Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Digitized Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/23280
Title: Multivariable Model-Based Predictive Control for Injection Molding
Authors: Lu, Haiqian
Advisor: Hrymak, A. N.
Department: Chemical Engineering
Keywords: multivariable;model;predictive control;predict;control;injection molding;injection;mold
Publication Date: Sep-2007
Abstract: The rigorous quality criterion and intricate shapes of plastic injection molded parts require molders to improve process control systems in order to keep their competitive status in the market. In recent research, various advanced control algorithms are employed to develop in-line process controllers. In modem controllers design, in-mold process variables play a very important role in connecting machine variables and quality variables. Model-based predictive control (MPC) is used to investigate the controllability of cavity pressure and cavity temperature within a cycle or cycle-to-cycle. The objective of the present work is to demonstrate a procedure to develop MPC controllers based on simulation results. Moldflow® was used to simulate the injection molding process for a thin-wall cell phone cover. Cavity pressure profiles and part surface temperature profiles were extracted to develop the dynamic model for controller design. Thermal analysis for the cooling stage was investigated by ANSYS® FEM software. Mold surface temperature profiles were used for controller design. Dynamic matrix control, a type of MPC control, was developed by using Matlab® MPC Toolbox. A single-input/single-output MPC controller was developed to control cavity pressure in filling stage by manipulating injection flow rate. Simulation studies were then used to develop a MPC controller to implement a closed-loop control. The controller performed very well to control the pressure profile to trace the set-point, even with melt temperature or mold temperature change. Two MPC controllers were developed to control cavity surface cycle average temperature by manipulating coolant flow rate and coolant temperature. Both controllers show good controllability for cycle average temperature control. A two-input/two-output DMC controller was implemented to control cavity pressure and part surface temperature in the packing stage. Packing pressure and mold temperature were manipulated to trace the controlled profile set-points in each sampling time. Results shows that the controller was able to meet the set-point very well, for an unmeasured disturbance, based on a closed-loop test. All the controllers were developed based on simulation results, which will have some differences with real production data. Therefore, the model parameter and controller tuning parameter should be validated and modified if needed before real-time application.
URI: http://hdl.handle.net/11375/23280
Appears in Collections:Digitized Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
lu_haiqian_2007Sept_masters.pdf.pdf
Open Access
11.17 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue