second tier, the controller calculates a control action sequence that can take

the process to the setpoint in an optimal fashion optimally while ensuring that system reaches the

minimum achievable Lyapunov function value at the next time step. Note that in both the tiers,

the input sequence is a decision variable in the optimization problem, but only the first value of

the input sequence of the second tier is implemented on the process. The solution of the first tier,

however, is used to ensure and generate a feasible initial guess for the second tier.

Remark 4.2. Note that Tiers 1 and 2 are executed in series and at the same time, and the imple-

mentation does not require a time scale separation. The overall optimization is split into two tiers to

guarantee feasibility of the optimization problem. In particular, the first tier computes an input move

with the objective function only focusing on minimizing the Lyapunov function value at the next time

step. Notice that the constraints in the first tier are such that the optimization problem is guaranteed

to be feasible. With this feasible solution, the second tier is used to determine the input trajectory

that achieves the best performance, while requiring the Lyapunov function to decay. Again, since

the second Tier optimization problem uses the solution from Tire 1 to impose the stability constraint,
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feasibility of the second Tier optimization problem, and hence of the MPC optimization problem

is guaranteed. In contrast, if one were to require the Lyapunov function to decay by an arbitrary

chosen factor, determination of that factor in a way that guarantees feasibility of the optimization

problem would be a non-trivial task.

Remark 4.3. It is important to recognize that in the present formulation, feasibility of the opti-

mization problem does not guarantee closed-loop stability. A superfluous (and incorrect) reason

is as follows: the first tier computes the control action that minimizes the value of the Lyapunov

function at the next step, but does not require that it be smaller than the previous time step, leading

to potential destabilizing control action. The key point to realize here, however, is that if such a

control action were to exist (that would lower the value of the Lyapunov function at the next time

step), the optimization problem would determine that value by virtue of the Lypaunov function being

the objective function, and lead to closed-loop stability. The reasons closed-loop stability may not

be achieved are two: 1) the current state might be such that closed-loop stability is not achievable

for the system dynamics and constraints, and 2) due to plant model mismatch, where the control

action that causes the Lyapunov function to decay for the identified model does not do so for the

system in question. The first reason points to a fundamental limitation due to the presence of input

constraints, while the second is due to the lack of availability of the ‘correct’ system dynamics, and

as such will be true in general for data driven MPC formulations.

Remark 4.4. In the current manuscript, we focus on the cases where a first principal model is not

available. If a good first principles model was available, it could be utilized directly in a nonlinear

MPC design, or linearized if one were to implement a linear MPC. In the case of linearization,

the applicability would be limited by the region over which the linearization holds. In contrast,

note that the model utilized in the present manuscript does not result from a linearization of a

nonlinear model. Instead it is a linear model, possibly with higher number of states than the

original nonlinear model, albeit identified, and applicable, over a ‘larger’ region of operation,

compared to a linearized model.
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Remark 4.5. To account for possible plant-model mismatch, model validity can be monitored

with model monitoring methods [33], resulting in appropriately triggering re-identification in case

of poor model prediction. In another direction, in line with control performance monitoring

approaches, the Lyapunov function value could be utilized. Thus, unacceptable increases in

Lyapunov function value could be utilized as a means of triggering re-identification.

Remark 4.6. As mentioned previously, in order to create a rich training data around unstable

operating point, closed-loop data must be generated. In turn, since open-loop methods result in

biased estimation [18, 41] in model identification, a suitable closed-loop identification method is

utilized, and adapted to ensure that the model accurately captures the key dynamics.

4.4 Simulation Results

We next illustrate the proposed approach using a nonlinear CSTR example [70]. To this end,

consider a continuous stirred-tank reactor (CSTR) where a first-order, exothermic and irreversible

reaction of the form A
k
−→ B takes place. The mass and energy conservation laws results in the

following mathematical model:

ÛCA =
F
V
(CA0 − CA) − k0e

−E
RTR CA

ÛTR =
F
V
(TA0 − TR) +

(−∆H)
ρcp

k0e
−E
RTR CA +

Q
ρcpV

(4.48)

The description of the process variables and the values of the system parameters are presented in

Table 4.1. The control objective is stabilize the system at an unstable equilibrium point using inlet

concentration CA0 , and the rate of heat input, Q, while the manipulated inputs are constrained to be

within the limits |CA0 | ≤ 1Kmol/m3 and |Q | ≤ 9 × 103K J/min, and the input rate is constrained

as |∆CA0 | ≤ 0.1Kmol/m3 and |∆Q | ≤ 9 × 200K J/min. We assume that both of the states are

measured. The system has an unstable equilibrium point at CA = 0.573kmol/m3 and T = 395.3K .
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The goal is to stabilize the system at this equilibrium point. To this end, first an LTI model is

identified using closed-loop data, then an MPC is designed to stabilize the system at the unstable

equilibrium point.

For system identification of the CSTR model, PI controllers (pairing CA with CA,in and T with Q)

are implemented on the process. In particular, pseudo-random binary signals are used as set-point

for PI controllers. The identified LTI model order is selected as n = 4 and i = 12, to achieve the

best fit in model prediction (using cross-validation). Model validation results under a different set

of set-point changes from training data is presented in Figures (4.1 & 4.2). The identified system

is unstable with absolute eigenvalues
[
0.9311 0.9311 0.9998 1.0002

]
which has an eigenvalue

outside unit circle. The unstable nature of the identified model is consistent with the operation of

the system around the unstable equilibrium point.

Figure 4.1: Data driven model validation results: measured outputs (dash-dotted line), state and
output estimates using the LTI model from closed-loop data and identification (dashed line), state
and output estimates using the LTI model from open-loop data and identification (dotted line),
observer stopping point (vertical dashed line)
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Table 4.1: Variable and parameter description and values for the CSTR example

Variable Description Unit Value

CA,S Nominal Value of Concentration kmol
m3 0.573

TR,S Nominal Value of Reactor Temperature K 395
F Flow Rate m3

min 0.2
V Volume of the Reactor m3

min 0.2
CA0,S Nominal Inlet Concentration kmol

m3 0.787
k0 Pre-Exponential Constant − 72 × 109

E Activation Energy k J
mol 8.314 × 104

R Ideal Gas Constant k J
kmol .K 8.314

TA0 Inlet Temperature K 352.6
∆H Enthalpy of the Reaction k J

kmol 4.78 × 104

ρ Fluid Density kg
m3 103

cp Heat Capacity k j
kg.K 0.239
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Figure 4.2: Model training data: manipulated inputs under PI controller

For the model validation, initially a steady state Kalman filter (gain calculated by the identification

method) is utilized to update state estimate until t = 0.8min and after convergence of the states

(gauged via convergence of the outputs), the model and the input trajectory (without the state

Page 83



M. Kheradmandi, Ph.D. Thesis Chemical Engineering | McMaster University

Table 4.2: List of controllers parameters for the CSTR reactor

Variable Value

∆t 0.2min

Qx

[
1 0
0 1

]
Qx,MPC 10 × diag([1/CA,s,1/TR,S])

R∆u,MPC diag([1/CA0,max,1/Qmax])

QK diag([103,103])

RK diag([10−3,10−3])
τmin 0
τmax 5
εi 10−3 × xi,Sp

∆umin

[
−0.1 −200

]
∆umax

[
0.1 200

]
ε∗ 1
V(x) (x − xsp)

T (x − xsp)

cy
[
108 0

]T

cu

[
0 0.1

]T

ρ 7.83 × 105

estimator) is used to predict the future output. Figure 4.1 illustrates the results of the model

validation, and compares against a model obtained from open-loop step PRBS on the input. As

expected, the model identified using closed-loop data predicts better.

Next, closed-loop simulation results for proposed controller and conventional MPC (i.e., MPC

without Lyapunov constraint) with horizons 1 and 10 are presented in Figures (4.4-4.7). As can

be seen, the LMPC has the best performance in stabilizing the system at the unstable equilibrium

point. The MPC with horizon of 1 is not capable of stabilizing the system, and the controller with

horizon of 10 reaches set-point later compared to the LMPC. Also the evolution of the subspace

states indicates better performance under the proposed LMPC.
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4.5 Data-Driven EMPC Design and Illustration

Having illustrated the ability of the LMPC to achieve stabilization, it is next utilized to achieve

economical objectives while ensuring stability. The Lyapunov- based EMPC formulation is as

follows:

max
ũk,...,ũk+P

Ny∑
j=1

cT
y ỹk+ j − cT

u ũk+ j

subject to:

x̃k+1 = Ax̃k + Bũk

ỹk = Cx̃k + Dũk

ũ ∈ U, ∆ũ ∈ Uδ, x̃(k) = x̂l

V(x̃k+ j) ≤ ρ for j = 1, . . . ,P

(4.49)

where the value of ρ dictates the neighborhood that the process states are allowed to evolve within.

cy and cy indicate output and input cost. Other variables have the same definition as Eq. (4.47).

Remark 4.7. In recent contributions [1, 2] a Lyapunov-Based EMPC is proposed which utilizes

data- driven methods to identify an empirical model for the system where the number of empirical

model states is equal to the order of the plant model. In contrast, in the present work, the order of

the model is selected based on the ability of the model to fit and predict dynamic behavior over a

suitable range of operation, in turn allowing for an EMPC design that can reliably operate over a

larger region.

Remark 4.8. The EMPC formulation in the present manuscript utilizes a linear form of the cost

function for the purpose of illustration. The proposed approach is not limited by this particular

choice. Any other form of the cost function, including those where the costs could be time dependent,

could be readily utilized within the proposed formulation. In such scenarios, the presence of the
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stability constraints provide the safeguards that allow the EMPC to move the process as needed to

achieve economical goals.

Remark 4.9. The use of linear models in the control design opens up the possibility of utilizing

MPC formulations [44, 46] that enable stabilization from the entire null controllable region (the

region from which stablization is achievable subject to input constraints). The use of the NCR

can, in turn, be utilized to maximize the region over which the EMPC can be implemented, thereby

maximizing the potential economic benefit. Such an implementation, however, needs to account for

potential plant model mismatch owing to the use of the linear model, and remains the subject of

future work.

Next, the proposed Lyapunov-based EMPC (LEMPC) is implemented on the CSTR simulation

example and compared to the LMPC implementation. The closed-loop results are presented in

Figures (4.8-4.11). Exploiting the flexibility of operation within a neighborhood of the origin, the

LEMPC drives the system to a point on the border of that neighborhood, which happens to be the

optimal operating point, instead of the nominal operating point. Figure (4.12) shows the comparison

of the LEMCP and LMPC. As expected the LEMPC achieves improved economic returns compared

to the conventional MPC.

4.6 Conclusions

In this study, a novel data-driven MPC is developed that enables stabilization at nominally unstable

equilibrium points. This LMPC is then utilized within an economic MPC formulation to yield

a data driven EMPC formulation. The proposed approach is described and compared against a

representative MPC and shown to be able to provide improved closed-loop performance.

Page 86



M. Kheradmandi, Ph.D. Thesis Chemical Engineering | McMaster University

Plant
Tier II
(MPC)

Tier I
(Lyapunov 

Value) 

Setpoint

State 
Estimator

Estimated 
State

Vmin Input Output

Figure 4.3: Two-tier control strategy
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Figure 4.4: Closed-loop profiles of the measured variables obtained from the proposed LMPC
(continuous line), MPC with horizon 1 (dash-dotted line), MPC with horizon 10 (dashed line),
MPC with horizon 1 and open-loop identification (narrow dash-dotted line) and set-point (dashed
line)
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Figure 4.5: Closed-loop profiles of the manipulated variables obtained from the proposed LMPC
(continuous line), MPC with horizon 1 (dash-dotted line), MPC with horizon 1 and open-loop
identification (narrow dash-dotted line) and MPC with horizon 10 (dashed line)
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Figure 4.6: Closed-loop profiles of the LTI model states obtained from the proposed LMPC
(continuous line), MPC with horizon 1 (dash-dotted line) and MPC with horizon 10 (dashed line)
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Figure 4.7: Closed-loop Lyapunov function profiles obtained from the proposed LMPC (continuous
line), MPC with horizon 1 (dash-dotted line) and MPC with horizon 10 (dashed line)
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Figure 4.8: Closed-loop profiles of the measured variables obtained from the proposed LEMPC
(continuous line) and the nominal equilibrium point (dashed line)
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Figure 4.9: Closed-loop profiles of the manipulated variables obtained from the proposed LEMPC
(continuous line)
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Figure 4.10: Closed-loop profiles of the identified model states obtained from the proposed LEMPC
(continuous line)
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Figure 4.11: Closed-loop Lyapunov function profiles obtained from the proposed LEMPC (contin-
uous line). Note that the LEMPC drives the system to a point within the acceptable neighborhood
of the origin.
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Chapter 5

PRESCRIBING CLOSED-LOOP

BEHAVIOR USING NONLINEAR

MODEL PREDICTIVE CONTROL†

5.1 Introduction

The operation of chemical plants faces numerous challenges such as inherent nonlinearity, complex

variable interactions and process constraints. The presence of these complexities often prevents

classical (Proportional Integral Derivative (PID)) controllers from readily achieving closed-loop

†The results in this chapter have been published in[34]:

• M.Kheradmandi and P.Mhaskar. PrescribingClosed-LoopBehaviorUsingNonlinearModel PredictiveControl.

Ind. Eng. Chem. Res., 56(51):15083-15093, 2017.

• M. Kheradmandi and P.Mhaskar. Handling Nonlinearity inModel Predictive Control with Explicit Performance

Specification. In Proceedings of the 2018 American Control Conference, Milwaukee, WI, 2018.
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behavior that the control practitioners are looking for (e.g., smooth first order response).

One well established control method that enables incorporating performance considerations more

directly in computing control calculations is model predictive control (MPC). In theMPC approach,

an open-loop optimal control problem is solved at each sampling instance over a finite time horizon,

subject to the dynamic response of the plant and constraints. Contributing to, and benefiting from

the industrial application of MPC, several studies have focused on the stability properties of MPC

formulations. In one direction, this has led to the development of Lyapunov-based MPC which

can explicitly characterize the region from where stability of the closed-loop system is guaranteed

in the presence of input constraints [46, 50] and uncertainty [45]. Another direction in exploring

the properties of MPC formulations and their ability to handle plant model mismatch has led to

the development offset-free MPC designs that focus on the disturbance rejection mechanism by

augmenting the state variables with fictitious states that estimate and counteract the uncertainty

[13, 57]. In these MPC designs, the focus has primarily been on stabilization, with the objective

function being used as a tuning mechanism.

In such cases having desired closed-loop performance is usually done by trial and error. The tuning

of the objective function to achieve a good closed-loop performance, however, has remained a

non-trivial task.

In this direction, numerous MPC performance/tuning assessment methods are proposed to evaluate

the closed-loop performance by comparing the controller with a benchmark [28, 65]. Several

excellent contributions have been made to address the challenging problem of controller tuning

[20, 21]. In multi-objective MPC (MOPC) [32] the notion of utilizing multi-tier optimization

problem is utilized to decouple the tuning issues with the multi-objective optimization problem

[74].

The desire to explicitly include economic considerations in the control calculations has fostered
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the recent development of economic MPC (EMPC) formulations where the controller determines

the set-point internally to satisfy the prescribed economic objective [53], supported by a rigorous

analysis that ensures that stability is preserved [4, 25]. In recent contributions, EMPC capabilities

for handling constraints, such as limited input rate-of-change [15], while improving economic

performance and ensuring closed loop stability have also been addressed [7].

The nature of the predictive controller and existing performance assessment methodologies notwith-

standing, controller performance assessment is often conducted by control practitioners in more

simpler terms (such as, smoothness of the response or first-order response characteristics). In

the direction of computing control laws to deliver specific desire behavior, internal model control

(IMC) [19] has been proposed where the controller is designed to achieve a pre-specified closed-

loop transfer function for linear, single-input, single-output (SISO) systems. However, it is not

always guaranteed that the transfer function of the IMC-based control law will be consistent with

the proportional-integral-derivative (PID) control structure. Moreover, the IMC approach does not

generalize readily for multi-input, multi-output (MIMO) systems with constraints. In an effort to

handle MIMO systems, the funnel control approach [30] is proposed where the time-varying output

error feedback controller forces the tracking error to be within a bounded prescribed function.

Although the funnel control approach is capable of handling nonlinear MIMO systems, the method

does not explicitly consider input constraints.

A related approach is model algorithmic control (MAC), where the desired close-loop trajectory

is first order trajectory [56, 64], with the time constant being a tuning parameter. The model

algorithmic approach has also been developed for nonlinear systems where the delay free part of

the system equations is unstable [55].The MAC approach only allows for prescribing a first order

response, and does not explicitly account for the presence of input constraints.

On the other hand, it is common to use the sameprocess for different products in chemical plants, with

the different products achieved, say via grade transition in polymerization reactors. This product
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transition is usually done by set-point change for plant output[54, 66, 72]. In these instances, a

‘desired’ process behavior could be specified as one where the transition to the new specification

is the fastest, and a resultant optimization problem that minimizes the transition time is formulated

and implemented [31].

AnMPC framework has recently been proposed that enables specifying desired closed-loop behavior

in more general terms for linear MIMO systems subject to input constraints [70], which is then

implemented in conjunction with offset-free model predictive control. The developed approach [70]

considers systems that are invertible (i.e. the inputs can be explicitly computed). A similar approach

was utilized in [73] for linear systems. There does not exist a formulation, however, that allows

the ability to explicitly prescribe the nature of the closed-loop behavior and have the formulation

determine the best achievable closed-loop behavior for nonlinear systems.

Motivated by the above considerations, in this work we address the problem of control design

for nonlinear systems that allows prescribing and determining the best achievable closed-loop

behavior of a desired nature. The rest of the manuscript is organized as follows: First, the

general mathematical description for the types of nonlinear systems considered in this work, and

a representative formulation for nonlinear model predictive control (NMPC) are presented. Then

the proposed bi-layer performance specification based nominal MPC scheme for achieving desired

trajectories is given. The proposed framework enables specifying a desired nature of the closed-

loop behavior and then determining the optimal feasible implementation of such behavior. Rigorous

feasibility and stability properties are established for a formulation to achieve the best first order

trajectory. Other formulations are also presented that demonstrate how, say a second order trajectory

and input rate of constraints can be accommodated. The efficacy of the proposed method is first

illustrated through formulations and implementations for a linear system subject to output feedback

and a nonlinear continuous stirred-tank reactor (CSTR) with input rate of change constraints and

uncertainty and a reactor separator plant. Finally, concluding remarks are presented.
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5.2 Preliminaries

In this section, we first describe the class of nonlinear systems considered in this work, followed by

a representative existing nonlinear model predictive control formulation.

5.2.1 System Description

In this work, we consider a class of nonlinear systems with input constraints described as follows:

Ûx = f (x,u) (5.1)

y = h(x,u) (5.2)

where x ∈ Rn denotes the vector of state variables, u ∈ Rm denotes the vector of constrained

control (manipulated) input variables, taking values in a nonempty convex subset U ⊂ Rm, where

U =
{
u ∈ Rm | umin ≤ u ≤ umax

}
, umin ∈ R

m and umax ∈ R
m denote the lower and upper bounds of

the input variables, and y ∈ Rp denotes the vector of measured output variables. It is assumed that

the functions, f : Rn×Rm → Rn and h : Rn×Rm → Rp are locally Lipschitz in their arguments and

that the system is controllable. In keeping with the discrete implementation of MPC, u is piecewise

constant and defined over an arbitrary sampling instance k as:

u(t) = u(k), k∆t ≤ t<(k + 1)∆t

where ∆t is the sampling time and xk and yk denote state and output at the kth sample time.
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5.2.2 Nonlinear MPC

In this subsection, we present a representative nonlinear MPC formulation where the control action

at time tk to driven the system to the origin is computed by solving the following optimization

problem:

min
ũ

P∑
j=1
| | ỹk+ j − ySP

k+ j | |
2
Q +

Nu−1∑
j=0
| |ũk+ j − ũk+ j−1 | |

2
R (5.3a)

subject to:

Û̃x = f (x̃, ũ) (5.3b)

ỹ = h(x̃, ũ) (5.3c)

ũ ∈ U, ∆ũ ∈ Uδ, x̃(k) = x̂k (5.3d)

V(x̃k+1) ≤ V(x̃k) ∀ V(x̃k) > ε∗ (5.3e)

V(x̃k+1) ≤ ε
∗ ∀ V(x̃k) ≤ ε

∗ (5.3f)

where x̃k+ j , ỹk+ j , ySP
k+ j and ũk+ j denote predicted state and output, output set-point and calculated

manipulated input variables j time steps ahead computed at time step k, and x̂k is the current

estimation of state. The operator | |.| |2Q denotes the weighted Euclidean norm defined for an arbitrary

vector x and weighting matrix W as | |x | |2W = xTW x. Further, Q > 0 and R ≥ 0 denote the

positive definite and positive semi-definite weighting matrices for penalizing deviations in the

output predictions and for the rate of change of the manipulated inputs, respectively. Moreover,

P and Nu denote the prediction and control horizons, respectively, and the input rate of change,

given by ∆ũk+ j = ũk+ j − ũk+ j−1, takes values in a nonempty convex subset Uδ ⊂ R
m, where

Uδ =
{
∆u ∈ Rm | ∆umin ≤ ∆u ≤ ∆umax

}
. Note finally, thatwhile the systemdynamics are described

in continuous time, the objective function and constraints are defined in discrete time to be consistent

with the discrete implementation of the control action.
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Eqs. 5.3e and 5.3f are a representative example of stability constraints (various versions are used in in

conventional nominal MPC formulations), and are the Lyapunov-based stability constraint [48, 51],

where V(xk) is a suitable control Lyapunov function, and ε∗ > 0 is a user-specified parameter. In

the presented formulation, ε∗ > 0 enables practical stabilization to account for the discrete nature

of the control implementation.

Note that regardless of the type of stability constraint involved, the objective function is used in

conventional MPC formulations to ‘tune’ the tracking performance. While the tuning parameters

can be varied (through an extensive trial and error exercise) to achieve a specific performance,

existing MPC formulations do not allow for an explicit specification of the desired closed-loop

behavior for general nonlinear systems. In the remainder of the manuscript, the MPC formulation

of Eq. 5.3a-5.3f will be referred to as the ‘nominal’ MPC formulation, and utilized to compare with

the proposed formulation.

5.3 MPCFormulationwithPerformanceSpecification (PSMPC)

In this section, the MPC formulation that enables specifying and optimizing a desired closed-

loop behavior is presented, and is referred to as the performance specification MPC. This desired

behavior could be for instance, fastest smooth first-order response, underdamped second-order

response and/or a response that is cognizant of the rate of input change constraints. To handle

the multi objective nature of the problem the proposed formulation utilizes a bi-layer approach.

In the first layer, the best feasible trajectory that satisfies the prescribed desired criteria (subject

to appropriate bounds around the desired trajectory) while considering the system dynamics and

constraints. Then the second layer of the MPC computes the inputs to track the optimal trajectory

satisfying the desired closed-loop behavior as obtained from the first tier (in the form of set-points for

the controlled variables along the prediction horizon). Note that the notion of utilizing multi-layers
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to decouple the multi objective nature of the optimization problem is not the novel contribution

of the present work. Existing results on, for instance, multi-objective MPC [32] have utilized this

notion. The novel contribution of the present work is the posing of the control problem where the

best achievable desired closed-loop trajectory is computed and implemented.

The two-tiered control structure is schematically presented in Fig. 5.1. We defer the presentation of

the specifics regarding Tier 1 to a later section (note that the Tier 1 formulation changes depending

on the various considerations pertaining to the desired response that need to be accounted for in the

closed-loop). Instead, we first present the detailed formulation for Tier 2 in the following subsection,

which implements the specified set-point profile computed by the first tier.

5.3.1 Tier 2: MPC formulation

The second layer of the MPC with explicit performance specification is formulated as follows:

min
ũ

P∑
j=1
| | ỹk+ j − ȳSPk+ j | |

2
Qy

(5.4a)

subject to:

Û̃x = f (x̃, ũ) (5.4b)

ỹ = h(x̃, ũ) (5.4c)

ũ ∈ U, ∆ũ ∈ Uδ, x̃(k) = x̂k (5.4d)

V(x̃k+1) ≤ V(x̃k) ∀ V(x̃k) > ε∗ (5.4e)

V(x̃k+1) ≤ ε
∗ ∀ V(x̃k) ≤ ε

∗ (5.4f)

| ỹk+ j − ȳSP
k+ j | ≤ ε, for j = 1, ...,P (5.4g)
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where P denotes the prediction horizon, ȳSPk is the desired output trajectory (computed by Tier 1),

and, ỹk is the predicted output trajectory at time k∆t with ∆t as the sampling time. V(·) is a control

Lyapunov function, Qy ∈ Rn×n is a positive definite matrix used to trade-off the relative importance

among the controlled variables, and ε is a threshold for maintaining the outputs to be within an

admissible neighborhood region of the desired trajectory.

In Fig. 5.2, a schematic presentation of the proposed bi-layer performance specification MPC is

presented. The continuous line [−] is the best trajectory that minimizes the key characteristic of

the desired closed-loop behavior (say time constant for a first order response), where the process

is only required to be within a reasonable bounds of this best trajectory (specified via constraints)

denote by the dashed lines [−−]. The corresponding outputs are shown by the dashed square line

[−�−]. Thus, there exist a set of feasible input moves that would produce the trajectory denoted by

the dashed square lines. The dashed plus line [− + −] is the predicted state trajectory to minimize

the difference between the state trajectory and the ideal state trajectory [−]. Thus in the worst case

scenario, the dashed plus line [− + −] would simply coincide with the dashed square line [−�−], or

could be closer to the continuous line [−], if possible. The lines indicated by [−·] and [··], indicate

the Tier 1 and Tier 2 predicted inputs, respectively. Note that the inputs from Tier 1 are feasible

for the Tier 2 optimization problem; Tier 2 inputs simply bring the trajectory closer to the ideal

trajectory if possible.

Remark 5.1. The tuning of the response behavior in existing MPC formulations is known to be a

nontrivial task. In contrast, the tuning mechanism for the proposed performance specification MPC

formulation is significantly less challenging. In particular, the weighting matrix (Qy) can be readily

chosen to scale the variables. Furthermore, since all the performance criteria are already accounted

for in Tier 1, the Tier 2 formulation does not include additional penalty terms for the manipulated

variables or the input rate of change. Therefore, compared to existing MPC formulations, the trade-

off between the penalties is not a hindrance in achieving ‘desired’ performance in the proposed
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performance specification MPC.

Remark 5.2. Note that Tiers 1 and 2 are executed in series and at the same time, and the implemen-

tation does not require a time scale separation. The overall optimization is split into two tiers simply

to enable easy tuning. In particular, the first tier computes the trajectory parameters and input

sequence with the objective function only focusing on the ‘best achievable’ closed-loop response,

with constraints in place to allow permissible deviation from the ‘best achievable’ trajectory. Then

the second tier is used to determine the input trajectory that enables closest tracking of the best

achievable closed loop response as computed via the constraints of Tier 1 (in other words computing

a trajectory that not only respects the allowable deviations from the ‘best trajectory’ but possibly

tracks it better).

Remark 5.3. For a class of linear systems that have an equal number of manipulated variables and

controlled outputs, recent results[70] incorporated closed-loop performance specification utilizing

equality constraints to exploit the fact that there exists a unique steady-state input for each set-point.

In contrast the present work considers a general class of nonlinear systems, for which a given

closed-loop behavior may simply be unachievable for all the controlled outputs. For instance, it

may not be possible for all the closed-loop output responses to be first order, irrespective of the time

constant. The resultant optimization problem is also non-convex. Thus, the proposed approach

utilizes inequality constraints (Eq. 5.4) to compute and implement the desired closed-loop behavior.

The choice of the threshold represents the trade-off between two conflicting objectives, feasibility

and efficiency of the first tier. Note further that, for a given value of the tolerance parameter ε ,

infeasibility of the optimization problem can be used by the practitioner to either relax the tolerance,

or to ask for a different kind of response (e.g., a second order instead of a first order response).

Remark 5.4. Note that there are several key differences between the proposed approach and the

MACapproach [56, 64]. The first difference is the capability to handle input constraints. The second

key difference is that the proposed formulation allows prescribing other kinds of responses, besides

just the first order response. The third key difference is that the proposed approach is configured
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to not just prescribe a specific kind of response, but also prescribe the optimality criteria, for

example, fastest first order response. Thus, the proposed formulation not only implements a first

order response, but computes and determines the best first order response. Finally, we also show

how the proposed approach is able to handle other kinds of constraints (such as rate of change

constraints on the manipulated input).

5.3.2 Achieving the Best First Order Trajectory

The key novelty of the proposed approach is that it allows to specify various desired response

forms. To illustrate this, in the remainder, we show specific formulations to handle some instances

of specific desired behavior. Note that the kinds of possible desired responses is not limited to the

ones described next.

We first illustrate the formulation that enables implementing the best first order response, where in

this context the best response is one with the smallest time constant. Note that the purpose of the

formulation below is to illustrate how such a desired response can be incorporated; if the practitioner

dictates other kinds of responses, they can be readily integrated in the approach (see later for other

illustrations).

The first tier formulation of the proposed bi-layer control method for a desired first order trajectory

Page 103



M. Kheradmandi, Ph.D. Thesis Chemical Engineering | McMaster University

takes the following form:

min
τ,ũ
| |τ | |

subject to:

Û̃x = f (x̃, ũ)

ỹ = h(x̃, ũ)

ũ ∈ U, ∆ũ ∈ Uδ, x̃(k) = x̂k

V(x̃k+1) ≤ V(x̃k) ∀ V(x̃k) > ε∗

V(x̃k+1) ≤ ε
∗ ∀ V(x̃k) ≤ ε

∗

ȳSP
i,k+ j = (1 − e

−∆t
τi )ySP

i,k+ j + e
−∆t
τi ȳSP

i,k+ j−1, for i = 1, ..., p

| ỹk+ j − ȳSP
k+ j | ≤ ε, for j = 1, ...,P, with ȳSP

i,k = yi,k

(5.5)

where | |τ | | is Euclidean norm of vector τ, p is the number of outputs, τi is time constant of the

ith output. Further, ȳSP
i,k is ith output set-point at sample time k based on the desired behavior,

ySP
i,k is the set-point for ith output, x̂k is the current estimation of state and yk is the current output

measurement.

In implementation of this optimization based approach, caremust be taken to handle any infeasibility

related issues. In particular, we recognize that there is no guarantee of initial/successive feasibility

of the optimization problem. Initial and successive feasibility of the optimization problem does

guarantee closed-loop stability due to the presence of the stability constraint. Furthermore, infeasi-

bility of the optimization problem suggests that from that point in the process, it is simply impossible

for all the controlled variables to follow the desired nature of the closed-loop behavior. This in

turn can be handled by either requiring the practitioner to request a different kind of closed-loop

response, or switching the controller out, and instead implementing a stabilizing controller. In such

a scenario, the feasibility of the proposed controller could continue to be checked intermittently,
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allowing the controller to be switched on upon being found feasible.

Remark 5.5. In the formulation, the Euclidean norm is used in the objective function of the Tier 1.

Note that if the practitioner chooses, a weighted norm for reflecting the relative importance of the

controlled outputs could readily be utilized instead. The use of the weighted norm would not lead

to additional tuning parameters, but simply enable the practitioner to specify a ‘known’/desired

relative importance of the outputs.

5.3.3 Explicit Tuning Approach for an Underdamped Second Order Specifi-

cation

As another illustration of the desired behavior, we consider a second order response, described (for

each controlled variable) by:

τ2
i

d2 ȳSP
i

dt2 + 2ζiτi
d ȳSP

i

dt
+ ȳSP

i = ySP
i (5.6)

The solution of this ordinary differential equation with current measured output (yi,0), initial deriva-

tive ∂ ȳSPi
∂t (0) = 0 and ySP

i as a step function, has the following form:

ȳSP
i,k = (y

SP
i − yi,0)(1 − e

−ζk∆t
τi [cos(

√
1 − ζ2

i

τi
k∆t) +

ζi√
1 − ζi

2
sin(

√
1 − ζ2

i

τi
k∆t)]) + yi,0 (5.7)

where 0 ≤ ζi < 1 is the damping factor. Thus the first tier formulated to achieved the best second

order trajectory has the following form:

min
τ,ζ,ũ
| |τ | | (5.8a)

subject to: (5.8b)

Û̃x = f (x̃, ũ) (5.8c)
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ỹ = h(x̃, ũ) (5.8d)

ũ ∈ U, ∆ũ ∈ Uδ, x̃(k) = x̂k (5.8e)

V(x̃k+1) ≤ V(x̃k) ∀ V(x̃k) > ε∗ (5.8f)

V(x̃k+1) ≤ ε
∗ ∀ V(x̃k) ≤ ε

∗ (5.8g)

ȳSP
i,k = (y

SP
i − yi,0)(1 − e

−ζk∆t
τi [cos(

√
1 − ζ2

i

τi
k∆t) +

ζi√
1 − ζi

2
sin(

√
1 − ζ2

i

τi
k∆t)]) + yi,k

(5.8h)

| ỹk+ j − ȳSP
k+ j | ≤ ε, for j = 1, ...,P (5.8i)

with (5.8j)

POmin ≤ PO ≤ POmax (5.8k)

0 ≤ τi, 0 ≤ ζi < 1, ∀ i = 1, . . . , p (5.8l)

where PO in the Eq. 5.8a is the percentage overshoot (PO) and POmin and POmax capture the ability

to specify allowable ranges. This parameter can be computed as follows:

PO =
[
PO1 . . . POp

]
,

POi =
−ζiπ√
1 − ζi

2
, ∀ i = 1, . . . , p

(5.9)

Remark 5.6. The focus in this work is different from economic model predictive controllers or

two tier, integrated dynamic optimization and model predictive control problems with economic

objectives27−30. It is not to come up with an economically optimal solution, or to even prescribe

a specific kind of performance objective. It is to simply come up with a tool that allows the

practitioner to directly prescribe the desired closed-loop behavior. Although economic model

predictive controllers compute closed-loop trajectories that are guaranteed to be optimal with

respect to the cost function, the closed-loop behavior of EMPC may not always be intuitive or
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admissible to the operator. To address this issue, the propose performance specification MPC

can be readily integrated with EMPC. In particular, the Tier 1 could also include a constraint

that restricts the feasible region of the optimization to be within an allowable neighborhood of

the optimal cost as computed by the EMPC. As such, the trajectory computed by the first layer

of the performance specification MPC would simultaneously ensure economic optimality and be

prescribed to be a closed-loop behavior that might bemore easily acceptable to the process operator.

5.4 Formulations and Simulation Results Handling Specific In-

stances

In this section we show how various specific issues can be handled within the proposed frame-

work, including implementation under output feedback problem and including rate constraints and

uncertainty explicitly in the problem formulation.

5.4.1 Linear System under Output Feedback:

We first consider a the output feedback problem, and for the sake of illustration, consider a linear

system of the form

Ûx = Ax + Bu

y = Cx
(5.10)

with the system matrices given in Table 5.1. When implementing the formulation subject to output

feedback, the formulation remains the same, except that the state estimates are used in computing

the control action. For the purpose of the simulation, we utilize a Luenberger observer to generate

state estimates (for nonlinear plants, nonlinear estimators such as moving horizon estimator can be
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used [39, 75]). Thus state estimates x̂k are given as follows:

x̂k+1 = Ax̂k + Buk + L(yk − Cx̂k) (5.11)

where L is the observer gain and is computed using a pole placement method, and yk is the vector

of measured variables. The set point and desired behavior is specified for the measured outputs.

Note that the simulation example presented here is not the same linear system as in [70]. The key

difference (beyond the systemmatrices being different), is that the example in the present manuscript

is not a square system so the method proposed in [70] does not remain directly applicable. In

particular, for the example in [70], the first order trajectory can be exactly followed and the solution

is a unique input that can be computed analytically. In contrast, the input in the present example

is non-unique and is computed using an optimization problem to follow the prescribed trajectory

subject to an allowable threshold.

The simulation scenario comprises two step changes in the output variable set-points as indicated in

Fig. 5.3, 5.4 and 5.5. The tuning parameters of the nominal MPC are varied through a trial and error

exercise to achieve a reasonable closed-loop behavior and are reported in Table 5.1. The simulation

results show that in both step changes, the proposed controller (with a prescribed desired first order

and second order response) provides the prescribed closed-loop behavior as opposed to the nominal

MPC (Eq. 5.3a). In particular, note that the nominal MPC results in significant overshoot. In

principle, while it may have been possible to find the nominal MPC tuning parameters to give a

similar behavior, there is simply no way to specify penalties on overshoot in the nominal MPC

formulation. In contrast, the proposed approach enables specifying desired behavior explicitly in

the control calculation. Note also that in this case, since the number of inputs is more than the

number of outputs, each controller settles at a different steady state manipulated input value. The

other key point to recognize is that proposed first and scened order trajectories CPU time required
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to solve the two-tired MPC optimization problem were only 75 and 95 percent more than nominal

MPC, respectively, and could be further reduced via strategies where the first Tier optimization

problem is solved infrequently.

5.4.2 Nonlinear System with Input Rate Constraints and Uncertainty:

We next illustrate the explicit handling of input rate constraints and uncertainty in the proposed

approach using the nonlinear CSTR example also used in [70]. To this end, consider a continuous

stirred-tank reactor (CSTR) where a first-order, exothermic and irreversible reaction of the form

A
k
−→ B takes place. The mass and energy conservation laws results in the following mathematical

model:

ÛCA =
F
V
(CA0 − CA) − k0e

−E
RTR CA

ÛTR =
F
V
(TA0 − TR) +

(−∆H)
ρcp

k0e
−E
RTR CA +

Q
ρcpV

(5.12)

The description of the process variables and the values of the system parameters are presented in

Table 5.2. The control objective is to track set-point changes using inlet concentration CA0 , and the

rate of heat input, Q, while the manipulated inputs are constrained to be within the limits |CA0 | ≤

1Kmol/m3 and |Q | ≤ 9 × 103K J/min, and the input rate is constrained as |∆CA0 | ≤ 0.1Kmol/m3

and |∆Q | ≤ 9 × 200K J/min. We assume that both of the states are measured. Furthermore, there

exists plant model mismatch in three of the parameters (5% in cp, ∆H and 2% in E) and also the

inlet temperatures vary around the nominal values by 2K . To enable a fair comparison, both the

the nominal MPC and the proposed two Tier MPC are supplemented with an offset-free mechanism

to handle plant-model mismatch. Thus the nonlinear model used in the MPC is augmented with

disturbance states, and an extended Kalman filter is utilized to estimate states. The augmented states
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result in a model of the form:

ÛCA =
F
V
(CA0 − CA) − k0e

−E
RTR CA + d1

ÛTR =
F
V
(TA0 − TR) +

(−∆H)
ρcp

k0e
−E
RTR CA +

Q
ρcpV

+ d2

Ûd1 = 0

Ûd2 = 0

(5.13)

Where d1 and d2 are disturbance states (see, e.g., [57, 69]).

The extended Kalman filter utilized to estimate the states takes the following form:

Û̂x(t) = f (x̂(t),u(t)) + K(y(t) − h(x̂(t)))

ÛP(t) = F(t)P(t) + P(t)F(t)T − K(t)H(t)P(t) +QK

K(t) = P(t)H(t)T R−1
K

F(t) =
∂ f
∂x
|x̂(t)

H(t) =
∂h
∂x
|x̂(t)

(5.14)

Where x̂(t) is the current state estimation, QK and RK are state and measurement covariance

matrices. The controller parameters are presented in Table 5.3.

The comparison of simulation results for second order and first order explicit trajectories and

nominal MPC are presented in Fig. 5.6 and 5.7. The first and second order explicit trajectories

for the performance specification controller are similar, and both the trajectories reach the set-

point faster than the nominal MPC without any notable overshoot and with a smooth behavior.

The implementation thus demonstrates the key point that the present formulation can be readily

adapted to handle various forms of the desired characteristics (such as the additional requirement

to handle rate of change of input constraints), and other practical considerations (such as handling
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uncertainty). Furthermore, the CPU time required to solve the two-tiredMPC optimization problem

were only 3 and 13 percent more than nominal MPC, respectively.

Remark 5.7. One of the existing challenges with nonlinear MPC industrial implementation is the

associated computational effort, where the difficulty is further compounded by the tuning effort

to achieve a ‘desirable’ performance. By enabling prescription of the ‘desirable’ performance in

the formulation itself (without increasing the computational complexity significantly), the proposed

formulation is expected to alleviate the tuning issues, and thus make it easier to implement NMPC

industrially. Note also that the proposed formulation does not comprise two entirely separate

optimization problems because the second optimization problem (Tier II) is initialized with a

feasible guess (provided by the solution from Tier I), thus limiting the increase in computational

complexity.

5.5 Application to a Reactor-Separator Plant

Finally we implement the proposed MPC formulation on a nonlinear reactor-separator process

example with three unit operations. The plant includes two CSTRs and one flash tank separator as

shown in Fig. 5.8. The pure reactant A with molar flow rates F10 and F20 and temperatures T10 and

T20 enter the CSTRs to produce the desired product B, which may react further to form an undesired

side-product C. Specifically, reactions of the form A
r1
−→ B

r2
−→ C take place. The outlet of the first

reactor is fed into CSTR 2. The effluent of CSTR 2 is flashed in a heated flash tank. the vapor

retrieved from the separator splits into two streams, one is recycled back to reactor 1 at a flow rate

Fr , while the other at a flow rate Fp is the plant product. Each vessel is equipped with a jacket to

provide/remove heat to/from the vessel. All the three vessels are assumed to have static holdup and
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because of the short residence time, there is no reaction taking place in the separator.

ÛxA1 =
F10
V1
(xA10 − xA1) +

Fr

V1
(xAr − xA1) − k1e

−E1
RT1 xA1

ÛxB1 =
F10
V1
(xB10 − xB1) +

Fr

V1
(xBr − xB1) + k1e

−E1
RT1 xA1 − k2e

−E2
RT1 xB1

ÛT1 =
F10
V1
(T10 − T1) +

Fr

V1
(T3 − T1) +

(−∆H1)

ρcp
k1e

−E1
RT1 xA1 +

(−∆H2)

ρcp
k2e

−E2
RT2 xB1 +

Q1
ρcpV1

ÛxA2 =
F1
V2
(xA1 − xA2) +

F20
V2
(x20 − xA2) − k1e

−E1
RT2 xA2

ÛxB2 =
F1
V2
(xB1 − xB2) +

F20
V2
(xB20 − xB2) + k1e

−E1
RT2 xA2 − k2e

−E2
RT2 xB2 (5.15)

ÛT2 =
F1
V2
(T1 − T2) +

F20
V2
(T20 − T2) +

(−∆H1)

ρcp
k1e

−E1
RT2 xA2 +

(−∆H2)

ρcp
k2e

−E2
RT2 xB2 +

Q2
ρcpV2

ÛxA3 =
F2
V3
(xA2 − xA3) +

Fr + Fp

V3
(xAr − xA3)

ÛxB3 =
F2
V3
(xB2 − xB3) +

Fr + Fp

V3
(xBr − xB3)

ÛT3 =
F2
V3
(T2 − T3) +

Q3
ρcpV3

The definitions of the process variables and the parameter descriptions and values are given in

Table 5.4, Table 5.5 and Table 5.7. It is also assumed that the relative volatility for each of the

components remains constant throughout the operating temperature range of the flash tank separator.

The algebraic equations of the composition of the overhead stream relative to the composition of

the liquid in the separator is described as follows:

xAr =
αAxA3

αAxA3 + αB xB3 + αC xC3

xBr =
αB xB3

αAxA3 + αB xB3 + αC xC3

xCr =
αC xC3

αAxA3 + αB xB3 + αC xC3

(5.16)

The manipulated variables are Q1, Q2, Q3, F20, and the nominal values of the plant are presented in
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Table. 5.6. The control objective is to track desired temperature of the three reactors. We assume

that full state measurements are available, however, the desired behavior is only prescribed for some

of the variables. The simulation results are presented in Fig. 5.9 and 5.10.

To provide a quantifiable comparison of the closed-loop performance in terms of the metric con-

sistent with the prescribed behavior, the closed-loop trajectories of CSTR-Separator simulation

example were fitted to a first order trajectory and time constants of these trajectories are reported in

Table 5.8. It can be seen that the time constants of the proposed method are either the same or better

than the nominal MPC. More importantly, the proposed MPC provides closed-loop trajectories

without overshoot.

Note that some of the trajectories under the nominal MPC reach the set point faster compared to

the first order or second order trajectories. The key is to recognize, however, that the objective with

the control design was not to reach the set point fastest for one of the controlled variables, or all

of the controlled variables, but rather was chosen to be the fastest first order behavior for all three

controlled variables or the fastest second order response for all three controlled variables. From this

standpoint, a faster (but not first order) response in one of the controlled variables with an overshoot

in the other controlled variables would not qualify as a better (or to be more precise, close to the

prescribed) closed loop behavior. Thus the simulation result demonstrate the significantly improved

performance (adherence to the prescribed closed-loop behavior) under the proposed control design,

and applicability to larger systems. Furthermore, the CPU time required to solve the two-tired MPC

optimization problem were only 60 and 50 percent more than nominal MPC, respectively. All the

simulation examples are done in MATLAB, the optimization problems were solved using fmincon

function(A local solver), the decision variable is input sequence along the horizon, so the number of

decision variables are nu × P. The ordinary differential equations are solved using ode45 function.
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5.6 Conclusion

In this work, a novel MPC based approach is developed that allows specifying desired process

behavior, subject to nonlinearity, constraints and uncertainty. The proposed approach is described

and compared against traditional nominal MPC and shown to be able to provide desired closed-

loop behavior through implementation on three examples that include a non-square linear model

subject to output feedback, a CSTR reactor subject to input constraints and uncertainty and a reactor

separator process example.
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Table 5.1: Parameters for the linear system

Variable Value

A


−6 −1 1
3 −5 3
4 1 −2


B


−2 −1 −5
4 2 7
−2 −3 3


C

[
1 0 0
0 1 0

]
x(0)

[
−1.73 3.84 3.46

]
umin

[
−100 −110 −120

]
umax

[
150 140 130

]
POmin

[
1.00 × 10−2 1.00 × 10−2 1.00 × 10−2

]
POmax

[
0.25 0.25 0.25

]
∆t(s) 5 ×10−2

Qy diag {1,1,1}
τmax(s) 1
ε 0.1 × x̂Sp,i
Qy,MPC diag {1,1,1}
R∆u,MPC diag {100,10,100}
P 8
ε∗ 1
V(x) (x − xsp)

T (x − xsp)

Poles
[
0.66 0.52 0.8

]
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Table 5.2: Variable and parameter description and values for the CSTR example

Variable Description Unit Value

CA,S Nominal Value of Concentration kmol
m3 0.573

TR,S Nominal Value of Reactor Temperature K 395
F Flow Rate m3

min 0.2
V Volume of the Reactor m3

min 0.2
CA0,S Nominal Inlet Concentration kmol

m3 0.787
k0 Pre-Exponential Constant − 72 × 109

E Activation Energy k J
mol 8.314 × 104

R Ideal Gas Constant k J
kmol .K 8.314

TA0 Inlet Temperature K 352.6
∆H Enthalpy of the Reaction k J

kmol 4.78 × 104

ρ Fluid Density kg
m3 103

cp Heat Capacity k j
kg.K 0.239
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Table 5.3: List of controllers parameters for the CSTR reactor

Variable Value

∆t 0.2min

Qx

[
1 0
0 1

]
Qx,MPC 10 × diag([1/CA,s,1/TR,S])

R∆u,MPC diag([1/CA0,max,1/Qmax])

QK diag([103,103])

RK diag([10−3,10−3])
τmin 0
τmax 5
εi 10−3 × xi,Sp

∆umin

[
−0.1 −200

]
∆umax

[
0.1 200

]
ε∗ 1
V(x) (x − xsp)

T (x − xsp)
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Table 5.4: List of CSTR-Separator variables

Parameter Description

xI j Mass fractions of Specie I in Vessel or Stream j; I = A,B,C and j = 1,2,3,r
Tj Temperature of Vessel j; j = 1,2,3
Vj Volume of Vessel j; j = 1,2,3
Tj0 Temperature of Feed Stream to Reactor j; j = 1,2
Fj0 Nominal Feed Flow Rate to Reactor j; j = 1,2
Fj Outlet Flow Rate from Reactor j; j = 1,2
E j Activation Energy for Reaction j; j = 1,2
k j Pre-Exponential Constant j; j = 1,2
∆Hj Enthalpy of the Reaction j; j = 1,2
αI Relative Volatilities for I = A,B,C
Q j Heat Added to Vessel j = 1,2,3
cp Heat Capacity
R Gas Constant
ρ Fluid Density
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Table 5.5: CSTR-Separator parameters

Parameter Value Parameter Value

F10 5.04m3/h Q3 1.0 × 106k J/h
F20 5.04m3/h ∆H1 −6.0 × 104l J/kmol
Fr 50.4m3/h ∆H2 −7.0 × 104l J/kmol
V1 1.0m3 k1 2.77 × 103s−1
V2 0.5m3 k2 2.6 × 103s−1
V3 1.0m3 cp 4.2k J/kmol
αA 3.5 R 8.314k J/kmol .K
αB 1.0 ρ 1000kg/m3

αC 0.5 xA10 1
T10 300K xB10 0
T20 300K xA20 1
E1 5 × 104k J/kmol xB20 0
E2 6 × 104k J/kmol MW 242lg/kmol
Q1 2.9 × 106k J/h Q2 0.63 × 106k J/h
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Table 5.6: CSTR-Separator controller parameters

Parameter Value

∆t 25s

umin

[
2.9 × 105 1 × 105 2.9 × 105 0.504

]
umax

[
5.8 × 106 2 × 106 5.8 × 106 10.8

]
POmin 0
POmax 0.5
∆t(s) 40
Qy diag([1/T1,s,1/T2,s,1/T3,s])
τmax(s) 100
τmin(s) 10
ε diag([10−3T1,s,10−3T2,s,10−3T3,s])
Qy,MPC 500 × diag([1/T1,s,1/T2,s,1/T3,s])
R∆u,MPC diag([1/Q1,s,1/Q2,s,1/Q3,s,1/F20,s])
P 15
ε∗ 1
V(x) (x − xsp)

T (x − xsp)
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Table 5.7: CSTR-Separator nominal states and inputs

State Value Input Value

xA1,s 0.167 Q1,s 2.9 × 106k J/h
xB1,s 0.657 Q2,s 1 × 106k J/h
T1,s 480K Q3,s 2.9 × 106k J/h
xA2,s 0.191 F20,s 5.04m3/h
xB2,s 0.637
T2,s 472K
xA3,s 0.0571
xB3,s 0.630
T3,s 475K
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Table 5.8: Closed-loop time constants (s) for the CSTR-Separator simulation example

Controller τ1 τ2 τ3

Proposed PSMPC 43.65 13.03 65.36
NMPC 84.64 48.67 94.60
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Figure 5.1: Two-tier control strategy
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Figure 5.2: Two-tier MPC scheme
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Figure 5.3: Comparison of the proposed MPC approach and Nominal MPC (output variables)

Page 125



M. Kheradmandi, Ph.D. Thesis Chemical Engineering | McMaster University

0 1 2 3 4
−100

−50

0

50

100

Time(s)

u 1

(a)

0 1 2 3 4

−50

0

50

100

Time(s)

u 2

(b)

0 1 2 3 4
−60

−40

−20

0

20

40

Time(s)

u 3

(c)

Second Order First Order MPC

Figure 5.4: Comparison of the proposed MPC approach and Nominal MPC (input variables)
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Figure 5.5: Trajectory parameters

Page 127



M. Kheradmandi, Ph.D. Thesis Chemical Engineering | McMaster University

0 1 2 3 4 5 6

0.65

0.7

0.75

0.8

Time (min)

C
A

(k
m

ol
/m

3 )

(a)

0 1 2 3 4 5 6

348

350

352

354

356

Time (min)

T
R

(K
)

(b)

Second Order First Order MPC Set-point

Figure 5.6: Illustrating the proposed approach with input rate constraints and uncertainty on a CSTR
example (controlled variables)
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Figure 5.7: Illustrating the proposed approach with input rate constraints and uncertainty on a CSTR
example (manipulating variables)
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Figure 5.8: A schematic of the reactor separator system
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Figure 5.9: Comparison of proposed MPC approach and nominal MPC for CSTR-Separator plant
outputs
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Figure 5.10: Comparison of proposed MPC approach and nominal MPC for CSTR-Separator plant
inputs
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Chapter 6

CONCLUSIONS AND FUTUREWORK

In this chapter, the subsequent sections summarize the contributions of the research work, followed

by suggestions for related future work.

6.1 Conclusions

In an effort to better understand the closed-loop identification and evaluating plant-model mismatch,

in Chapter 2, a novel MPC with closed-loop re-identification approach is developed that enables

monitoring and updating the model used in the MPC using both past training data and current data.

The proposed approach is described and compared against a representative offset-free MPC and

shown to be able to provide improved closed-loop behavior through implementation on an example

of a polymerization CSTR model subject to measurement noise.

In Chapter 3, a MPC with re-identification approach is developed that enables monitoring and

updating the model used in the MPC using both past training data and current data in system

identification. The proposed approach is described and compared against traditional nominal MPC
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and shown to be able to provide improved closed-loop behavior through implementation on an

example of a EAF batch process subject to output feedback and input constraints.

In Chapter 4, a novel data-driven MPC is developed that enables stabilization at nominally unstable

equilibrium points. This LMPC is then utilized within an economic MPC formulation to yield

a data driven EMPC formulation. The proposed approach is described and compared against a

representative MPC and shown to be able to provide improved closed-loop performance.

Finally in Chapter 5, a novel MPC based approach is developed that allows specifying desired

process behavior, subject to nonlinearity, constraints and uncertainty. The proposed approach is

described and compared against traditional nominal MPC and shown to be able to provide desired

closed-loop behavior through implementation on three examples that include a non-square linear

model subject to output feedback, a CSTR reactor subject to input constraints and uncertainty and

a reactor separator process example.

6.2 Future Work

The contributions and results of this thesis suggest the following topics for future work:

1. Distributed model predictive control with re-identification

2. Utilizing null controllable regions to stabilize data-driven MPC

3. Real-time implementation of MPC with prescribed closed-loop behavior

Below, a summary of the research potential, important developments and main contributions in

these future research areas is provided.

The idea of extending MPC with re-identification for distributed systems, can be a future research

work. There may be two main challenges in this subject. Firstly, identifying the sub-systems with
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poor prediction performance, for re-identifying them and replacing their model. Secondly, for

identification purpose recognizing the concept of shared states and subsystems interaction can be a

great idea to create a great idea for a strong contribution in the distributed systems identification.

Null controllable region(NCR) is defined as the set of initial conditions from which a constrained

system can be stabilized. This region can be utilized for stabilizing control frameworks with

mechanistic models but using these methods in data-driven methods is not addressed yet. This

work can be a follow up of Chapter 5. Also the effect of re-identification on the NCR can be an

interesting challenge to pursue. The challenges can be investigating the effect of model-mismatch

handling techniques such as offset-free MPC on NCR.

In another direction, looking into real-time implementation of proposed method in prescribing

closed-loop behavior in MPC can be an strong contribution. In the proposed method we need to

solve a non-convex optimization problem, presenting associated challenges with the solution.
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