Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/23409
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorZiada, Samir-
dc.contributor.advisorHassan, Marwan-
dc.contributor.authorEl Bouzidi, Salim-
dc.date.accessioned2018-10-17T17:59:05Z-
dc.date.available2018-10-17T17:59:05Z-
dc.date.issued2018-11-23-
dc.identifier.urihttp://hdl.handle.net/11375/23409-
dc.description.abstractThis thesis provides a comprehensive investigation of flow-sound-structure coupling in spring-loaded valves subjected to air flow. While they are commonly used in a multitude of applications, these types of valves have been found to experience severe vibrations when interaction is present among the structure, the hydrodynamic field, and the acoustic field for a range of operational valve structural characteristics, flow parameters, and connected piping length. The first part of this investigation was aimed at characterizing experimentally the valve’s dynamic behaviour and the parameters affecting the onset of self-excited instability. The occurrence of instability was mainly driven by the presence of acoustic feedback: the connected length of piping had to be sufficiently long, with a longer pipe correlating to more severe vibrations. In addition, it was found that the valve’s oscillation frequency depends on the modal characteristics of the combined valve piping system, rather than the structural natural frequency alone. Furthermore, an increase in the valve’s spring stiffness caused the vibrations to become more severe. Meanwhile, other parameters such as initial spring preload force and valve plate area only had moderate effects on the stability behaviour of the valve. The second part of the investigation sought to develop a theoretical model that could simulate the valve’s response when subjected to air flow while considering the effects of acoustic feedback and impact on the seat and limiter. Thus, a structural model of the valve was developed based on a single-degree-of-freedom model of the system with impact computed based on a pseudo-force method. The hydrodynamic field relied on a one dimensional unsteady Bernoulli description of the flow. Finally, the acoustic interaction was accounted for using the one-dimensional wave equation resolved using a finite difference scheme. The model has demonstrated remarkable agreement with the experimental results. It has shown an ability to predict the modal characteristics of the system as well as correctly predict the effect of increased stiffness or increased piping length on vibration amplitude. The final part of the investigation consisted in designing countermeasures to mitigate the effects of this self-excited instability mechanism. A concentric Helmholtz-type cavity resonator, an orifice plate, and an anechoic termination are placed at the downstream side of a model valve which were seen to be unstable in the experimental and modelling phases of the investigation. All tested devices were able to eliminate the self excited instability mechanism. The applicability and robustness of each of these methods were discussed.en_US
dc.language.isoenen_US
dc.subjectflow-induced vibrationen_US
dc.subjectflow-sound-structure interactionen_US
dc.subjectfluid-structure interactionen_US
dc.subjectvalve vibrationsen_US
dc.subjectspring-loaded valvesen_US
dc.subjectcompressor valvesen_US
dc.subjectpipe acousticsen_US
dc.subjectwearen_US
dc.subjectexperimentalen_US
dc.subjectnumericalen_US
dc.subjectmodellingen_US
dc.subjecttheoreticalen_US
dc.titleFlow-Sound-Structure Interaction in Spring-Loaded Valvesen_US
dc.typeThesisen_US
dc.contributor.departmentMechanical Engineeringen_US
dc.description.degreetypeThesisen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
ElBouzidi_Salim_20180808_PhD.pdf
Open Access
8.68 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue