Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/23387
Title: The On-water Instrumentation of a Sprint Canoe Paddle
Authors: Galipeau, Cameron
Advisor: Tullis, Stephen
Department: Mechanical Engineering
Keywords: sprint canoe;instrumentation;canoe blade;canoe stroke;hydrodynamics;sport measurement;blade force;paddle orientation
Publication Date: Jul-2018
Abstract: A fully instrumented on-water sprint canoe system was designed, built, and tested. The system consists of: one 6-axis load cell in the paddle shaft at the blade, one inertial measuring unit (IMU) on the paddle, one IMU on the boat, and one GPS unit on the canoe boat. These sensors communicated wirelessly to a laptop where the data was processed and displayed in real-time. The sensors were rigorously tested and well-measured in their satisfactory accuracy. The system can provide a full decomposition of the blade water force into propulsive (forward/aft), side, and vertical forces. Previous systems for canoe have been extremely simple and rudimentary. There has been more effort in the rowing and kayak systems but they still failed to capture a full force profile. On-water tests with national-level athletes examined a wide variety of sprint canoe strokes at different paces, power inputs, rates, and stroke lengths. The measurement system could clearly see the differences in force profiles between the stroke sets. A number of efficiency measures were developed using the available data. Instantaneous and integral in-stroke force ratios were developed based on the blade's propulsive force to total force proportion. Derived stroke averaged efficiencies also provided more information. These produced measurements of energy/impulse input to the boat's propulsion output. Differences in such efficiencies could be clearly seen in the various collected stroke sets. This system will be highly useful to high performance athletes and coaches for modifying athlete technique. It has potential for improving equipment design and matching athletes to optimal blade styles. More academically, it can assist biomechanical assessments of sprint canoe and numerical flow studies around blades.
URI: http://hdl.handle.net/11375/23387
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Cameron_Galipeau_M_2018July_MASc.pdf
Access is allowed from: 2019-07-01
6.58 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue