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Abstract 


The rigorous quality criterion and intricate shapes of plastic injection molded 

parts require molders to improve process control systems in order to keep their 

competitive status in the market. In recent research, various advanced control algorithms 

are employed to develop in-line process controllers. In modem controllers design, in­

mold process variables play a very important role in connecting machine variables and 

quality variables. Model-based predictive control (MPC) is used to investigate the 

controllability of cavity pressure and cavity temperature within a cycle or cycle-to-cycle. 

The objective of the present work is to demonstrate a procedure to develop MPC 

controllers based on simulation results. Moldflow® was used to simulate the injection 

molding process for a thin-wall cell phone cover. Cavity pressure profiles and part surface 

temperature profiles were extracted to develop the dynamic model for controller design. 

Thermal analysis for the cooling stage was investigated by ANSYS® FEM software. 

Mold surface temperature profiles were used for controller design. Dynamic matrix 

control, a type ofMPC control, was developed by using Matlab® MPC Toolbox. 

A single-input/single-output MPC controller was developed to control cavity 

pressure in filling stage by manipulating injection flow rate. Simulation studies were then 

used to develop a MPC controller to implement a closed-loop control. The controller 

performed very well to control the pressure profile to trace the set-point, even with melt 

temperature or mold temperature change. Two MPC controllers were developed to 

control cavity surface cycle average temperature by manipulating coolant flow rate and 
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coolant temperature. Both controllers show good controllability for cycle average 

temperature control. 

A two-input/two-output DMC controller was implemented to control cavity 

pressure and part surface temperature in the packing stage. Packing pressure and mold 

temperature were manipulated to trace the controlled profile set-points in each sampling 

time. Results shows that the controller was able to meet the set-point very well, for an 

unmeasured disturbance, based on a closed-loop test. 

All the controllers were developed based on simulation results, which will have 

some differences with real production data. Therefore, the model parameter and controller 

tuning parameter should be validated and modified if needed before real-time application. 
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Chapter 1 

Introduction 

Injection molding is one of the most important polymer processing methods and 

commonly used for mass-production of thermoplastic parts with complex shapes and high 

precision requirements. Injection molded parts are used in various product industries such 

as automobiles, appliances and electronics. The market continuously asks for lower 

priced and higher quality products. However, injection molding is a complicated process 

in which the material undergoes significant changes in properties due to large pressure 

and temperature variations, complicated by factors such as: part and mold design and 

material selection. All these factors make it very challenging to predict part quality and 

maintain stable operation. Recently, advanced control systems are developed to improve 

the process capability and reduce the production cost. 

1.1 Injection Molding Process 

Injection molding involves many variables and disturbances during molding. The 

main variables of injection molding have been categorized into three levels in order to 

understand and control the process better: machine variables (e.g. injection speed, mold 

temperature, pack pressure), in-mold process variables (such as cavity pressure, cavity 
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melt temperature and melt front advancement), and quality variables (e.g. part weight, 

dimensions, visual defects such as sink marks). 

Machine variables control have been developed for many years and some 

advanced technologies such as the programmable logic controller (PLC), proportional­

integral-derivative (PID) controller, computer-aided engineering (CAE) software and 

design of experiments (DOE) have been applied and proven to be very useful for machine 

setup and machine variable control. Many advanced process control technologies have 

been investigated and reported, such as Artificial Neural Networks (ANNs), Model-Based 

Predictive Controller (MPC) and self -tuning regulators (STR), which target to improve 

production efficiency, stability, and part quality. However, the relatively high investment 

cost and complexity in model tuning and training slow down their further application in 

industry. Quality variable control has been investigated since the last decade, but it still 

faces many technical problems such as, complexity of quality dynamic models and lack 

of online feedback. Comparing the three levels of control (machine variable control, in­

mold process variable control and quality variable control), in-mold process variable 

control is a practical and attractive control strategy. 

Currently, the variables used most commonly for in-mold process control are: 

cavity pressure, nozzle pressure, cavity surface temperature, and mold separation (the gap 

between the part and mold cavity). Cavity pressure control is the most active research 

direction and has been proved to be closely related to part quality such as part weight, 

part dimensions, and flash or sink mark. Cavity surface temperature is another variable, 

which can reflect the future part quality like weld line and shrinkage. Mold separation is 
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not a direct process variable related to melt polymer, but mold separation is a very 

accurate indicator for part weight and thickness. Linear variable differential transformers 

(LVDT) and ultrasonic shear transducers are used to detect and monitor the gap 

development. 

Model-based Predictive Controller (MPC) is one of the most popular control 

systems in chemical process control. Researchers have been working for a decade to 

apply MPC into injection molding process control. Single-Input/Single-Output (SISO) 

and Multiple-Input/Multiple-Output (MIMO) control systems are investigated in 

controlling the machines variables (e.g. filling velocity and barrel temperature) and 

process variables (e.g. cavity pressure and cavity surface temperature). 

In order to develop a model-based controller, the most important step is to collect 

useful data. Usually there are two methods to acquire data, one is to get the data from 

production lines, the other one is using CAE software (e.g. Moldflow®, Moldex3D®, and 

ANSYS~ to simulate the process and collect the data from the result of the analysis. The 

latter is very attractive, since you can conveniently obtain the data and develop the 

controller at very low cost, even before the mold is manufactured. The simulation result is 

very valuable for both mold manufacturers and product processors, since the controller 

can greatly reduce the test trial period in the startup stage, and predict the process 

capability, controllability, and stability. Controllability is defined as the ability to move 

the system from one condition to another (i.e. target set point) over finite time, by 

manipulating inputs properly. 
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Accompanying the developments in process control, new measurement 

instrumentation has been applied to measure and monitor the key process variables in 

injection molding: cavity pressure, cavity surface temperature, and melt front 

advancement. Different types of cavity pressure sensors have been widely used in the 

injection molding industry, while the melt temperature sensors mounted inside the mold 

cavity are getting more attention. Optical sensors, ultrasonic transducers and other 

advanced instrumentation are used to monitor the melt front advancement, mold 

separation, degree of solidification, and used to decide fill-to-pack switchover time. 

Through the use of in-mold instrumentation, the filling, packing and cooling phases can 

be understood much more clearly, which is very meaningful for part quality control. 

However, the related high investment and maintenance costs block them from routine 

industrial application. 

1.2 Research Objective 

The objective of this project is to develop a multivariable MPC set point 

controller that controls the key process variables in order to improve the part quality 

controllability. There are many different variables and disturbances in the injection 

molding process, which make the process very complex. A set point controller is very 

meaningful for process setup and in-line control. 

Control model development is done by using simulation software, so that we can 

actually develop the controller even before mold manufacturing. In this study, a thin-wall 

cellular telephone cover is selected as the component to be studied, due to its high 
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precision requirements. The key to develop the MIMO Controller is to select the 

controller structure. Since both cavity pressure and cavity surface temperature have been 

proved to be closely related to the final product quality and easily measured, so a two­

input by two-output system to control the packing and holding stage is studied. Injection 

molding is very nonlinear and time-variant, so DMC (Dynamic Matrix Controller) is a 

good choice for approximate control. In order to develop the controller, the first task is to 

develop the in-mold process model. Moldflow Plastics Insight (MPI) is used to conduct 

the process analysis and the dynamic model is identified by Matlab Identification 

Toolbox. The controller coding, simulation and tuning are done based on Matlab MPC 

Toolbox. 

1.3 Thesis Outline 

Chapter 2 presents a literature review of injection molding process control 

development in the past two decades. Three levels of process control variables and 

advanced control strategies and algorithms are discussed. Modem measurement 

instrumentation used in injection molding process control is presented. The theory of 

MPC controller and its application in injection molding process are explained. 

Chapter 3 shows the development procedure of the MIMO MPC controller: 

selection of the controller structure, model development, model meshing and analysis, 

and process dynamic model identification. Single-input/single-output (SISO) controllers 

are discussed as comparison cases since they are currently used in industry. Finally, 
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multiple-input/multiple-output (MIMO) controllers using the Matlab MPC Toolbox is 

presented. 

Chapter 4 presents the simulation results from CAE software and the MPC 

controller development procedure. Controller performance, tuning, and validation with 

CAE simulation software were presented. 

Chapter 5 emphasizes the value of applying MIMO MPC controller, for mold 

manufacturers and product processors. Future work of the project and possible research 

directions are described. 
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Chapter 2 

Literature Survey 

Nowadays, in most injection molding plants, solutions to quality problems as well 

as new mold setup and validation are mostly based on technicians' knowledge and 

experience. That definitely can't meet the requirements of modem production, which 

requires high quality, high efficiency, and lower energy consumption. Even after proper 

machine and mold set-up, part quality may still shift outside of the specified limits during 

production due to a variety of causes such as material property changes in different 

batches of resin, or changes in the ambient environment and machine characteristics. 

Process conditions must be readjusted which may cause a lot of downtime and scrap. An 

advanced control system is an effective method to help improving injection molding 

process control and capability. 

An extensive literature review is presented below to describe the knowledge of 

injection molding process control and discuss the current development of ftdvanced 

control systems, which are applied to polymer injection molding. 
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2.1 Controlled Variables and Manipulated Variables 

Injection molding process variables were classified into three levels. The first 

level includes machine variables, which can be independently set up and used for 

control; the second level includes in-mold process variables, such as cavity pressure and 

melt temperature, which can not be independently controlled; and the third level includes 

part quality variables, for example, part weight and dimension (Wang et al., 1999). Table 

2.1 shows the three levels variables (Wang et al., 2000b) and their common applications 

in modem process control systems. 

The variables in level 1, machine variables, are basically the machine setup 

conditions, which can be controlled and manipulated directly by some common 

controllers and sensors installed in the machine, such as programmable logic controllers 

(PLC) and proportional-integral-derivative controllers (PID). Recently, more advanced 

controllers, such as artificial neural networks (ANNs), Fuzzy controllers and self-tuning 

regulators (STR) have also been studied and applied to modem molding machines in 

order to improve the controllability of those variables. Machine variables are used as 

manipulated variables and adjusted in-cycle or cycle-to-cycle for process control in order 

to get high quality product. 

In-mold process variables, the level 2 dependent variables, are affected not only 

by machine settings, but also by material properties, mold structure, and environmental 

conditions. In-mold process variables have been proven to be closely related to the final 

part quality (Agrawal et al., 1987; Bernard, 1983; Michaeli and Gruber, 2004). On the 

other hand, process variables can be controlled by manipulating machine variables in­
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cycle and cycle-to-cycle. Therefore, through monitoring the in-mold process variables 

and adjusting the machine variables when needed, final product quality properties can be 

maintained in a stable and required level, which is the target of process control. 

Quality variables are mostly part quality standard items, such as part weight, 

shrinkage, burn mark and so on, which can be either quantitative or qualitative. They are 

the final responses of the molding process and can only be controlled by adjusting process 

conditions, such as machine settings, material and mold configurations. In recent 

research, part weight is the most commonly used as quality controlled variable for 

modem process controllers due to its easy acquirement (Kamal et al., 1999; Yang and 

Gao, 2006). The relationship among quality variables, machine variables and process 

variables is very complex and not well understood. Moreover, sometimes it is very 

difficult or even impossible to quantify or qualify the variables on-line. Quality variables 

are used as controlled variables in modem control systems, which may involve a long 

time delay. 
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Table 2.1 Three-Level Variables in Injection Molding (Wang et al., 2000b) 

Variable 

Category 
Typical variables Application in Control Systems 

Levell -Machine variables (independently controllable) 

Temperature 

Barrel temperature (in several 

zones) 

Continuous control, as controlled 

variable (MIMO) 

Nozzle temperature 
Cycle-to-cycle control, as controlled 

variable 

Coolant temperature 
Cycle-to-cycle control, as 

manipulated variable 

Pressure 

Pack/hold pressure In cycle or Cycle-to-cycle control, 

manipulated variables (through 

hydraulic servo-valve) 
Backpressure 

Maximum injection pressure 
Cycle-to-cycle control , manipulated 

variable 

Sequence and 

Motion 

Clamp/fill/pack/hold/recovery/eject Standard sequence 

switchover point 
Cycle-to-cycle control, as 

manipulated variable 

Injection (ram) speed (constant or 

profiled) 

In cycle control, as controlled or 

manipulated variable 

Screw rotation speed 
In cycle or Cycle-to-cycle control, 

manipulated variable 

Shot size and cushion (via screw 

displacement) 

Cycle-to-cycle control, as 

manipulated variables 

(Continued) 
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(Continue) 

Level2- Process (dependent) variables 

Temperature 

Melt temperature (nozzle, runner, 

cavity) 

Cycle-to-cycle control, as controlled 

variables 

Rate of heat dissipation and 

cooling 

Cycle-to-cycle control, as controlled 

variables 

Pressure 
Melt pressure (in the nozzle, 

cavity) 

In cycle control, as controlled 

variable 

Flow 

Melt front advancement 
In cycle control, as controlled 

variable 

Maximum shear stress 
Cycle-to-cycle control, as controlled 

variables 

Clamping 

Maximum clamping force 
Cycle-to-cycle control, as controlled 

variable 

Mold separation (maximum value, 

profile) 

In cycle or Cycle-to-cycle control, 

controlled variable 

Level3- Part Quality Variables (final response) 

Mechanical and 

Dimensions 

Part weight and part thickness 

Cycle-to-cycle control, as controlled 

variables, involve lots of time delay 

and very complex dynamic model 

Shrinkages and warpage 

Strength at the weld lines 

Appearance 

Sink marks 

Aesthetic defects; burn marks, 

flash, etc. 

Appearance at the weld lines 
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2.2 Levels of Process Control 

Based on the idea of variables categorizing, Wang et al. (1999) proposed 

multiple-level control system architecture, as shown in Figure 2.1. These three feedback 

loops correspond to the three levels of measured/controlled variables. The first level in 

the feedback control system (machine control) has been successfully investigated and 

researched for decades and the technologies have been applied in the industry, including 

the programmable logic controller (PLC), PID (proportional-integral-derivative) 

controller, and design of experiments (DOE). In-mold process control, the second level 

control loop, is currently the most active research field. Many research reports have been 

published recently and some applications are in the market. Unlike the first two levels 

feedback control, research and implementation of automated closed loop third level 

control (quality control), started in the last decade, and is still facing many difficulties and 

challenges. 
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Figure 2.1 Multi-level control architecture (Wang et al., 1999) 
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2.2.1 Levell: Machine Variable Control 

Machine control (level 1 feedback in Fig 2.1) aims to use advanced controllers 

and technologies to measure, monitor and control the machine variables in order to keep 

the machine running smoothly and efficiently, so that higher quality parts and greater 

profit can be achieved. Injection speed, barrel temperature, mold temperature, filling-to­

packing switchover mode, and packing pressure are the variables that have been proven to 

be closely related to part quality (Havlicsek and Alleyne, 1999; Chang, 2002). 

Most modem injection molding machines are equipped with controllers like PLC, 

PID, and some advanced machines are directly controlled by PCs (Personal computers). 

Commercial CAE software has been used to assist the process set up. Various empirical 

models such as design of experiment (DOE) (Johnson, 2002), and expert systems also 

have been employed to optimize the process parameters. Adaptive control schemes i.e. 

artificial neural networks (ANNs) (Huang et al., 2004; Wang et al., 2000a; Ouyang et al., 

2004), self-tuning regulator {STR) (Yang and Gao, 1999), generalized predictive control 

(GPC), fuzzy logic control (FLC) (Tsoi and Gao, 1999), and iterative learning control 

(ILC) (Gao et al., 2001), Multi-model Predictive Controller (Dubay et al., 2007) have 

been reported for injection velocity control recently. Melt temperature is one of the most 

important variables of injection molding process, a lot of research works have been done 

in order to better control the barrel or nozzle temperature. Zhao and Gao (1999) and 

Wang et al. (2000a) used neural networks to predict the nozzle melt temperature and got a 

very good result. With those new technologies and algorithms, machine setup and control 
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is much easier and more efficient, which already bring great benefit to processors. More 

discussion about advanced control algorithms follows. 

2.2.2 Level2: In-mold Process Variable Control 

Machine variable control is not sufficient to keep the production unit maintaining 

good product quality for a long period depending on the types of disturbances, which 

affect the polymer melt. Changes in the molding conditions, such as percentage of 

regrinding material, machine property fluctuation, or environmental temperature changes, 

may affect the product quality outcomes. On the other hand, to control in-mold process 

variables, which are regarded as the most accurate indicators of final part quality, will 

help to minimize those effects and keep the part quality properties more stable. Moreover, 

in-mold process variables are relatively easy to monitor and control on-line, compared to 

quality variables. Cavity pressure, nozzle injection pressure, melt temperature, cavity 

surface temperature, and mold separation, are the interesting process variables usually 

monitored and controlled in modem process control research. The idea of modem process 

control is to measure the process variables and determine the relationship with part 

quality, and then set up the control model to manipulate the related machine variables in 

order to meet the quality requirement. For example, cavity pressure is regarded as a good 

predictor for part weight and dimensions, while packing pressure, melt temperature, 

injection speed and mold temperature affect cavity pressure. Therefore, by adjusting those 

machines variables, stable and accurate part quality can be met. 
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The injection molding process must be instrumented and designed such that the 

key process variables are observable and controllable (Kazmer et al., 2005a). As we know, 

the polymer state within the mold is crucial to part quality. The relationship between 

machine variables, measured state variables inside the cavity and part quality variables is 

very important for process control. 

The main challenges for process control are to: 

1. Determine the process dynamics relationship between machine parameters 

and process variables, which are the basis of designing and developing the process 

controller. 

2. Monitor the filling status in the cavity since process variables can never be 

observed directly. In this case, measuring systems include cavity pressure sensors, cavity 

temperature sensors and filling sensors. (More discussion in section 2.3) 

2.2.2.1. Cavity Pressure Control 

Cavity pressure is a useful indicator during injection molding for achieving high 

part quality and maintaining consistent part weight and overall dimension (Dubay, 2001). 

The cavity pressure profile is an important parameter to monitor thermoplastic melt 

filling, packing and cooling stages, which affect not only the melt flow status, but also the 

molecular orientation. Cavity pressure as an in-mold process variable measured at a 

specific point in the mold cannot be directly controlled and adjusted; however, some 

machine variables have a significant effect on cavity pressure. Schenker (1993) concluded 

that mold temperature and the hold pressure have the most important effects on cavity 
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pressure and part weight. Kamal et al. (1999) proposed to control part weight by 

controlling the peak melt pressure and the estimated bulk temperature of the polymer in 

the mold cavity at the time the gate freezes. 

Many researchers have studied using cavity pressure as a process parameter to 

determine the filling-to-packing switchover time in order to improve part quality. In the 

injection molding process, filling-to-packing switchover time refers to the time to switch 

from the mold filling phase to the packing phase, which has higher pressure and much 

lower filling speed compared to the filling stage. An inappropriate switchover time may 

cause many quality problems, such as mechanical and dimensional defects (i.e. warpage 

and weld line strength) and appearance defects (i.e. shrinkage, burn marks, and weld line 

position). Filling time, ram position, hydraulic pressure, cavity pressure, and melt filling 

advancement are commonly used to initiate the switchover. Sheth et al. (2001) compared 

these common transfer methods, and found that the part weight and thickness can be kept 

more stable and accurate by using cavity pressure transfer. Edwards et al (2003) 

compared cavity pressure to ram position and ultrasonic sensors (monitor melt filling 

position) for switchover. They found that ultrasonic sensors for switchover resulted in the 

highest repeatability in part weights, followed closely by that of cavity pressure. They 

concluded that switchover by cavity pressure was more easily adjusted, while the 

ultrasonic sensor installation was non-invasive and non-intrusive, allowing installation 

without machining the cavity surface. 

Other researchers applied some advanced adaptive control technologies for 

process variable modeling and control. Woll and Cooper (1997) developed a 
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multivariable nonlinear process model that related process behavior to machine 

controllable parameters such as filling speed, packing pressure, and cooling time and 

mold temperature. The control strategy uses an artificial neural network (ANN), 

embedded within a cascade controller design, to analyze sensor patterns, identify process 

characteristics, and control part quality. In the cascade design, the machine controller set 

points of an inner loop are updated based on ANN analysis of mold cavity pressure 

patterns. Gao et al. (1996a) analyzed cavity pressure dynamics in the filling and packing 

stages and designed a self-tuning regulator (STR) to control the cavity pressure. They 

found that the dynamics of cavity pressure were both nonlinear and time varying in 

relation to the servo-valve opening. Dubay (2001) developed a model-based predictive 

controller (MPC) and implemented it to control cavity pressure during filling. In the 

experiments, a Dynisco FT444DH force transducer was mounted behind an ejector, to 

measure the cavity pressure, and monitor the opening of the hydraulic servo-valve, which 

was used to control the injection speed. Based on their experiment results, a predictive 

controller was developed and implemented for controlling cavity pressure for filling 

phase. The MPC method provides good control for variable cavity pressure ramp set 

points. It can be developed for any plastic material used and for different injection 

machines. 

Besides the filling and packing stages, research has been done to control the 

cavity pressure time profile, as opposed to pressure values at specific time points in the 

cycle, during the cooling stage. Gao et al. (1996b) developed a coolant temperature 

control system (based on a Dahlin Control algorithm) to control the cavity pressure 
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profile during the cooling stage. They proposed several alternative variables for pressure 

control, and Controlled Pressure Cooling Time (CPTC) was defined and investigated. 

Using CPTC as controlled variables and coolant temperature as the manipulated variable, 

the control system proved to be an effective approach to control cavity pressure during 

cooling. Pramujati et al. (2006a) designed a predictive controller, using Dynamic Matrix 

Control (DMC), to control the cavity pressure during the cooling phase by manipulating 

the coolant flow rate. They used a process time constant, defined as the time from the end 

of the packing to the time at which the pressure decreases to 63.2% of the pressure at the 

end of packing as the controlled variable. The results show the shape of cavity pressure 

profiles during cooling can be controlled effectively and efficiently. 

Michaeli et al. (2004) discussed cavity pressure control in both the filling and 

holding phases and developed an online cavity pressure controller. During the filling 

phase, a constant gradient of the cavity pressure is realized. While in the holding phase, a 

constant specific volume was given and a PVT -optimization calculated the required 

cavity pressure so that the 1-bar-line was always reached, which is based on the PVT 

(Pressure, Specific Volume, and Temperature) behavior of the polymer. PVT data 

provides information about the specific volume (volume per unit mass) of a material 

under different pressure and temperature conditions. It can be used to calculate the 

material shrinkage between any two pressure-temperature states. Polymeric materials can 

be characterized through PVT data, where the specific volume can be expressed as a 

function of the pressure and temperature: v= v (p, T) (Shay et al., 1998). PVT data is 

typically plotted as isobars (lines of constant pressure); Figure 2.2 is an example of a 
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PVT -diagram. It can be used to estimate part volumetric shrinkage by tracing the 

injection molding process on the diagram as indicated. The PVT data for common 

commercial polymer materials are available in the database of the major CAE program 

providers, such as Moldflow®. 

AB -- till-pack, maximum pressure Pressure increase 
BC -- fully -packed, solidification 
CD -- cooling and pressure decrease 
DEF -demolded 
TM -- melt temperature in filling stage 

. T u -- ambient temperature 
........... 8' 


: 

~ 
~ 
:: 
! 
! 
~ 

temperature 

Figure 2.2 an example ofPVT-Diagram (Shay et al., 1998). 

Previous research works about cavity pressure control have been reported. For 

instance, Rafizadeh et al. (1996, 1997, 1999a, 1999b) developed a physically-based 

adaptive controller to control cavity pressure in filling and packing phases. Kazmer and 

Barkan (1997a, 1997b) investigated the process capability of multi-cavity pressure 

control in the filling and packing stages. 
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2.2.2.2. Nozzle Pressure Control 

The drawback of using cavity pressure control is the machining necessary for 

pressure sensor installation, which incurs extra cost and sometimes is not possible due to 

part design. In that case, nozzle pressure is usually taken as an alternative, to provide 

information close to the mold cavity pressure. The most attractive is that nozzle pressure 

control can be employed to different molds in the same machine, without any mold 

machining problems. 

As advanced adaptive control technologies are applied in injection molding, some 

empirical models have been developed for various specific applications. Kazmer and 

Petrova (1999) developed a hybrid neural network that combined the training of neural 

networks with analytical knowledge of the molding process. They compared three 

different network configurations: conventional, simulation, and hybrid neural networks, 

with melt temperature, shot size and ram velocity as inputs and nozzle injection pressure 

as an output. The three networks were trained with the backpropagation-leaming rule on 

randomly chosen process points. The hybrid network showed the ability to predict the 

pressure more accurately than the other two networks, especially when the number of 

training data points was limited. Yang and Gao (1999b) applied an ARX model to 

describe the nonlinear and time-varying dynamics between the servo- valve opening and 

melt pressure in the nozzle. An adaptive self-tuning controller was then designed and 

implemented, incorporated with some improvements, like an anti-windup estimate, an 

adaptive feedforward, and cycle-to-cycle adaptation. The controller works well for 

different conditions, such as set point profiles, molds, and materials. 
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Sometimes nozzle pressure and melt temperature transducers are mounted on the 

machine nozzle for process monitoring. Orzechowski et al. (1998) used a low-cost 

process monitoring and control system with nozzle-based pressure and temperature 

transducers for molding process control. They found that temperature and pressure 

measurements in nozzle could provide effective control of melt quality and shot size 

uniformity. For example, from the nozzle pressure verse time plotting, it could detect 

abnormal situations like throat starvation, cold slug in the nozzle and material properties 

change. 

Because of its relative lower cost and easy installation, nozzle pressure control is 

a good alternative method for pressure control, when cavity pressure control is not 

appropriate. However, it is still not accurate enough for adaptive control due to the lack of 

physical dynamic models and the variation of molding machine configuration (e.g. nozzle 

configuration difference, temperature variation in nozzle tip). 

2.2.2.3. Melt Temperature Control 

Melt temperature has an important effect on the part quality and has a strong 

influence on other important process variables such as melt flow rate, melt pressure at the 

nozzle and in the cavity, and cooling time. Intelligent computation- based methods, such 

as Dynamic Matrix Control (DMC), and advanced control strategies have been used to 

model the temperature process dynamics since the 1980s. Zhao and Gao (1999) 

developed a set of Artificial Neural Networks (ANNs) to predict the effect of operating 

conditions (screw rotation speed, backpressure, barrel heater temperatures, nozzle heater 
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temperature, dwell time and injection velocity profile) on the melt temperature during 

plasticization. A physically-model based simulation was used to generate the temperature 

profile during the filling phase. In their experiment, the overall prediction of nozzle melt 

temperature is in good agreement with the measurement. Their modeling provided a basis 

for process optimization and advanced control. Speight et al. (1995) discussed a unique 

process parameter referred to as the Pressure Temperature Interactive 'Viscosity' Index 

(PTI), which is derived from both infrared nozzle melt temperature and hydraulic 

injection pressure. The PTI Interactive 'Viscosity' is measured in-line and very sensitive 

to polymeric material variation independent of polymer rheology. PTI and nozzle melt 

temperature measurements are shown to be a potential aid to thermoplastic injection 

molding closed-loop process and statistical process control. 

Dubay et al. (2003) presented a strategy for combining computational fluid 

dynamics (CFD) with model predictive control to characterize the melt process in the 

extruder. The CFD model includes the screw and barrel using commercial CFD software. 

CFX-T ASCflow was used for the CFD simulation, which generated the melt temperature 

response. The MPC algorithm is embedded into the CFD source code and able to sample 

the control move response directly from the CFD transient response. They found that the 

performance of the MPC controller could be improved by using CFD simulations of the 

process in order to re-evaluate the controller dynamic matrix. However, the process 

combining with CFD simulation and MPC modeling is complicated. It is not practical to 

perform the CFD simulation of the extruder for on-line applications. However, more 

complete CFD models will be able to capture the rheological effects and non-linear 
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response of the polymer melt, which are very useful for future MPC development. 

(Dubay et al., 2003) 

However, to obtain actual melt temperature measurements inside the cavity online 

is not easy; infrared temperature measurement system is one of the common methods. On 

the other hand, to measure and control the cavity surface temperature is much easier, 

through temperature sensors installed in the cavity surface. Cavity surface cycle average 

temperature is the most popular index to reflect the cavity temperature status, which is 

defined as the average of the part (cavity) surface temperature at a specific location from 

the beginning to the end of a single cycle. The advantages of using cycle average 

temperature as the controlled variable are that it indicates the average heat flow during a 

complete cycle and is relatively immune to process noise and secondly, it is sensitive to 

the cycle period and the minimal control time unit is one cycle. (Patterson et al., 1990) 

Hernandez et al. (2005) and Dubay et al. (2006) developed a PI (Proportional­

Integral) controller to control the cooling stage in injection molding, using average part 

surface temperature as controlled variable and coolant flow rate as manipulated variable. 

Both the simulation and experimental results presented good closed loop responses. The 

work provides a method to measure and control the mold cavity temperature in order to 

achieve effective and efficient cooling system in injection molding process. Hernandez et 

al. (2007a, 2007b) used an adaptive predictive controller, ASPC (adaptive simplified 

predictive controller) to control the average cavity temperature. They pointed out that 

ASPC shows improved closed loop performance when the system was subjected to a set 
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point change in Tavg, compared to non-adaptive predictive controller, SPC (simplified 

predictive controller) and DMC (Dynamic Matrix Controller). 

2.2.2.4. Mold Separation Control 

Mold separation (an increase in gap between the mold cavity sections) is not a 

direct process variable solely related to polymer melt, but it still plays a very important 

role in connecting the machine variables (i.e. packing pressure, melt temperature and 

mold temperature) with part quality variables (i.e. part weight, thickness). Mold 

separation depends on melt viscosity and the integration of melt pressure across the 

projected area in the sprue, runner, and cavity (Chen and Turng, 2006). Mold separation 

control shows good potential for industrial applications, due to relatively easy installation, 

maintenance, flexibility, and relatively low investment cost. 

Research work on mold separation control is active recently, because mold 

separation can be measured outside of the cavity, without the problem of machining and 

sensor installation. Early research recognized that mold separation was a reliable indicator 

of part weight and thickness when measured on the order of microns during volumetric 

filling (Agrawal et al., 1987; Buja, 1990; Wenskus and Miller, 1991). Wenskus and 

Miller (1991) studied mold separation control for part weight consistency. In their control 

system, a mold separation measurement signal threshold was used as the fill-to-pack 

switchover time, instead of the other traditional methods (e.g. ram position, hydraulic 

pressure, or filling time). Moreover, the threshold value for switchover was adaptively 

adjusted cycle to cycle. They found that the part weight and thickness consistency 
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improved, compared to the other traditional switchover methods. Wang et al. (1999) used 

a linear variable differential transformer (L VDT) mounted along the parting line outside 

the mold to measure the mold separation. An integrated adaptive injection molding 

control system was developed to automatically determine the fill-to-pack switchover 

point and continue to control the mold separation profile by manipulating the hydraulic 

pressure in the post filling stage. In that case, the disturbances (e.g. uncontrollable 

material variation or machine-to-machine characteristics) could be adaptively controlled 

so that part weight consistency could be improved 

Chen et al (2002) studied the characteristics of mold separation and its effect on 

the quality of thin wall injection molded parts compared with conventional injection 

molding. They installed four linear variable differential transformers (L VDT) across the 

parting faces of the mold and used a computer based monitoring system to detect the 

mold separation signals. They investigated the effect of some key machine variables to 

mold separation and further to part weight and thickness. The machine variables are: melt 

temperature, packing pressure, clamping force and injection speed. 

Chen and Turng (2006) developed an adaptive control system to predict and 

control part weight by controlling the mold separation profile. The system controls the 

maximum value of mold separation by manipulating the switchover point from filling to 

packing in terms of hydraulic pressure from cycle-to-cycle. The hydraulic pressure within 

a cycle is manipulated to control the mold separation profiles. Their experimental results 

show that the variation of part weight is reduced significantly as compared to the 

conventional hydraulic pressure control. 
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2.2.3 Level3: Quality Variable Control 

Quality control is also a very active research field recently, because of two 

implementation challenges: complex quality dynamic models and lack of on-line 

feedback. Quality dynamics, which relate quality variables to process variables or 

machine variables, are still not understood very well. Most of the quality variables 

(except part weight and dimensions) are very difficult to monitor either quantitatively or 

qualitatively on-line with current technology at a reasonable cost. However, both quality 

dynamic models and on-line feedback are the key points for adaptive quality controller 

design. In recent research, part weight and part dimensions are commonly used in quality 

control. Sheth and Nunn (2001) and Kim et al. (2000) investigated the relationship 

between part weight and a process variable (e.g. cavity pressure), then based on that 

information, adjusted the machine variables by an adaptive controller. Yang and Gao 

(2006) developed an online weight prediction model, with three main process variables 

(packing pressure, barrel temperature, and mold temperature) trajectories as the inputs, 

using a principal component regression model (PCR). With the enhancement of a 

nonlinear PCR model, the closed-loop weight control system was designed and tested, 

and showed good performance over a wide range of operating conditions. They pointed 

out that this methodology could be extended to the prediction and control of other quality 

variables. Chen and Tumg (2007) developed a direct quality (part weight) feedback 

control system. The system combines both feedback and feedforward controls and has a 

cascade structure. The mold separation is controlled and adjusted via both a cycle-to­
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cycle mass-based switchover point and a within-cycle holding pressure control. 

Compared to other control systems currently used in industry, the control system has been 

proved to be a significant improvement of both long-term and short-term consistencies in 

part weight. 

In general, the level 3 feedback loop uses a quality dynamic function, related to 

lower level (level 1 or 2) variables, and then uses advanced control systems to manipulate 

the machine variables. 

2.3 Measurement Instrumentation 

The development of instrumentation technologies is the basis of process control, 

because most process variables have to be measured by some type of device. Through the 

installation of sensors (e.g. pressure, temperature and filling), on-line data can be 

collected and sent to an advanced adaptive controller. After analysis, the information will 

be fed back to the machine actuators to adjust the machine settings in order to get good 

quality parts, which meet customers' standards in both visual and functional 

requirements. The most commonly used sensors (Appendix A) in plastic injection 

molding process control are discussed in this section. 

2.3.1 Cavity Pressure Sensors 

Cavity pressure is an important variable that correlates directly with part quality 

variables such as part weight, dimensions, flash, shrinkage and so on. Continuous 
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monitoring and control of the cavity pressure is viewed as the most accurate method for 

producing consistent quality and low cost parts. 

Today, there are two common technologies used in cavity pressure sensors. One 

uses strain gauge technology, which uses strain gauges mounted to a diaphragm or 

column to convert force exerted by the plastic melt into voltage output (Groleau and 

Groleay, 2002) The second type of sensors, piezoelectric sensors, measure the charge 

generated on piezoelectric crystals for an applied stress or load. Even though these two 

types of sensors work quite differently from one another, they can all give robust and 

accurate readings that are able to meet customer requirements. Both technologies are 

widely accepted and applied in the industry. 

Currently, there are two main styles of mounting methods used in pressure 

sensors, direct (also known as flush mount), and indirect (as slide or button 

configurations). Indirect sensors sense the force exerted by plastic on an ejector or 

stationary pin, which transmits the force to the sensor. The slide style sensors are 

commonly used as they are easily removed and relocated, but it can also slip out either 

fully or partially and cause erroneous readings (Vaughan, 2003). Button style sensors are 

more reliable, compared to slide sensors. Flush mount sensors, in a direct measurement 

style, are directly installed close to the cavity by machining a hole behind the cavity. The 

advantage of this sensor is that it comes in contact with the polymer melt material and 

measures pressure directly without a transmission aid, for example an ejector, which 

transmits melt pressure to a pressure sensor installed underneath. In some cases, indirect 

measurement is recommended, especially in high temperature application, or in which 
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there are installation problems for direct mounting, such as not enough room for a direct 

sensor installation, or in a special cavity surface requirement (e.g. a mirror surface). On 

the other hand, indirect measurement also suffers from many adverse conditions such as 

friction, bending of the ejector pin, platen distortion and so on, which will have a 

detrimental effect on the measurement. In general, direct measurement is more desirable 

for industrial processes. 

Currently, as the technologies developed, many measurement instrumentation 

suppliers like RJG, Kistler, Priamus and Dynisco provide many advanced pressure 

sensors for different applications. Meanwhile, researchers are working with applying 

other pressure sensors into injection molding process monitoring, such as wireless 

pressure sensors. (Kazmer et al., 2003b; 2005b) 

2.3.2 Temperature Sensors 

Besides cavity pressure sensors, temperature sensors also play an important part 

in the qualitative assessment of the injection molding process. The cavity temperature 

change is related to final part quality such as weight, shrinkage and residual stress, quite 

similar to cavity pressure sensor control, but with lower investment. In some situations, 

we can use temperature sensors to monitor and control the process. On the other hand, 

temperature sensors have their own limitations: temperature sensors are generally not as 

accurate recording melt temperatures as pressure sensors are reading melt pressure 

(Kazmer et al., 2005a). Since the temperature sensors are embedded in mold steel, heat 

transfer from the sensor head to the surrounding metal is unavoidable and considered as 
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source of measurement noise. In addition, temperature sensors may have a significant 

phase lag and steady state error in the measurement of melt temperature. 

The most commonly used temperature thermocouples in injection molding are 

surface motmted sensors. The sensor head can be as small as 1.0 mm and can be 

embedded in the cavity. Thermocouple types J, K and N are most commonly used. 

Thermocouple type N is more accurate and used compared to the others, because of its 

high stability and resistance to high temperature oxidation, and enhanced calibration 

ability and longevity (Burley, 2007). 

2.3.3 Fill Sensors 

Compared to the wide research and application with cavity pressure and 

temperature sensors, the measuring transducers used to monitor the melt flow state in 

cavity are not as well developed. Cavity pressure and temperature sensors cannot directly 

capture the flow front status, which requires knowledge of the melt-front velocity and 

melt-front position during the filling stage (Chen et al., 2004b). There are two measuring 

systems used in melt filling monitoring: optical sensors and on-line ultrasonic technology. 

An optical sensor using fiber optics to access the mold cavity can be used to 

monitor the mold filling and cooling phases. Fluorescent dye was mixed with resin at low 

levels of concentration ( ~10 parts per million by weight) prior to processing (Bur and 

Thomas, 1997). The measured optical signal transmits through the resin, reflects off the 

opposite wall of the mold, and retraces its path through the resin to the optical sensor. 
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Using that sensor, the melt status during packing and cooling phases of the process can be 

monitored and process parameters can be optimized to achieve a good quality part. 

Ultrasonic transducers used in injection molding have been widely studied for 

such variables as flow front advancement during the filling stage; gap development 

caused by the shrinkage of the part during the cooling (mold separation); and material 

solidification, which significantly affect part quality (Wang et al., 1997). The ultrasonic 

transducer is installed on the external surface of the mold; a sound pulse will strike a 

surface of the mold cavity and reflect back to the transducer. By measuring the change in 

intensity of the reflected echoes, the signal indicates the presence of polymer at that point. 

An ultrasonic transducer was used to control the injection phase and packing phase 

switchover by detecting the arrival of the melt at a specific position of the mold cavity 

(Edwards et al., 2001b). The main advantages of ultrasonic transducers are: 1. the 

ultrasonic sensors are attached to the external surface of the mold, which save a lot in 

engineering design and machining; and 2. the ultrasonic pulse-echo technique can directly 

sense the position of the polymer in the mold cavity. Thus one can detect the flow front 

arrival, end of filling, degree of solidification, detachment of the part and so on (Wen et 

al., 1999). 

Another type of instrumentation used to measure material filling and cooling 

status in the mold cavity is a Linear Variable Differential Transformer (LVDT). Wang et 

al. (1999) used this transformer to measure the mold separation. L VDT is a common type 

of electromechanical transducer that can convert the rectilinear motion of an object to 

which is coupled mechanically into a corresponding electrical signal. L VDT can measure 
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movements as small as millionths of an inch, which is accurate enough for injection 

molding process control. It provides a measuring range from 2.5mm to 1OOmm, and 

linearity error as small as +/-0.1% of full scale output. The applications of LVDT in 

injection molding are mostly focused on high-speed injection molding (Chen and Turng, 

2005a, 2006, 2007). 

2.4 Advanced Control Algorithms 

Many advanced control algorithms have been employed in the closed-loop 

injection molding process control such as fuzzy control (He et al., 1998; Lau et al., 1999; 

Vagelatos et al., 2001), neural networks (Ribeiro, 1999; Kening et al., 2002; Zheng and 

Chen, 2005), genetic algorithm (Kim et al., 1996; Gao et al., 1999) and iterative learning 

control algorithm (Gao et al., 2001; Liang et al., 2002; Wang et al., 2002; Tan et al., 

2003). Their applications cover not only in machine variables control, but also in in-mold 

process variables control. The basic idea of advanced control algorithms is to control 

process variables or quality variables, through studying process status and available past 

information. Among them, artificial neural networks, self-tuning regulator and model 

predictive control are commonly used and proved to be most attractive for injection 

molding process control. 

2.4.1 Artificial Neural Networks 

Artificial Neural Network is an information-processing paradigm that is inspired 

by the way biological nervous systems, such as the brain, process information. It is 
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composed of a large number of highly interconnected processmg elements (nodes) 

working in unison to solve specific problems. ANN is configured for a specific 

application, such as pattern recognition or data classification, through a training process. 

The key advantage of ANNs is their remarkable ability to derive meaning from 

complicated or imprecise data, which can be used to extract patterns and detect trends that 

are too complex to be noticed by either humans or other computer techniques. Other 

advantages such as adaptive learning, self~organization and real time operation are also 

recognized. 

The process elements, or nodes, are arranged in a layered structure. Each node 

consists of a summing junction, which adds together the weighted inputs from other 

nodes, and an activation function, which generates an output, and fans out to serve as an 

input to other nodes within the network structure. Nodes transmit signals to each other via 

weighted links, which attenuate or amplify the signal depending on the weight value 

(Stergiou and Siganos, 1996). 

A feed forward neural network topology, Figure 2.3, is one of the most popular 

ANN structures (Rewal et al., 1998). The network configuration is termed 6-3-2, which 

means six inputs, three layers (input, hidden layer and output) and two outputs. Its 

function mapping is achieved by adjusting the weights of internal network connections 

such that, a given input, the difference between the network response and the desired 

output is an acceptable value. In order to determine the parameters of the function, 

'training' the network is the most important step. If the training set is proper and a good 

representation of the problem space, then the resultant network is capable of capturing 
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inherent relationships in the data (Rewal et al. , 1998). The back propagation network 

(BPN) is a very popular training algorithm first proposed by Rumelhart et al (1986). The 

error term between the network output and desired response is propagated backwards to 

adjust the internal weights of each node so that the new error term calculated on the 

forward pass is reduced. Normally, besides the training set, a validation set and a test set 

are necessary in order to achieve the best generation. 

Hldden layer Outpuls
inputs 

Figure 2.3 Topology of a three-layered feedforward neural network. (Rewal et al., 1998) 

Researchers have developed many ANN systems for cavity pressure control and 

temperature control in injection molding process control (Woll et al., 1996; Rewal et al., 

1998; Kazmer and Petrova, 1999; Fara et al., 2001). Part weight and cavity (nozzle) 

pressure are the most commonly used variables set for ANN systems development. Back 

propagation is the most popular training technique for ANN systems. 
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2.4.2 Self-Tuning Regulator 

A self-tuning regulator is a controller that adaptively finds its control parameters 

in the control law. It is a class of adaptive controller, which is used when the process to be 

controlled has a constant but unknown parameter. The controller design procedure is: 

1. Find specifications for the closed-loop system. 

2. Determine a model for the process to be controlled. 

3. Choose a design method. 

4. Calculate the parameters in the controller. 

In many cases it is desirable to automate these steps and that is the idea behind 

adaptive and self-tuning regulators. (STRs) (Wittenmark, 1998) The main advantage of 

using STRs as adaptive controller lies in the large number of combinations of schemes 

that can be implemented based on the needs of the plant. STRs are commonly used in the 

processes with long delay time, time-varying disturbances . 

. r:::------.------­
. Self-tuning regulator 


Specification I Process parameters 


I ~- I.t I 
I I . ....Controller Estimation

designI I 
Controller 
parameters 

.. I 
......... ~_J
r - --­..Reference I 

Controller ProcessI I OutputInput 

L - - - _____j 

Figure 2.4 Block diagram of a self-tuning regulator. (Wittenmark, 1998) 
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The structure of the self~tuning controller is best described from the block 

diagram in Figure 2.4. It consists of two closed loops. The first loop is a conventional 

controller feedback-loop consisting of the process and the controller where the output of 

the process is measured and compared with the desired output (reference signal) of the 

closed-loop system. The second loop, the updating loop, has two main blocks, the 

estimator and the controller design. Estimator can make an estimate of the parameters in 

process model, which will be used to determine the parameters of the controller design. 

The process model is normal assumed as a single input and single output system. There 

are many different methods to calculate the parameters, such as the Least Squares 

algorithm. Controller design uses the process model and the specification to determine the 

controller parameters that are then sent to the controller. 

Gao et al (1994, 1996a) developed a self-tuning regulator to control the cavity 

pressure so that it follows a preset profile through manipulation of the servo-valve 

opening. They found a cavity pressure model in relation to the servo-valve opening. Their 

experiment showed that the methods worked very well under a wide range of process 

conditions. 

2.4.3 Model Predictive Control (MPC) 

Model predictive control (MPC) is a family of control techniques that optimize a 

given criterion by using a process model to predict system evolution and compute a 

sequence of future control actions (Guzmer et al., 2005). In order to develop a MPC 

controller, the most important step is to extract or identify a reasonably accurate dynamic 
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model of the process, which captures the dynamic and static interactions between inputs, 

outputs, and disturbance variables (Seborg et al. 2003). Process models can be developed 

directly from process test data by using system identification methods to create an, 

empirical model, the accuracy of which depends on the design and collection of the 

process test data. The other method to achieve the dynamic model is to develop the model 

from first-principles or deterministic type models. First-principles models are typically 

more expensive to develop, but are able to predict process behavior over a much wider 

range of operating conditions after validation. While the empirical models take less time 

to develop, sometimes they may not be accurate enough for process control. In reality, 

process models used in MPC technology are based on an effective combination of process 

data and theory. For example, the key parameters in first-principles models are typically 

estimated by process test data (Qin and Badgwell, 2002). In addition, if the process is 

subject to disturbances, a disturbance or noise model.can be added to the process model, 

thus allowing the effect of disturbances on the predicted process output to be taken into 

account (Astom and Wittenmark, 1990). 

In MPC applications, the output variables are referred as controlled variables 

(CVs), while the input variables are called manipulated variables (MVs), and measured 

disturbance variables are called DVs. Figure 2.5 is the general structure of MPC 

algorithm (Seborg et al. 2003). A process model is used to predict the current plant 

outputs. The difference between the process outputs and model outputs, called residuals, 

serve as the feedback signal to a prediction block. The Prediction block generates the 

predicted outputs, which are then used by set-point calculations and control calculations 
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at each sampling instant to calculate manipulated inputs (MVs). The set-points for control 

calculations, so called targets, are calculated from an economic optimization based on a 

steady-state model of the process. The control calculations are based on current 

measurements and predicted outputs. Moreover, the objective of the MPC control 

calculations is to determine a sequence of control moves (manipulated inputs changes) so 

that the predicted response moves to the set point in an optimal manner (Seborg et al., 

2003). MPC accepts a variety of models (physical models and empirical models, linear 

and nonlinear), objective functions, and constraints (the upper and lower limits, or the 

maximum moving step size of CVs and MVs). Multivariable dynamic matrix control 

(DMC) algorithm is a commonly used model predictive control algorithms (Marlin, 2000). 

Predicted 
outputs 

Set-point 
calculations 

Set points 
(targets) 

Control 
Calculation 

In uts 

Process 
outputsPrediction Process 

Model + 
outputsModel 

Residuals 

Figure 2.5: Block diagram for model predictive control. (Seborg et al. 2003) 
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Moreover, MPC can be used in a process with multivariable and long delay times 

(dead time), which is very meaningful and attractive for injection molding process control. 

The main advantage of MPC is ease of tuning and implementation. It can also be used for 

non-linear processes. MPC inherently provides a feed-forward action for compensation of 

the measurable disturbances and for tracking a reference trajectory (Ambady and Kazmer, 

2001). 

DMC was developed by Cutler and Ramaker (1979), and since then has been 

successfully applied to different industrial processes. The Dynamic Matrix Control 

algorithm can be used to develop single-variable (Single-input and Single-output control 

systems, SISO) and multivariable (Multi-input and Multi-output, MIMO) control systems. 

Basically, the task of the control algorithm is to determine future adjustments to the 

manipulated variable that will result in the predicted controlled variable returning quickly 

to the set point (Marlin, 2000). Data of past inputs and outputs must be collected for 

model identification, which is the estimation of parameters for a model that can be used to 

predict outputs, given inputs. Then the output response to a unit input, named as the step 

weight, can be figured out by using a transfer function. It is very important for controller 

design to choose the key parameters for DMC algorithm such as the sampling time, 

sample size required for process model to reach steady state, the controlled-variable 

horizon, and the manipulated-variable horizon. Moreover, the relative values of the two 

tuning parameters: the weighting for each controlled variable and the weighting for each 

manipulated variable, determine how much importance is placed on the controlled 
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variable and on the variability of the manipulated variables. Adding feedback and tuning 

helps improve the performance of the DMC controller. 

It is reported that there were more than 4600 total MPC applications (two times of 

the number 5 years earlier) in different industries such as chemical, polymers, refining, 

petrochemicals and so on (Qin and Badgwell, 2002). MPC has been employed for 

injection molding process control, specifically, in machine variables control (level one) 

and process variables control (level two). Ambady and Kazmer (2001) used MPC for 

dynamically tracking and controlling the mold wall temperature profile in injection 

molding by regulating the preheat time, preheat temperature, and coolant temperature. 

Dubay (2001) used MPC to control the cavity pressure during the filling phase. Pramujati 

et al. (2006a, b) designed a DMC to control the cavity pressure during cooling phase by 

manipulating the coolant flow rate. Generalized predictive control (GPC) (Lee and 

Sullivan, 1988) is a popular MPC technique. Dubay et al. (1997) and Yao and Gao (2005) 

employed a MIMO GPC for melt temperature control. The experiments results showed 

GPC is effective in controlling barrel temperature, with significantly reduced variations 

and overshoots compared to a well-tuned PID controller. 

2.5 CAE Simulation Programs Applications 

Due to the more complex product design and the demands for higher part quality, 

traditional trial-and-error methods can not satisfy modem industrial requirements. Using 

computer aided engineering (CAE) programs for process simulation and analysis is a 
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necessity for the injection molding industry. Many CAE programs are applied in injection 

molding industry such as Moldflow®, Modex3D® and ANSYS® (Xu and Kazmer, 1999). 

2.5.1 Molding Process Analysis Programs 

CAE programs now can simulate the melt behavior: flow and heat transfer, inside 

the mold cavity, and then predict the part quality like weld lines, shrinkage and so on. 

Possible defects such as inability to fill a cavity, dimensions over limit and warpage can 

be addressed by simulation before mold making, which will be used to modify the mold 

design (Wang et al., 2005). CAE programs also help process engineers to optimize the 

processing windows and solve quality problems (Kalnin and Zluhan, 1999; Wang and 

Y oon, 1999). Thanks to its improved accuracy, researchers have used CAE programs to 

collect process test data instead of in-line production data, in order to identify the process 

model and develop the modem process controllers. Based on the CAE simulation results, 

Wang et al. (2005) used ANN technique to build a relationship model between quality 

index (sink-mark index) and selected process conditions, and then developed a controller 

to control the part weight. The controllers were trained with CAE results and the 

simulation results showed reasonably agreement with experiment result. Chen and Tumg 

(2005a) extracted neural network models from CAE predictions and developed an online 

quality controller to control part weight. 

However, the simulation results are not always satisfied for real-time application, 

since sometimes there is large difference from measured results. Ainoya and Amano 

(2001) and Koelling and Xu (2003) pointed out the large discrepancies between 
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simulation and observed results that resulted from neglecting some important factors, 

such as the pressure -dependent viscosity, variable heat transfer coefficient, heat capacity, 

and juncture pressure loss. Ainoya et al. (200 1) concluded that the CAE simulation 

program is sufficiently reliable to predict the static state of molding with accuracy, if high 

quality material databases can be employed. 

2.5.2 Mold Surface Temperature Transient Simulation 

Even though current CAE programs of polymer processing contributed a lot in 

mold design and process optimization, there are still some limitations in applications. For 

instance, it is not routine to predict the transient mold temperature cycle-to-cycle using 

current injection molding software. Cooling simulation is usually conducted with a cycle­

averaged approach and one spatial dimensional temperature transient variation (e.g. Chen 

et al., 2004). 

Patterson et al. (1990) studied mold temperature control and discussed the 

tendency of temperature variation of mold at start-up period and the response of mold 

surface temperature variation for s step change in coolant temperature through 

experiments. Chen and Chung (1992) used simulation programs to study mold surface 

temperature transients. They applied a modified boundary element technique (finite 

difference method) to calculate the cyclic transient mold cavity surface temperature. 

Figure 2.6 shows the schematic oftemperature variation ofthe mold (Chen et al., 1999). 

Since the end of the 1990s, researchers have applied commercial FEM (Finite 

Element Method) programs to simulate the mold temperature distribution, such as 
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ANSYS® (Xu and Kazmer, 1999; Chen et al., 1999, 2000, 2004, 2005, 2007.) and 

LUSAS Analyst (Tang et al., 2005). In order to simulate the continuous production, the 

mold temperature distribution was used as the initial conditions for the next simulation 

cycle until the temperature distribution reached steady-state. They compared the cooling 

time estimates of 22 cycles and found the differences in the first few cycles were very 

prominent, but after that, no large differences were observed. However, due to the large 

computing work, their simulation was based on 2D and an axis-symmetric simple part. As 

computer software and hardware developed recently, three-dimensional simulation of 

transient temperature distribution is reported. Chen et al (2004) simulate the transient 

temperature distribution for a lens mold with embedded heaters. They measured the mold 

surface temperature distribution online with an infrared thermal image system. The 

simulation results of mold cavity side shows well coincidence with measured results, 

while that of the core side shows reasonable coincidence but slightly larger difference. 

They analyzed that the complicated structure and ejector system in the core may lead to 

this problem. It shows that ANSYS® can be used to simulate the thermal process in 

injection molding process and the simulation results are valuable for mold design and 

process control. 

Finite element software is capable of simulating the transient temperature 

distribution and the result is in reasonable agreement with experimental result. The 

simulation software will be a very helpful tool to investigate the dynamic response of 

mold surface temperature when cooling conditions or melt temperature is changed. 
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Through the simulation studies, proper mold temperature control systems and cooling 

time can be designed. 

t--••-ssteady oycUc period 

~operation starts 

Time 

Figure 2.6: Schematic oftemperature variation of mold. (Chen et al., 1999) 
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Chapter 3 


Model-Based Predictive Controller Development 

3.1 Overview 

Model-Based Predictive Control (MPC) has been extensively used in different 

industries, thanks to its superior advantages in process control. Researchers have 

implemented MPC control in thermoplastics injection molding process. Table 3.1 lists 

the recent research using advanced controllers for injection molding process control. The 

investigations include the injection molding machine variables (e.g. injection velocity, 

barrel temperature, nozzle pressure) and in-mold process variables (e.g. cavity 

temperature, cavity pressure, and mold separation). The manipulated variables (such as 

hydraulic valve opening, heating zone output, coolant temperature and coolant flow rate) 

are adjusted and controlled cycle-to-cycle or in-cycle, based on the control objective. 

Single-Input/Single-Output (SISO) and Multiple-Input/Multiple-Output (MIMO) MPC 

controllers have been developed. The MPC controllers demonstrate significant 

improvement for injection molding process control, compared to other traditional control 

algorithms (e.g. PID, PLC). 
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Table 3.1 Recent research using model predictive controller for molding process 

In-cycle or 
cycle-to­

cycle 
Reference 

Controlled 
Variables 

Manipulated 
Variables 

Control 
Strategy 

In-cycle (Dubay, 2001) 
Cavity 

pressure m 
filling 

injection 
speed 

(hydraulic 
servo valve) 

SISOMPC 

In-cycle 
(Pramujati et al., 

2005) 
Injection 
velocity 

Hydraulic 
servo valve 

op_enin_g_ 

Simplified 
predictive 
controller 

In-cycle (Gao et al., 1996a) 

Cavity 
pressure m 
filling and 
packing 

Hydraulic 
servo valve 

opening 

Self-tuning 
control 

In-cycle (Dubay et al., 2007) 
Injection 
velocity 

Hydraulic 
servo valve 

ope rung 

SPC and 
MMPC 

(Multimodel 
Predictive 
Control) 

In-cycle 
(Lakhram and Dubay 

2002) 
Injection 
velocity 

Hydraulic 
servo valve 

opening 

Self-
optimizing 

MPC 

In-cycle 
(Yang and Gao., 

2001) 

Injection 
filling 

velocity 

Hydraulic 
servo valve 

opening 

PI; STR; 
GPC; Fuzzy 

control 

In-cycle 
Rafizadeh et al., 

1997 

Cavity 
pressure in 

filling 

Hydraulic 
servo valve 

opening 

Physically 
based 

adaptive 
control 

In-cycle Yang et al., 1998 
Nozzle melt 

packing 
pressure 

Hydraulic 
servo valve 

opening 

SISO& 
MIMOMPC 

(Continued) 
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(Continue) 

In~cycle or 
cycl~to-

cycle 
Researchers 

Controlled 
Variables 

Manipulated 
Variables 

Control 
Strategy 

Cycle-to­ (Pramujati et al., Cavity pressure Coolant flow SPC and 
cycle 2006a) after packing rate DMC 

Cycle-to­
cycle 

(Ambady et al., 
2001) 

Mold wall 
temperature 

Heat gas 
preheat time & 
temperature, 

coolant 
temperature 

SISOMPC 

Cycle-to­
cycle 

(Hernandez et al., 
2005) 

Average cavity 
surface 

temperature 

Coolant flow 
rate 

PI controller 

Cycle-to­
cycle 

(Gao et al., 1996) 
Cavity pressure 

in cooling 
Coolant 

temperature 
Dahlin 

Controller 

Adaptive 
Cycle-to­ (Pramujati et al., Cavity pressure Coolant flow simplified 

cycle 2007) in cooling rate predictive 
controller 
Adaptive 

Cycle~to­ (Hernandez et al., Average part Coolant flow simplified 
cycle 2007) temperature rate predictive 

controller 

Cycle-to­
cycle 

(Abu and Dubay, 
2007) 

Injection speed, 
barrel 

temperature 

Hydraulic servo 
valve opening 
Heating band 

output 

Extended 
predictive 
controller 

Cycle-to­
cycle 

(Haber and Kamal, 
1987) 

Peak cavity 
pressure 

Hydraulic 
pressure 

Not specific 

Cycle-to­
cycle 

(Patterson et al., 
1990) 

Cycle average 
surface 

temperature 

coolant 
temperature 

PI, PID, 
Dahlin 

controller 
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(Continue) 

In-cycle or 
cycle-to­

cycle 
Researchers Controlled 

Variables 
Manipulated 

Variables 
Control 
Strategy 

In-cycle and 
Cycle-to­

cycle 

(Yang and Gao, 
1999b) 

Nozzle 
pressure 

Hydraulic 
servo valve 

ope rung 

Adaptive 
control 

In-cycle and 
Cycle-to­

cycle 

(Chen and Turng, 
2006) 

Mold 
separation 

Switch point 
Hydraulic 
pressure 

PID-based 
adaptive control 

Continuous (Dubay , 2002) 
Barrel 

temperature 
Heating zone 

output 
MIMOMPC 

Continuous (Dubay et al., 1997) 
Barrel 

temperature 
Heating zone 

output 
MIMOMPC 

Continuous (Gerber et al., 2006) 
Barrel 

temperature 
Heating zone 

output 
MIMOMPC 

Continuous 
(Pramujati and 

Dubay, 
2003) 

Barrel 
temperature 

Heating zones 
1 ,2,3 output 

MIMOMPC 

Continuous (Tsai et al., 1995) 
Barrel 

temperature 
Heating zone 

output 

Multivariable 
Self-tuning 
Controller 

Continuous 
(Yao and Gao, 

2005) 
Barrel 

temperature 
heater output Adaptive GPC 
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Recently, Matlab® has been used a lot for process dynamic model identification 

and model predictive controller development. Hernandez et al. (2005) used Matlab® to 

implement the cavity temperature PI controller. Chen and Tumg (2005) used Simulink® 

to construct and simulate their multilevel process and quality control system. Dubay 

(2001) used System Identification Toolbox to identify an auto-regressive with exogenous 

input (ARX) process model for cavity pressure MPC control. MPC Toolbox provides 

windows-based graphical user interface and predefined functional blocks, which can be 

used to develop the control system conveniently. A MPC program will be developed 

based on the MPC Toolbox in this study. 

In order to develop a MPC controller, to find a proper plant dynamic model is the 

first and most important step. In this study, off-line models are identified from CAE 

simulation results, instead of real machine production data. Nevertheless, the accuracy of 

the plant model depends on how accurate the CAE program can simulate the process. 

Two different CAE programs are used to simulate the process. Moldflow Plastics Insight, 

injection molding process simulation software is used to simulate cavity pressure and 

temperature of the polymer melt. FEM (finite element method) simulation software, 

ANSYS®, is used to simulate the mold temperature distribution and transient in cooling 

stage. 
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3.2 Controller Structure Selection 

3.2.1 Multivariable Process Control 

Among the main process variables, cavity pressure has been often used as a 

controlled variable. Cavity pressure profiles can be divided into three stages (filling, 

packing/holding and cooling). Research has been done to control each stage of injection 

molding either cycle-to-cycle or in-cycle using SISO MPC controllers. Cavity surface 

temperature has also been reported to be controlled cycle-to-cycle by a SISO MPC 

Controller (Hernandez et al., 2007). Recent studies with MIMO MPC controllers are 

mainly focused on controlling zone temperatures in the barrel as a continuous control 

variable. Here, we investigate the controllability of a two-by-two MPC set-point 

controller to control the cavity pressure and part surface temperature in a cycle. SISO 

controllers are developed to control cavity pressure in the filling stage and mold surface 

temperature after filling in order to show controllability. 

Among MPC controllers, Dynamic Matrix Control is the most popular strategy in 

industrial process control, due to easy tuning and good performance. The DMC algorithm 

can be used to control process with dead time, input and output constraints, and unusual 

dynamic behavior. Normally, the dynamic matrix is developed from experimental 

sampled data by step input excitations. The DMC algorithm can be used as SISO or 

MIMO process control. Since it can be designed within the model predictive control 

structure, and the algorithm can be designed without determining the analytical inverse of 

the process model, the extension to multivariable systems is straightforward (Marlin, 

2000). 
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The DMC controller uses a dynamic model of the process to calculate the future 

behavior of the controller variable that would occur without future control adjustments. 

Common used models in MPC are the finite step and impulse response models. The 

following discussion on multivariable model predictive control is based on summaries in 

Swartz (1991, 2004). A detailed discussion of MPC may be focused in Maciejowski 

(2002). 

The formulation for single-input and single-output (SISO) systems is described 

first; therefore its extension to MIMO systems is discussed. 

The general form of finite step response model is given by 

y(k) = L
N 

[s(i)~u(k- i)] + s(N)u(k- N) + d(k) (3.1) 
i=l 

where y(k) represents the output at time step k; u and l:l.u represent the input and the input 

change respectively; s(i) are the unit step response coefficients; and d(k) represents 

unmodelled disturbances. N represents the number of time steps for the system to reach 

steady state. The general form can be used to predict the response for a set of future 

inputs: 

1\ 1\ l 1\ 

y(k +II k) =y 1 ( k +II k) + L s(i)~u( k +I- i Ik) + d(k +II k) 
(3.2)

i=l 

effect of past inputs effect of future inputs 
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1\ 

where y(k+ll k) represents the model output at time step k+l, based on the information 

1\ 

available at step k. y 1 (k +/I k) may be computed from the step response model as: 

1\ N-I 

y 1 (k +II k) = L)s(i)~u(k +1- i)] + s(N)u(k +1- N) (3.3) 
i=l+I 

Using the step response model to predict the output toP time steps into the future 

gives an expression of the following form: y = A ~u + b. Here y is a vector of future 

output predictions; ~u is a vector of future input moves; b represents the effect of past 

inputs and predicted disturbances on the outputs; A is named as dynamic matrix. The 

equation can be written in matrix form as below: 
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y(k+ II k) 

y(k+21 k) 

= 
y(k+MI k) 

y(k+PI k) 
y 

s(l) 0 0 ~u(k 1k) 

s(2) s(l) 0 ~u(k+llk) 

s(M) s(l) 

s(P) s(P-1) s(P-M +1) ~u(k+M -11 k) 
A D.u 

,... 

yf(k+ 11 k) d(k+ll k) 
,... 

yf(k+21 k) d(k+2lk) 

+ + 

,... 

d(k+Pik) 
b 

(3.4) 

The objective of the MPC algorithm is to calculate a sequence of control moves 

(manipulated input changes, 11u) so that the predicted response output (y) moves to the 

set point (Ys) in an optimal manner. Figure 3.1 shows the basic concept for MPC control 

(Seborg et al. 2003). To calculate the manipulated moves, the common method is to 

minimize a performance-based objective function. For a prediction horizon of P and a 

control horizon of M, the on-line solution of open-loop optimization can be expressed as: 

Minimize <I>= (Ys- Y)T Q(ys- y) + 11uTA!1u (3.5) 

11u 


Subject to y = A 11u + b 
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where Q=diag(qp"·,qP) is weighting matrix for outputs and A=diag(A,,-··,A.M)is 

weighting matrix for inputs, usually chosen to be diagonal. 

The solution to (3 .5) is given by: 

(3.6) 

In practice, only the first input move is implemented. The next output 

measurement is used to estimate the disturbance. MPC controller tuning may be 

accomplished through the weighting matrices Q and A , and through the prediction and 

control move horizons, P and M. Discussion about the effects of the tuning parameters on 

closed-loop stability can be found on Swartz (1991) and Seborg et al. (2003). The 

disturbance estimate is commonly assumed to be constant over the prediction horizon. 

Past Future 

,. ­ - - - 2et Point (Target) 
0 -o­ o­ 0 

0 

0 

j 0 ••• Past output data 
0 ooo Predicted future ou 

0 0 
- ­ Past control action 

put 

y • -- Future control action 

•
• • • 

Control horizon, M 

- ..,
I - .., u 

r .., I - - - - - -
u - ..J ..J1­ I r- -

'--­ Prediction horizon. P 

k~1 k!l k!2 
I 

k+k k+M-1 p 

- Sampling instant 


Figure 3.1 Basic concept for model predictive control (Seborg et al. 2003) 
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For MIMO systems: 

:::::~':'----+~~~~-____P_Ian_t_____.r---•~ :::: ~,Y:m 
Each output is in general influence by each input. The step response model for 

output y; can be expressed as: 

(3.7) 

where s y(l) is the response at time step I of the output ito a unit step in the /h input. 

Similar as SISO system, the prediction equation is y = A ~u + b, where 

output 1 input 1 

(3.8) ~u= (3.9)y= 

outputm input m 

Au Au Aim 

A2I A22 A 2m 

A= (3.10) 

Ami Am2 Amm 
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Ay· is the dynamic matrix corresponding to the lh controlled variable and the /h 

manipulated variable. 

The open-loop optimization has the similar equation as SISO system (3.5). 

However, the weighting matrices are different. Q is an mP x mP matrix; A is an mM x 

mM matrix (also termed the move suppression factor). 

Q =diag[q1 ···qpqz ···qz,-··,qm ···,qm] 
P ele'melfts c~rresponding 

to output 1 


A= diag[A ···A A ···A · · · A ···A "h~ 2 2' ' m mJJ 

M elements corresponding 
to input 1 

The solution is given as before by: 

(3.11) 

R 

where the set point trajectory defined as: 

output 1 set 
point trajectory } 

Ys = 

Ysm(k+ P) 
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The rows 1, (M+ 1 ), (2M+ 1 ), ... , (m-1 )M + 1 of R are extracted to calculated the first 

move ofeach of the m inputs for implementation. 

DMC control algorithms have been developed to handle different challenging 

applications, for example, quadratic dynamic matrix control (QDMC) (Garcia and 

Morshedi, 1986) which is used to control the system with constraints in controlled 

variables or manipulated variables. The Matlab MPC Toolbox makes it very easy to 

develop constrained SISO or MIMO DMC controller and carry out open-loop or closed­

loop simulation. 

3.2.2 Controlled and Manipulated Variables Selection 

The first step in MPC controller design is to choose control variables and 

manipulated variables. The controlled variable is the target of the control system, and 

depends on manipulated variables and disturbances. Controlled variables are measured 

on-line and the measurements are used for feedback control, while manipulated variables 

are inputs that can be adjusted when needed, such that their change will affect the 

controlled variables directly or indirectly. For injection molding process control, 

manipulated variables are level-one variables (machine variables) while controlled 

variables are level-two (process variables) or level-three variables (quality variables). 

As we know, in-mold process variables are closely related to product quality, 

special cavity pressure and cavity temperature. The cavity pressure profiles in filling, 

packing and cooling stage are quite different. Model-based predictive controllers have 

been employed to control the cavity pressure profile (Pramujati et al., 2006a, 2006b; 
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Dubay, 2001 ). Cavity pressure profile can be controlled cycle-to-cycle, using the peak 

value, the slope, time constant 1: and Controlled Pressure Cooling Time (CPCT) as 

controlled variables. More attention has been paid to cavity pressure trajectory control in­

cycle, which can greatly improve the process performance and directly determine the 

final part quality. Using the pressure trajectory as the control objective, the entire profile 

of the pressure development will be under control, which can ensure that the melt will 

follow the some course in every cycle so that the product quality will be more stable. In 

our study, MPC controller will be developed to control the cavity pressure trajectory in 

filling and packing stages. 

Besides cavity pressure, part surface temperature profile also plays a great 

influence on part quality. So part surface temperature is selected as the other control 

variable in our two-by-two MPC controller. Advanced controllers have been developed to 

control the average temperature cycle-to-cycle (Hernandez et al., 2007; Dubay et al., 

2006). However, control of the part surface temperature trajectory within a cycle is still 

rare. 

Manipulated variables that affect cavity pressure and part surface temperature 

have been studied. A common method to control cavity pressure is to adjust the opening 

of a hydraulic servo-valve installed in machine hydraulic system. The opening of the 

valve directly affects the filling speed, filling pressure and packing pressure (Gao et al., 

1996a). Since CAE software does not usually model physical units (such as the servo­

hydraulic valve) directly, using filling flow rate or pressure settings as manipulated 

variables to control cavity pressure is reasonable. On the other hand, mold temperature 
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has been proven to strongly affect the cavity pressure, which can be controlled by 

adjusting coolant temperature and flow rate directly. So in this study SISO and one two­

by-two MPC controllers are developed and their controller structure is shown in Table 

3.2. 

Table 3.2 Model-based predictive controller structure 

MPC 
Controller 

Controlled Variables 
Manipulated 

Variables 

SISO Cavity pressure in filling stage Filling flow rate 

SISO Mold surface temperature Coolant temperature 

SISO Mold surface temperature Coolant flow rate 

MIMO 

1. Cavity pressure trajectory in 
Packing stage 
2. Part surface temperature 
trajectory in packing Stage 

1. Packing pressure 
2. Mold temperature 

3.3 Simulation Process Preparation: 

To collect simulation result data for controller development, a cell telephone 

cover was used as an example for process analysis in Moldflow® and thermal simulation 

software, ANSYS®. Product material, mold material and coolant selection are also very 

important for simulation work, which will be discussed in the follow section. 

3.3.1 Part Selection 

Thin-wall molding has been widely applied in different industries (e.g. portable 

electronics and computer), due to its attractive advantages such as material saving, cycle 
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time, part weight and overall part size reduction (Chen et al. , 2000; Selden, 2000). Thin­

wall molding is quite different from the conventional injection molding process, 

especially in the pressure control during filling and packing stages. A thin-wall cell 

telephone cover is selected as the studied component (see Figure 3.2). This part is the 

front cover of a cell phone, which includes many keyboard holes and a display window . 

with a thickness of 1.2mm. The complex structure makes it very difficult to fill the cavity 

and control a mold temperature. Moreover, without proper control, the part is subject to 

warpage and weak mechanical properties. Table 3.3 shows the dimensions and other data 

required for simulation. 

1.045 

Figure 3 .2 displays the cell telephone front cover. 
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Table 3.3 Cell Phone Front Cover Properties 

Surface Area 36.36 cm 2 

Volume 7.09 cm3 

Weight 8.17 g 

Length 12.26 em 

Width 4.186 em 

Height 1.045 em 

Thickness 0.12 em 

3.3.2 Material Selection 

Proper material selection is a critical step in product development process, which 

affects not only product design, but also future process control and final part quality. 

Material used for thin-wall molding must have high-flow capability and good impact 

strength. For cell phone cover, the material must also have good heat resistance, UV 

stability and a wide processing range. Engineering thermoplastic materials typically used 

for cell phone covers are polycarbonate (PC), acrylonitrile-butadine-styrene teropolymer 

(ABS), and PC/ ABS resins. GE Plastics provides a wide range of material for thin-wall 

molding application. Since the thickness of the cover is only 1.2mm, high-flow capability 

material must be used. Cycoloy PC/ ABS C 1000 HF is selected because of its good high­

flow capability, UV stability and excellent impact capability. Table 3.4 shows material 

properties as provided in Moldflow®. 
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Table 3.4 Main properties of Cycoloy Cl 000 HF. 

Mold Surface Tem_perature 86 oc 
Mold Temperature Range 79-93 oc 
Melt Temperature 274°C 
Ejection Temperature l10°C 
Specific Heat 2270 J/kg-K 

0.26 W/m-K Thermal Conductivity 

Melt Density 0.97681 glcm3 

Maximum Shear Rate 40000 s­ 1 

Maximum Shear Stress 0.4 MPa 

3.3.3 Mold and Coolant Selection 

Due to its high injection pressure requirement during processing, the mold steel 

used in thin-wall molding must have high stiffness and good stability, especially for 

telecommunication products. Thin-wall molding also requires thicker and larger support 

plates in case of mold deformation during production, which may cause warpage and 

dimensional problems in the final part. Hardened tool steels such as P20, H-13 and D-2 

are commonly used in thin-wall molding; H-13 is selected her and the key parameters for 

Moldflow® analyses are shown in Table 3.5. 

Coolants are usually mixtures of different chemicals that inhibit corrosion, algae 

growth or improve the thermal properties (Reynolds, 2000). In this case, water is selected 

as the coolant for the simulation work. The main properties used for thermal analysis is 

displayed in Table 3.5. 
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Table 3.5 H-13 and water thermal properties. 

Property H-13 Water 

Specific Heat 462 J/kg-K 4180 J/kg-K 

Thermal Conductivity 29.5 W/m-K 0.643 W/m-K 

Density 7.76 g/cm3 0.988 g/cm3 

3.4 Injection Molding Process Simulation: 

Moldflow Plastics Insight (MPI), which is widely used for injection molding 

process simulation in both academia and industry, is used to analyze the molding of the 

cell telephone cover. MPI provides useful information about melt flow status inside the 

cavity (e.g. pressure, temperature, filling time, shear rate), and final product quality 

predictions (e.g. weld lines, air traps, shrinkage and warpage). This information aids the 

designer to modify the part or mold design and the process engineer to optimize the 

process settings. MPI only simulates the polymer melt inside the mold, not the 

temperature profile through the mold itself. FEM software such as ANSYS® can be used 

to analyze both the part and the mold thermal activities in 2D or 3D. 

3.4.1 Model Preparation 

Setup of a proper model is the first and most important step to start the analysis 

and obtain accurate and valuable results. There are usually five steps to prepare a model 

for analysis: 

1. Import Product Geometry: A 3D CAD drawing with the format in IGES 

(Initial Graphics Exchange Specification, a vendor neutral standard format used to 
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exchange geometric models between various CAD and CAE systems) or STL (Standard 

Triangulation Language, where the shape of the object is defined by a mesh of tiny 

triangles laid over the surfaces) is commonly used for Moldflow, which includes most 

details of the part design, such as dimensions and structure of the component. An IGES 

file of the cover was developed and imported into Moldflow. 

2. Meshing Geometry: Correct meshing not only covers the details of the part 

structure but also it is the basis of simulation work. The more accurate the part meshing, 

the more accurate results can be attained. There are mainly four mesh types for analysis 

(Jaworski and Yuan, 2003): a. Beam (lD), simple lD line element connecting two nodes 

with an assigned cross sectional area shape usually used to model melt delivery systems 

(cold and hot runner); b. mid-plane (2.5D), represents a 3D part with a 2D planar surface 

at the center of the thickness. A thickness property is assigned to this planar surface, so 

called 2.5D. To create a mid-plane model sometimes is very difficult and time 

consuming. Given that, it is still widely used because it has more analysis options and a 

relatively fast solution time. c. Dual Domain® (modified 2.5D), this patented technology 

represents a 3D part with a boundary or skin mesh on the outside surface of the part. It is 

similar to mid-plane mesh but this boundary shell mesh has aligned and matched mesh on 

the both corresponding outside surfaces and the distance between the mesh defines the art 

thickness. d. Three dimensional (3D), a 3D mesh typically consists of four nodded 

tetrahedral elements and it is a true 3D representation of the part. 

For injection molding flow analysis, most commercial CAE simulation software 

utilizes the generalized Hele-Shaw (GHS) flow model along with some other 
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assumptions. Through a comparison of the simulation results to experimental results, 

Jaworski and Yuan (2003) concluded that a 3D mesh can provide the most accurate result 

but involves significantly long calculation times and a large amount of computer 

resources. Mid-plane or Dual Domain meshes are accurate for thin wall components and 

allow more analysis options and shorter solution times. Fusion mesh is used for the cell 

phone cover meshing in MPI, which consists of a mixture of different types, including 

regions with traditional Midplane elements and surface (double-skin) shell elements. The 

meshing component is shown in Figure 3. 3. 

3. Analysis Task Selection: select analysis task needed such as: Fill, Cool+Flow, 

Cool+Flow+Warpage. The selection is base on what kind of results you want. 

4. Injection Locations and Runner System: Valve gate hot runner feeding 

system is used in the cell phone cover mold and the gate size is l.Smm. Injection gate 

point locates in the middle of the part (See Figure 3.3). In this system, a valve pin is 

driven by an air cylinder to open and close the gate during cavity filling and packing 

stage. The valve gate system is very popular in telecommunication and computer 

industrial components manufacturing, due to its advantages in short cycle time, material 

saving and good visual quality of the part. 

5. Cooling System Design: Moldflow provides a very convenient tool for cooling 

channel design and meshes it with beam elements. A coolant channel for the cell phone 

cover is designed for the simulation work, shown in Figure 3.3. 
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Figure 3.3 Model for simulation in Moldflow® 

3.4.2 Process Conditions 

As discussed before, there are three level variables (machine variables, in-mold 

process variables and quality variables) in the injection molding process. Among them, 

only machine variables can be manipulated in order to meet the final part quality 

requirement. Proper process conditions settings will lead to stable production and good 

quality parts. Compared to conventional injection molding process, the main difference in 

thin-wall molding is much higher injection speed and pressure, and short cycle time. With 

the valve gate control system and automatic component handling system (e.g. industrial 

robot), production can be run in a cycle time lower than lOs for cell phone cover. Table 

3.6 lists the main processing parameter used in my simulation work. 
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Table 3.6 Key processing parameters using in simulation. 

Mold Surface Temperature 85 oc 
Melt Temperature 275°C 

Injection Speed 70 cm 3 /s 

Filling-Packing Switchover By Volume: 95% 

Packing Pressure Profile 70 MPa --2 s 

Valve Gate Op_eration Time 0-2.5 s 

Cycle Time 12 s 

Coolant Temperature 75 oc 
Coolant Flow Rate 10 liter/minute 

3.4.3 Simulation Result 

Depending on the selection of analysis task, Moldflow provides lots of analysis 

results for further process investigation. Cooling and Flow analysis was carried out in this 

study, which can provide the information about melt flow status (e.g. temperature, 

pressure, shear rate, shear stress and so on) in filling, packing and cooling stage. 

The temperature and pressure distribution on the part is also very important for 

process control. This distribution will affect molecular orientation and density, which 

may cause shrinkage, warpage and other quality problems. In order to control the entire 

cavity pressure profile in a cycle, the sampling position is chosen close to the gate, since 

this is the first part to be filled and the last part to get frozen. On the other hand, a point 

near the end of the part is selected as a sampling position for part surface temperature 

control. Because the part close to the end of the cavity is the first part to get frozen, this 
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can reflect the melt status change easily. Moreover, the temperature profile in those points 

is not affected by the runner system and it can reflect the real heat transfer between mold 

and part. The pressure and temperature measure positions are shown in Figure 3.4. Node 

1838 is for pressure measurement and Triangle 5092 is for temperature measurement. The 

pressure and temperature measurement results may have a little bit difference if different 

points nearby are selected, but it can still reflect the main trend. 

Node 1838 
Triangle 5092 

Figure 3.4 Pressure and temperature measurement position 

3.5 FEM Thermal Simulation 

Moldflow and other injection molding process simulation software usually use 

boundary element method as the major numerical scheme to solve for the heat transfer 

with mold. One of the main assumptions is that the initial temperature of the mold is 

constant. The cooling simulation is usually conducted using a cycle-averaged approach 

with one-dimensional heat transient variation (Chen et al., 2004). To investigate the mold 
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temperature transient variation in different cycles in the startup stage or after process 

conditions change, experiments on the actual mold, or FEM programs are applied to the 

injection molding process analysis. A 2D model of the cell telephone cover mold is 

prepared in ANSYS®. Investigations about mold surface temperature distribution and 

transient variation between cycles after coolant conditions change (e.g. coolant 

temperature and flow rate) is done. 

3.5.1 Model Preparation 

A significant amount of research has been done to investigate the mold surface 

temperature distributions and transient variation in 2D or 3D models by ANSYS® (Xu and 

Kazmer, 1999; Chen et al., 2004, 2005, 2007). Figure 3.5 shows the two-dimensional 

model, developed in ANSYS® for simulation work. 

Model meshing is very important in FEM simulation and directly affects the 

simulation accuracy. There are about 40 elements for ANSYS thermal analysis. The 

commonly used 2-D solid elements are a triangle with 6 nodes, and a quadrilateral with 4 

or 8 nodes. Different condition or property (such as temperature) can be set in each node. 

In our model, the coolant holes are meshed as triangular elements, the part is meshed as 

quadrilateral elements with 8 nodes, the cavity and core are triangular elements with 4 

nodes. Figure 3.6 shows the different element geometries used in model meshing. The 

element size and density must be defined properly in order to get more accurate results. 

Higher density and smaller size are necessary for some special areas, like cavity surface, 

the part, and the area around the coolant holes. Figure 3.7 shows the meshing part. 
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Figure 3.5 the Two-dimensional model using for simulation in ANSYS® 
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Figure 3.6 Element geometry using in model meshing (ANSYS, 2007) 
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Figure 3.7 Meshing model for FEM thermal simulation 
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3.5.2 Analysis 

After setting up the mesh, the next step is to decide the initial conditions such as 

temperature and material properties, for the mold, part and the coolant channels. The 

main material thermal properties (specific heat, thermal conductivity and density) for 

each material must be selected before model meshing. Table 3. 7 lists the initial 

processing temperature conditions, taken from Moldflow analysis. The heat transfer 

coefficient between the mold and the coolant must be calculated, based on the material 

properties and initial conditions. (Appendix B). In order to simplify the simulation and 

reduce computing time, radiative heat transfer is assumed negligible (Xu and Kazmer, 

1999). 

In the first cycle, the initial conditions are applied to each area (component), the 

system will transfer the conditions to each element and node when analysis is started. The 

analysis result is written to a specific file, which records all the temperature values (and 

other information of each node) at each sampling time. This information will be used as 

initial conditions to for the next run. Part and coolant temperatures have to be set to their 

initial temperatures manually in order to simulate the cyclical molding process. Figure 

3.8 shows the procedure to run the analysis (Xu and Kazmer, 1999). Following this 

procedure, we can run the simulation continuously until the temperature distribution in 

the mold gets stable and there is no variation between cycles. A step change is made to 

the coolant flow rate or the coolant temperature to investigate the dynamic response of the 

system. Result data will be collected to develop the MPC controller. 
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Table 3.7 Processing conditions using for simulation. 

Initial Melt Temperature 548K 

Initial Mold Temperature 338K 

Coolant Temperature 348K 

Coolant Flow Rate 10 liter/minute 

Cycle Time 12 s 

Sampling Time 0.05 s 

Model Setup Model Meshing 

Extract mold 
temperature distribution 
as initial conditions for 

next analysis 

Apply loads and 
initial conditions 

Extract result 
temperature distribution 

Run the 
analysis 

Extract simulation 
result 

Figure 3.8 ANSYS analysis flow chart 
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3.6 MIMO Controller Development 

3.6.1 Model Identification 

To develop first-principles dynamic models is difficult and time-consuming; 

moreover, the model may be too complicated to be applied for on-line process control. On 

the other hand, empirical models provide the dynamic relationship between selected input 

and output variables, which is very meaningful for modem process control. In this study, 

empirical models are developed based on CAE simulation results and applied for MPC 

control. 

MPC controller accepts many different kinds of dynamic model such as auto­

regressive with exogenous input (ARX), autoregressive moving average with exogenous 

excitation (ARMAX), and Finite Impulse response (FIR) model. This property makes it 

easier to develop the controller compared to other advanced algorithms (e.g. ANNs and 

STR), and suitable for a range of process complexity (e.g. linear, non-linear, long delay 

time). The ARX model, a linear polynomial model, is a very popular model form in 

industry and has been applied by researchers to develop modem controllers for injection 

molding processes. Pramujati and Dubay (2006a) used this model to develop SPC and 

DMC controller for cavity pressure control during cooling stage. They pointed out that 

this model is suitable within the range of inputs and outputs of the open loop test from 

which it was created, especially if the controlled variable is nonlinear or time variant. 

The ARX model is a linear difference equation that uses least squares estimation 

to determine the model parameters. The model structure is: (Ljung, 2002) 
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A(q)y(t) = B(q)u(t-nk) + e(t) (3.12) 

Where the value A(q) and B(q) are polynomials of the delay operator q·1 and are related to 

the plant G( q) in the form 

G(q) = q-nk A(q) (3.13)
B(q) 

The coefficients of A( q) and B( q) are evaluated by least-squares minimization and can be 

expressed as: 

(3.14) 

(3.15) 

Where na and nb represent the order of the system, while nk represents the 

process delay as an integer multiple of the sampling interval. The parameter e(t) is the 

error that exists in the formulation of the ARX model. The process to identify those 

parameters is called System Identification (SI). System identification is an iterative 

process to estimate different models for the data and compare the model performance, and 

then choose the simplest model that adequately describes the dynamics of the system. 

ARX models will be used in our study and developed by Matlab System Identification 

Toolbox. 

3.6.2 MPC Controller Program 

Using the functional code in Matlab and MPC Toolbox is very convenient to write 

the program for MPC controller. The program structures for both SISO and MIMO 

controller are same and can be developed following the standard procedure. The first part 
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of the program is to setup plant model, where the ARX dynamic model will be used. Then 

the controller model is defined and there is usually some measured process and model 

mismatch. Here, we assume there is no model and process mismatch, since the "process" 

is a computer simulation. The controller parameters will be determined for the MPC 

controller. The key parameters are prediction horizon (P) and control horizon (M), the 

input weights (uwt) and output weights (ywt). Those parameters can be adjusted and used 

to tune the MPC controller in order to improve controller performance. Constraints can be 

applied to inputs or outputs, which make sure that the process does not move outside of 

the process limit and cause safety problems. Applying constraints to the controlled or 

manipulated variables can also keep the process running smoothly and not too 

aggressively. 

The MPC controller can be implemented to control the process by giving a set­

point to outputs. Based on the model response, proper adjustment to the tuning parameter 

(e.g. P, M and uwt) can be done to get better performance. An example of the MPC 

closed-loop simulation program is shown in Appendix C. In this simulation, the plant 

model is assumed to predict the real plant status perfectly. 

3.6.3 Closed-loop Controller Simulation 

In order to simulate the closed-loop control, work has been done to modify the 

MPC program. The program is rewritten from a program in MPC Toolbox (Appendix D). 

The idea is to couple the MPC controller and CAE simulation software together to run the 

closed-loop simulation manually. Simulation work has been done to investigate the SISO 

MPC controller for cavity pressure in the filling stage. First, the cavity pressure trajectory 
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in the filling stage is given to the MPC controller as a set point and run for one sampling 

interval. The first manipulated variable (injection flow rate, u 1) will be sent back to CAE 

program (MPI) as processing condition. In this case, there is only one step in the injection 

flow rate setting profile, and the filling time is one sampling time. MPI will run a 

sampling time and stop filling the cavity further. The cavity pressure value is sampled and 

sent as feedback to the MPC controller as output. The controller uses this value to update 

its process outputs and run another sampling time to calculate the next manipulated 

variable value (u2), which will lead the system to meet the fixed pressure trajectory. Then 

the injection flow rate setting profiles will have two steps (u1-u2). MPI programs will run 

two sampling times and stop to extract the cavity pressure for the next simulation. Figure 

3.9 illustrates the injection flow rate profiles ink interval. The simulation result ofMPI at 

k interval will be sent to MPC to calculate the next manipulated moves. Then u(k+ 1) will 

be added to the injection flow rate profile for the next analysis. By doing this repeatedly, 

we can simulate and check the closed-loop controller performance, as if the controller is 

working with the "perfect" injection molding machine. That is very meaningful for the 

future application of the MPC controller used in actual production. 
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Figure 3.9 Illustration for MPI injection flow rate step profile. 
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Chapter 4 

Simulation Results 

4.1 Overview 

The melt flow history inside the cavity during filling and packing stages is 

decisive for the final part quality. The process control objective is to keep the process 

running in the same and proper way in every cycle, which will lead to stable product 

quality. In this study, MPC controllers were developed to control the filling and packing 

phases, based on the simulation results from Moldflow® and ANSYS®. 

1. 	 A SISO MPC controller was developed to control cavity pressure in filling 

stage by manipulating injection flow rate. 

2. 	 Two SISO MPC controllers were developed to control mold surface 

temperature, using coolant temperature and coolant flow rate as 

manipulated variables. 

3. 	 A two-by-two MPC controller was proposed to control cavity pressure 

profile and part surface temperature during packing stage. The 

manipulated variables are packing pressure and mold temperature. 

81 




4.2 Cavity Pressure Control in Filling Stage 

A single-input/single-output DMC controller was developed to control the cavity 

pressure in the filling stage based on the simulation result from Moldflow®. A prescribed 

pressure trajectory during the filling stage was set as the control objective. In order to 

check the controller performance, some process conditions (melt temperature and mold 

temperature) are changed and closed-loop simulation was done, by creating a DMC 

controller in Matlab with results from Moldflow® MPI. The result shows that the DMC 

controller is able to keep the cavity pressure profile very well. 

4.2.1 Simulation Result 

Unlike conventional thermoplastic injection molding, one of the mam 

characteristics of thin-wall molding is that the cavity pressure during the filling stage 

increase very quickly. Moreover, the cavity pressure is usually much higher than 

conventional molding. Figure 4.1 shows the typical cavity pressure-time curve for 

conventional injection molding. A typical thin-wall molding cavity pressure profile is 

shown in Figure 4.2. The dynamic response of the cavity pressure as a function of filling 

flow rate was determined through a step change applied to the flow rate. The step profile 

was: for the first 0.05 seconds, a flow speed with 30cm3/sec will be used to fill the mold. 

Then, a flow-rate of 70cm3/sec is used to fill the cavity until the filling-to-packing switch­

over time, which was controlled by the percentage of volume filled and 95% was selected 

in this study. From the MPI simulation results, the filling-to-packing switch-over time is 

0.145 seconds and the cavity pressure is 47.5 MPa, which will be used to define the end 
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of filling stage. However, the filling time and cavity pressure may be changed without 

proper control, if process conditions are changed, or unexpected disturbances affect the 

process. In this study, the target is to keep the process meeting that point (switch-over at 

time 0.145s with pressure at 47.5 MPa) in every cycle by manipulating the filling flow 

rate. The sampling time was 0.005 seconds, and the cavity pressure data at point N1838 

was used to develop the dynamic controller model. Since this point is close to injection 

gate and able to record the whole cavity pressure profile during a cycle. If picking other 

sampling locations, the cavity pressure profile may be a little different from each other. In 

that case, the process dynamic model parameters are also different, which will finally 

affect the MPC controller parameters. However, even with different sampling position, so 

long as it can reflect the whole process dynamic, the process and the part quality can be 

under controlling with proper controller design. Figure 4.2 shows the cavity pressure 

profile at the selected location (Node 1838). 
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Figure 4.1 Typical cavity pressure -time curve. 
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Figure 4.2 Cavity pressure profile -time curve (from Moldflow® MPI simulation). 
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4.2.2 Controller Development 

In the development of a DMC controller, an important step is to develop the 

dynamic matrix model. The conventional procedure is to run a unit step change to a 

steady-state continuous system. From the output curve, the dynamic matrix can be easily 

defined. In this case, another method must be used to define the dynamic matrix, since 

there is no steady-state in an injection molding system as it is inherently a batch 

production system. The Matlab® System Identification Toolbox was used to develop an 

ARX model from the raw data. The identified model was transferred into a step response 

model by using the Matlab® Model-based Predictive Control Toolbox. 

Based on the pressure data from MPI, the first pressure measurement at Node 

1838 was sensed at 0.02 seconds after injection start. In other words, there are four 

sampling time delays in the system. A second-order ARX model with na = 2 and nb = 2 is 

given as: 

Discrete-time model: A(q)y(t) = B(q)u(t) + e(t) 

2A(q) = 1- 1.607 (+-0.1572) q- 1 + 0.6267 (+-0.1537) q-

B(q) = 0.02209 (+-0.01347) q-4- 0.002708 (+-0.01401) q-5 

The model was then used to develop the MPC controller based on the Matlab® 

MPC Toolbox. The key tuning parameters are listed in Table 4.1. The control horizon M 

is selected to be 2, which can generate more stable manipulated variable moves, when the 

cavity pressure trajectory was used as control objective not a fixed set point. The 

prediction horizon P is often selected to be P= N+M so that effect of the last input move 
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is taken into account. The input weight is selected to be 0.85 by testing different values in 

the closed-loop controller. Basically, increasing the value of the input weight tends to 

make the controller more conservative by reducing the magnitudes of the input moves. 

Table 4.1 Tuning parameter of SISO MPC controller 

Controller Tuning Parameter Value 

Prediction Horizon (P) 32 

Control Horizon (M) 2 

Output Weight 1 

Input Weight 0.85 

4.2.3 Controller Performance 

Three experiments, based on CAE process simulations, were done to check the 

DMC controller performance. Moldflow® MPI was used to check the closed-loop 

response of the system. 

Experiment 1: A target cavity pressure profile with a slope as 0.3 MPa/msec was 

used as the controller set-point. First, a MPC closed-loop simulation was done in 

Matlab®, without MPI participation. Figure 4.3 shows the response of cavity pressure and 

the filling flow rate profile. Then Moldflow® MPI was used to check the closed-loop 

response. The pressure setting profile and the simulation output from MPI are plotted in 

Figure 4.4. The controller works very well to keep process output repeating the set-point, 

and minimize the manipulated variable moves. A small deviation in the start of the filling 

stage was found, which might be due to the effect of dead time, but this difference is 

acceptable since the effect on part quality is limited. 
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Figure 4.3 Closed-loop responses with a slope set-point (0.3 MPa/msec). 
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Figure 4.4 Cavity pressure set-point and simulation pressure output from MPI with MPC 

closed-loop control. 
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Experiment 2: The cavity pressure trajectory was set as the control objective of 

the MPC controller. As an example, consider that there is an unexpected change in the 

process, which causes the melt temperature to increase from 275 ° C to 280 ° C. Without 

control, the cavity pressure profile will be changed. The MPC controller is used to adjust 

the filling flow rate in order to reduce the effect of the melt temperature change and 

maintain the target cavity pressure profile. The melt temperature setting in MPI was 

changed to 280 °C in the beginning of the simulation. Figure 4.5 shows the closed-loop 

response of the system and Figure 4.6 illustrates the set-points and actual cavity pressure 

profiles taken from the MPI simulation result. In general, the control system maintains the 

cavity profile very close to the set trajectory. However, the difference in the early stage is 

larger. The possible reasons may be due to the dead time effect; the process control model 

accuracy, compared to the simulation; or the increasing melt temperature leads to better 

melt flow capability. 

Experiment 3: The MPC controller setting is the same as experiment 2, but the 

process condition is changed to the mold average surface temperature (rather than the 

melt temperature). Figure 4.7 shows the closed-loop response of the system and Figure 

4.8 illustrates the set-point target and actual cavity pressure profiles taken from the MPI 

simulation result. The cavity pressure profile reasonably matched the setting trajectory. 

The system had larger deviations from the set point trajectory, compared to experiment 2. 

The possible reasons include dead time, the process control model accuracy. 
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Figure 4.5 Closed-loop responses with melt temperature change. 
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Figure 4.6 Cavity pressure set-point and simulation pressure output from MPI with 

MPC closed-loop control (with melt temperature change). 
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Figure 4.7 Closed-loop responses with mold temperature change. 
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Figure 4.8 Cavity pressure set-point and simulation pressure output from MPI with 

MPC closed-loop control (With mold temperature change). 
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4.3 Cavity Surface Temperature Control 

4.3.1 Simulation Result 

A two-dimensional transient analysis of the temperature field in the mold using 

ANSYS was carried out. After setting the initial conditions and running the first 

simulation cycle, the mold temperature result was used as the initial conditions for the 

next simulation. The simulation continues until the mold temperature reaches the cyclic 

steady-state. Figure 4.9 shows a temperature contour plot of the system. We see that the 

cavity temperature is quite uniform except in the runner position. This is reasonable, since 

the thickness of the part here is larger than that of the other locations. Three locations on 

the mold surface were selected to measure the cavity surface temperature separately in 

order to check the cavity temperature status. Figure 4.10 illustrates a typical cavity 

surface temperature within a cycle. Obviously, the cavity surface temperature drops very 

fast in the first few seconds. Therefore, the sampling time is very important in order to 

capture the dynamic transient of the cavity surface temperature. However, smaller 

sampling times need much more computational time and faster hardware requirements. 

Since the total cycle time is 12 seconds in this study, the sampling time is selected to be 

0.1 second, which is suitable to reflect the dynamic temperature profile. Figure 4.11 

shows average cycle temperature transients at three different measured points on the 

cavity surface. The average cycle temperature at selected locations on cavity surface can 

be taken from ANSYS®. After running about 20 cycles, at all measured positions, the 

average cycle temperature difference between two continuous cycles is less than 0.05%, 

which means that the system is very close to the steady-state. Further tests can be 
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implemented to investigate the dynamic response of the process in order to develop the 

process model. A step change was then given to either the coolant flow rate or coolant 

temperature and then the simulation was run. For a coolant flow rate change, the step 

change is -5 LPM (liter per minute), from 10 LPM to 5 LPM, and the step change for the 

coolant temperature is +10 OC, from 75 OC to 85 °C. Figure 4.12 and 4.13 show the 

response of cavity surface average cycle temperature to the step change in coolant flow 

rate and coolant temperature. After 20 cycles, the system started to move back to a 

steady-state. Even though the system is not totally at its steady-state, it is still able to 

represent the main dynamics of the system to the step change. The simulation results for 

the temperature at Node 805 were selected to develop the dynamic model, since the 

temperature profiles sampled at Node 805 and Node 915 are very similar. 
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4.3.2 Controller Development 

The Matlab® System Identification Toolbox was used to develop the ARX model. 

A second-order ARX model na = 2 and nb = 2 with no delay was performed to identify 

the dynamic response to a step change in coolant temperature. The ARX model is given 

by, 

(1 - 1.245q"1 + 0.3158q-2
) y(t) = (0.03265+ 0.03265q-1

) u(t) 

where y(t) is cycle average temperature and u(t) represents coolant temperature. 

Similarly, a first-order ARX model with no delay was identified to describe the dynamic 

response to a step change in coolant flow rate. 

(1 - 0.8085q-1)y(t) = -0.1339u(t) 

Based on these models, the MPC controller code can be developed by using the Matlab ® 

MPC Toolbox. Here we assume that the model perfectly reflects the process, so there is 

no model-process mismatch. Table 4.2 lists the key tuning parameters for the MPC 

controller. A blocking function in Control Horizon (M) is used to minimize the frequent 

change in manipulated variable and make it more stable. For example, M = [2 3) defines 

two blocks and indicates that u(k+l) = u(k) and u(k+3) = u(k+2) = u(k+l). 

From the above simulations, we found the steady-state temperature in the system 

(Node 805) was 93.08 °C. The coolant temperature setting is 75 °C and coolant flow rate 

10 liters per minute. Set point change was then applied to the system in order to check the 

controller performance. 
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Table 4.2 Tuning parameters of surface temperature MPC controllers 

Surface Temperature MPC Controller Manipulated Variable 

Controller Tuning Parameter Coolant Temperature Coolant Flow Rate 

Prediction Horizon (P) 30 30 

Control Horizon (M) [2 3] [2 3] 

Output Weight 1 I 

Input Weight 0 0 

4.3.3 Set-Point Control 

For the MPC controller with coolant temperature as the manipulated variable, the 

surface cycle average temperature was set to 98 °C; Figure 4.14 shows the controller 

response. Figure 4.15 is the response with a set point in 88 °C. Similarly set point in 98 

°C and 90 °C were given to the MPC controller with coolant flow rate as the manipulated 

variable. (Figure 4.16-17). Both MPC controllers are able to mee~ the target settings 

within I 0 cycles, based on a closed-loop test and without considering any disturbance. 

However, more tests and experiments should be done to verify the controller 

performance, which is not included in this study. 
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4.4 Multiple-input Multiple-output Controller 

4.4.1 Controller Development 

In this two-by-two MPC controller, the in-cycle cavity pressure and part surface 

temperature in packing stage are the controlled variables and the packing pressure and 

mold surface temperature are the manipulated variables. Step changes in the packing 

pressure and surface temperature are used to determine the coefficients of the dynamic 

matrix in the open-loop response of the controlled variables. Simulation results from 

Moldflow determine that the packing time should be set to 2 seconds, at which over 70% 

of the material has solidified. The packing pressure was set to 60 MPa and then stepped 

up to 70 MPa. The mold surface temperature was set to 85 °C, then stepped down to 75 

°C. A total of four simulation tests were run with Moldflow® MPI. Cavity pressure and 

part surface temperature results were collected in a sampling time of 0.02 seconds. 

Figure 4.18 shows the cavity pressure at Node: 1838 in the packing stage, with different 

packing pressure settings and constant mold surface temperature at 85 °C. The cavity 

pressure profiles demonstrate a strong response to packing pressure change. However, 

when mold temperature was changed and packing pressure was kept constant, no 

difference was found in cavity pressure profiles in the packing stage when using the 

fusion meshing model for analysis in MPI. The fusion mesh model is a 2.5 dimensional 

domain meshing model, which may not accurate enough to simulate the pressure changes 

due to changes in mold temperature. A 3-dimensional model analysis usually gives more 

accurate results, so a 3D mesh model was used with the same process condition settings. 

Figure 4.19 shows the pressure profiles with two different mold temperature settings and 
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the deviations of the two profiles. The difference is small and very nonlinear, which 

means the response of cavity pressure in packing stage to mold surface temperature 

change is very weak. As expected, a strong response was found in part surface 

temperature profiles to a change in mold temperature. Figure 4.20 illustrates the part 

surface temperature profile in Node: 5092. However, there is no difference in part surface 

temperature profiles when packing pressure settings were changed. The reason may due 

to no heat transfer property are changed in the system. Based on the simulation results 

from MPI, the control loop pairing was selected as: 

Cavity pressure in Packing (yl) ------Packing pressure setting (ul) 

Part surface temperature (y2) ------Mold temperature (u2) 

The interactions, mold temperature to cavity pressure in packing and packing pressure to 

part surface temperature, are very weak. It is theoretically reasonable not to consider the 

interactions in the controller design. Therefore, the dynamic matrix structure of the 

0A11
MIMO controller is A= ] The mold temperature can not be changed within an

[ 0 A22 

analysis case run in Moldflow® MPI v5.0. This limitation makes it difficult to get the 

dynamic model of the part surface temperature to a mold temperature change. 

Approximate data calculated from two simulation results (Tmold = 75 and 85 °C) were 

used to develop the model. Further validation and a model update are required before on-

line application. The cavity pressure profiles, with a step change in packing pressure from 

60 MPa to 70 MPa, were selected to develop the model. The cavity pressure and part 

surface temperature at the filling-to-packing switch-point were viewed as the initial status 
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of the system (Tmold =85 °C). At this point, cavity pressure is 48 MPa and the part 

surface temperature is 102.5 °C. The data were then imported into Matlab® System 

Identification Toolbox to develop ARX models. 

Cavity Pressure Profiles in Packing Stage 

I-P.P=70Mp:l80 
/- - P.P = 60 Mpa 

i 60 
::E ,----------------­-
~ 40 
(I) 
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a. I20 
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Figure 4.18 Cavity pressure in packing stage with different packing pressure settings. 
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Cavity Pressure Profiles with Two Different Mold 

Swface Temperature Settings 
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Two ARX models with na =3, nb =3 and without delay were used to identify the 

models for yl-ul and y2-u2, which are given as: 

yl~ul: 

A(q) = 1 -2.044 q·1 + 1.224 q·2 - 0.1722 q"3 

B(q) = 0.002826 + 0.002826 q·1 + 0.002826 q·2 

y2~u2: 

A(q) = 1 - 1.068 q·1 + 0.1287 q·2 + 0.002569 q·3 


2
B(q) = 0.01822 + 0.01822 q·1 + 0.01822 q·

A two-by-two MPC controller was then developed by using Matlab® MPC Toolbox. 

4.4.2 Set-Point Control 

The controller was then implemented to control the process closed-loop without 

model/process mismatch. The control objective is the trajectory of the cavity pressure and 

part surface temperature in packing stage. In order to optimize the controller, the main 

tuning parameters were adjusted and the controller performance was compared. The 

biggest effect comes from manipulated variables weights (A). Figure 4.21 shows the 

closed-loop response with manipulated variable weights A-1A-2 = [0 0]. Figure 4.22 

displays the response with A-1A-2= [2 5]. In comparing the two results, the zero-weighted 

controller shows more aggressive (ringing) in manipulated variables adjustment, which is 

difficult to be fulfilled in reality, while the weighted system shows much better results in 

input control. On the other hand, the former system can meet the target set-point much 

faster then the second system, which may be due to the aggressive manipulation of the 
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inputs. In both control systems, the pressure control loop performs much better than the 

part surface temperature control loop. The main reason may be own to the much larger 

and faster temperature drop in the early stage than the rest of the time domain. The model 

is not able capture the entire dynamics of the process. The main tuning parameters are 

listed in Table 4.3 and the code is in Appendix E. 

Table 4.3 Main tuning parameter of the MIMO MPC controller. 

MIMO MPC Controller Tuning Parameter 

Prediction Horizon (P) 40 

Control Horizon (M) 4 

Output Weight [ I 1 ] 

Input Weight [ 2 5] 

In order to check the controller performance, an unmeasured disturbance step 

change is given to the system. An unmeasured disturbance may come from any aspect of 

the injection molding process, such as material change, machine property fluctuation, 

mold status and ambient conditions change. For example, different batch material may 

have a different melt viscosity, which may affect the cavity pressure development in the 

packing stage. In this case, the MPC controller will calculate and determine the 

adjustment to manipulated variable in order to move the cavity pressure back to its setting 

point. Figure 4.23 shows an example for the closed-loop response of the system to a step 

change in unmeasured disturbance. 
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In general, the MPC controller performs very well to keep the process running in 

its set point. However, this is still simulation result and based on an assumption that the 

model perfectly reflects the process. Moreover, measured and unmeasured disturbances, 

which always exist in injection molding processes, were not involved during controller 

development. Due to the functional limitation and simulation accuracy of CAE software, 

the simulation results may differ from real production data. Therefore, model parameter 

and controller tuning parameter should be validated and updated, on-line, ifneeded before 

being applied for production control. 
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Figure 4.21 Closed-loop response with A.1A.2 = [0 0]. 
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Chapter 5 

Conclusions & Recommendations 

5.1 Conclusions 

This thesis work focused on using a DMC controller to control cavity pressure 

and cavity surface temperature, which have been proven to be the most important process 

variables. The target was to demonstrate the procedure to develop the MPC controller for 

process variables control with off-line data from CAE simulation software. A thin-wall 

cell phone front cover was designed and used as the studied parts. Moldflow Plastics 

Insight was used to simulate the injection molding process and ANSYS® FEM software 

was used to simulate the mold cooling process. The MPC programs are developed based 

on Matlab MPC Toolbox. 

A SISO MPC controller is developed to control the cavity pressure in filling 

stage, using the injection flow rate as manipulated variable. This is in-cycle process 

control; the pressure trajectory is used as the control objective. In order to check the 

controller performance, Moldflow MPI was incorporated with a MPC controller to 

implement closed-loop control. The controller was proved to be able to control the cavity 

pressure very well and meet the target trajectory even with melt temperature or mold 

temperature change. 
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MPC controller was also used to control cavity surface temperature by 

manipulating the coolant flow rate and coolant temperature. A 2-dimensional model was 

developed to simulate the cooling process with ANSYS. A step change for coolant 

temperature or coolant flow rate was made to the steady state, which the mold 

temperature distributions are repeated in continuous cycles. Two SISO DMC controllers 

were then developed to control cavity surface cycle average temperature. Different set­

points were given to the controller to check the closed-loop control response. Results 

show that the controller performs very well to trace the cycle average temperature set­

point and the manipulation to the input is very smooth. 

A two-by-two DMC controller was developed to control the cavity pressure and 

part surface temperature in packing stage, which are believed to greatly affect final part 

quality (e.g. part dimension, part weight, shrinkage and warpage). Packing pressure and 

mold temperature were manipulated variables. The control loop-pairing are selected as: 

packing pressure/cavity pressure and mold temperature/part surface temperature. Very 

strong interactions were found in every control loop-pairing. However, the interactions of 

mold temperature to packing pressure and packing pressure to part surface temperature 

are very weak. Due to the functional limitations of the CAE software, approximate data 

were calculated from simulation results to develop the model, which must be updated 

with production data before application. The controller performs well in meeting the 

cavity pressure set-point, but for part surface temperature control, large deviations are 

observed. The possible reason may be due to the strong nonlinearity in the early part of 

the packing stage. Closed-loop implementation of the simulated case was not carried out 
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due to CAE software limitations, but an on-line controller could be developed using 

production data on the machine with the model as a starting point. 

With the application of CAE simulation software, MPC controllers can be 

developed efficiently by just using the part and mold design. This will save time in the 

new mold trial and error period and provide useful guides to help operators to set up the 

process. The simulation results may also help to predict design problems. However, even 

though current CAE software has improved in simulation accuracy, the dynamic model 

parameters and controller tuning parameters should be validated with production data 

before on-line application. On-line model parameter identification is highly recommended 

to improve controllability for processes with strong nonlinearity and time-variance. 

5.2 Future Work 

The objective for the future work is to further develop the multivariable model­

based predictive controller for injection molding process control, based on simulation 

results. A few research directions can be investigated in order to improve the 

controllability for the process. 

1. Use quality variable as control objective for MPC controller. The two-by-two 

MPC controller can be further developed to control quality variables (e.g. part weight, 

density, shrinkage, warpage and part dimensions), which are related to cavity pressure 

and part temperature. Among quality variables, density (the inverse of specific volume), 

is directly affected by packing pressure and mold temperature. Density can be predicted 

when the cavity pressure and bulk melt temperature are known by using the material PVT 
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data. Bulk melt temperature has been studied and proven to be estimated very well by 

measuring part surface temperature (Verela et al., 1996; Kamal et al., 1999). Given a 

target density profile, it is possible to control the cavity pressure and surface temperature 

profiles to follow specific trajectories. Therefore, to use a predefined density as a control 

objective, the multivariable MPC controller will be able to control the cavity pressure and 

bulk temperature profile in order to meet this in-cycle target. Then the final part quality 

will be more stable. The challenge is to investigate the relationship between cavity 

pressure and bulk temperature profile based on PVT data, considering the effect on cycle 

time, clamping force requirement and production cost. 

2. MPC controller implementation The proposed MPC controller controls in-mold 

process variables by manipulating processing parameters (e.g. injection flow rate, packing 

pressure) not a direct signal, such as the voltage to control the opening ofhydraulic servo­

valve. The idea is to develop a standard MPC controller module, which can communicate 

with molding machine and carry out online process control without modifying the 

machine hydraulic or electrical system. However, there are still many problems that have 

to be solved first, such as the communication between MPC controller and injection 

molding machine, the response time of the system and so on. 

3. Develop 3-dimensional model for thermal analysis. In this study, 2-dimensional 

model was used to simulate the cooling stage with FEM software. However, using 3­

dimensional model will be able to provide more information about the temperature 

transient and distribution in the mold, and the simulation results are more accurate than 

that of the 2-dimensional model. 
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Appendix A 

Cavity Pressure and Temperature 

Sensors 

Common Melt Temperature Sensors (Kazmer et al., 2005a) 

Brand Model# Head Diameter 
(mm) 

Operating 
Temperature CO C) 

Thermocouple 
Type 

Primus T_ype400 1 A/4002A 1.0 0 ...200 N 
Primus Type4003A/4004A 1.0 0...200 N 

Primus 
Type4005A/4006A 

(Machinable) 
1.0 0 ...200 N 

Kistler Type 6193A03 1.0 0...200 K 
Kistler TYQ_e 6194A04 2.5 0...200 K 
Kistler TYQ_e 6195A04 2.5 0 ...200 K 
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Common Cavity Pressure Sensors (Kazmer et al., 2005a) 

Brand Model# 
Head 

Diameter 
(mm) 

Max Sensor 
Temperature 

(OC) 
Sensitivity 

Sensing 
Means 

Mounting 
Style 

Kistler Type6152A 6.0 200 -9.4 pC/Bar Piezoelectric Direct 
Kistler Type6157BB 4.0 300 -9.4_pC/Bar Piezoelectric Direct 
Kistler Type6158N6159A 2.5 200 -2.5 pC/Bar Piezoelectric Direct 
Kistler Type6183AE 1.0 200 -2.5pC/Bar Piezoelectric Direct 

RJG LS-F-40-20K 4.0 218.3 +/-1% Strain Gauge Direct 
RJG LS-F-25-20K 2.5 218.3 +/-1% Strain Gauge Direct 
RJG LP-F-40-30K 4.0 200 +/- 0.5% Piezoelectric Direct 
RJG LP-F-25-30K 2.5 200 +/- 0.5% Piezoelectric Direct 
RJG T-6157 4.0 218.3 l.7mVN Strain Gauge Direct 
RJG T-6159 2.5 218.3 0.5mVN Strain Gauge Direct 
RJG 6157 4.0 200 9.4 pC/Bar Piezoelectric Direct 
RJG 6159 2.5 200 2.0pC/Bar Piezoelectric Direct 

Priam us Type 6001A 4.0 200 ca -10 
pC/Bar 

Piezoelectric Direct 

Priam us Type 6001B 4.0 200 ca-10 
pC/Bar 

Piezoelectric Direct 

Priamus Type6002B 4.0 200 -5pC/Bar Piezoelectric Direct 
Priamus Type 6003A 2.5 200 --5 

pC/Bar 
Piezoelectric Direct 

Priam us Type 6003B 2.5 200 --5 
pC/Bar 

Piezoelectric Direct 

Priamus Type 6004A 6.0 200 ca-10 
pC/Bar 

Piezoelectric Direct 

Priamus Type 6004B 6.0 200 ca-10 
pC/Bar 

Piezoelectric Direct 

Priamus Type 6005A 1.5 200 -1.5 pC/Bar Piezoelectric Direct 
RJG 9204 12, 6.0 200 2.2_t:lC/N Piezoelectric Indirect 
RJG 9211 6.0 200 4.4 pC/N Piezoelectric Indirect 
RJG T-412,413, 414 12, 7.0 12l.l/Hi:218.3 2.0mVN Strain Gauge Indirect 
RJG LS-B-127 12,7.0 12l.l/Hi:218.3 +/-0.5% Strain Gauge Indirect 
RJG LP-B-127-2000 12,6.0 200 +/- 0.5% Piezoelectric Indirect 
RJG LP-B-60-562 6.0 200 +/- 0.75% Piezoelectric Indirect 

Kistler Type9211A 6.0 -40-150 -4.4 pC/Bar Piezoelectric Indirect 
Kistler Type9204B 12,6.0 -50-200 -1.6 pC/Bar Piezoelectric Indirect 

Kistler Type6189 2.5 200 
-6.5 pC/Bar Pressure/Temp 

Combination 
Direct 

Kistler Type6190A 4.0 200 
-2.5 pC/Bar Pressure/Temp 

Combination 
Direct 
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Appendix B 

Calculation of Convection Coefficient 

Taken from Menges et al. (200 1) 


The convective heat transfer coefficient can be calculated as: 


0.75 

Vc· 4 ·1000 
a= 0.037 

d ·JZ". v .60 c c 

Vc Kinematics viscosity of coolant [cm2/s] 
de Cooling channel diameter [em]. 
Pr Prandtl number 
kc Thermal Conductivity of the coolant 
ac Diffusivity of the coolant 

Diffusivity: 

k 
a=-­

p·Cp 

k Thermal Conductivity 
p Density 
Cp Specific heat capacity 
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Appendix C: 

Code for SISO MPC Controller 

numl::;:[0.02209 -0.002708]; 

den1=[1 -1.607 0.6267]; 

delt1=5; 

delay1=4; 

g1 =poly2tfd(num1 ,den1 ,deltl ,delay1); 

tfmal= 150; 

delt2=5; 

nout1=1; 

model=tfd2step(tfinal,delt2,nout1 ,g 1 ); 


%plant model, no plant/model mismatch. 

num1 =[0.02209 -0.002708]; 

denl=[1 -1.607 0.6267]; 

delay1=4; 

g2=poly2tfd(numl ,denl ,deltl ,delay 1 ); 

tfinal= 150; 

delt2=5; 

nout1=1; 

plant=tfd2step(tfinal,delt2,nout1 ,g2); 


%calculate the MPC controller gain matrix for no plant/model mismatch, 

%output Weight= 1, Input W eight=O 

%Input Horizon=2, output Horizon=32 

ywt=l; uwt=0.85; 

M=2; P=32; 

Kmpc=mpccon(model,ywt,uwt,M,P); 

usat=[20 80 40]; tfilter=[];dmodel=[]; 

dstep=[]; 


% Simulate and plot response 

tend=160; 

[yp, u,ym ]=mpcsim(plant,model,Kmpc, tend,r,usat ); 

plotall(yp,u,delt2) 
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Appendix D 


Closed-loop Response Code for MPC Controller 

A portion of the program was taken from Matlab Model-based Predictive Control 

Toolbox functional code. The program is running to calculate and provide the manipulate 

variable move based on an input value from plant output (here it is the simulation outputs 

from Moldflow MPI ). 

% plant(model): the step response coefficient matrix ofthe plant (model) 

% generated by the function tfd2step. 

% Controller: the constant control law matrix computed by the function mpccon 

% (closed-loop simulations).For open-loop simulation, controller=[]. 

% tend: final time of simulation. 

% Setpoint: for the closed-loop simulation, it is a constant or time-varying 

% reference trajectory. For the open-loop simulation, it is the 

% trajectory ofthe manipulated variable u. 

%OPTIONAL INPUTS: 

% uconstaint: the matrix of manipulated variable constraints.It is a constant 

% or time-varying trajectory of the lower limits (Ulow), upper limits 

% (Uhigh) and rate of change limits (DelU) on the manipulated 

% variables. Default=[]. 

% tfilter: time constants for noise filter and unmeasured disturbance lags. 


% Default is no filtering and step disturbance. 


% dplant: step response coefficient matrix for the disturbance effect on the 


% plant output generated by the function tfd2step. Ifdistplant is 
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% provided, dstep is also required. Default = []. 


% dmodel: step response coefficient matrix for the measured disturbance 


% effect on the model output generated by the function tfd2step. 


% If distmodel is provided, dstep is also required. Default=[]. 


% dstep: matrix ofdisturbances to the plant. For output step disturbances 


% it is a constant or time-varying trajectory of disturbance values 

% For disturbances through step response models,it is a constant or 

% time-varying trajectory of disturbance model inputs.Default=[J. 

%OUTPUT ARGUMENTS: y (system response), u (manipulated variable) and 

% ym (model response) 

% model construction 

%plant inaccurate transfer function: g=0.2exp(-0.12)/s 
%build a step response models for a sampling period of0.02. 
numl =[0.02209 -0.002708]; 
denl=[l -1.607 0.6267]; 
deltl =5; 

delay1=3; 

gl=poly2tfd(numl ,denl ,delt1 ,delay 1 ); 

tfinal= 150; 

delt2=5; 

noutl=l; 

model=tfd2step( tfinal,delt2,nout 1 ,g 1 ); 


%plant model 

numl =[0.02209 -0.002708]; 

denl=[1 -1.607 0.6267]; 

delay1=3; 

g2=poly2tfd(numl ,denl ,delt1 ,delay I); 

tfinal= 150; 

delt2=5; 

nout1=1; 

plant=tfd2step( tfinal,delt2 ,nout1 ,g2 ); 

%calculate the MPC controller gain matrix for no plant/model mismatch, 

%output Weight=1, Input Weight=O 

%Input Horizon=5, output Horizon=30 


ywt=1; uwt=0.85; 
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M=2; P=40; 

controller=mpccon(model,ywt,uwt,M,P); 

% Simulate and plot response for unmeasured step disturbance through plant with 

different input weight. 

uconstraint=[30 80 40]; tfilter=[];dmodel=[]; 

dstep=(]; 

tend= I 50; 


%Simulation starts 


%Basic settings 


[npny,nu] = size(plant); 

[nmny,num] = size(model); 


ny = plant(npny-1, 1 ); ny1 = model(nmny-1,1); 

delt = plant(npny,1); deltm = model(nmny,1); 


[ls,ws] = size(setpoint); 

ntend = fix(tend/delt); 


npny = npny-2-ny; nmny = nmny-2-ny; 

np = npny/ny; nm = nmny/ny; 

noutp = plant{npny+ 1 :npny+ny, 1 ); noutm = model(nmny+ 1 :nmny+ny, 1 ); 

intp = ones(ny,l)-noutp; intm = ones(ny,l)-noutm; 


noutdp = ones(ny,l); noutdm = ones(ny,1); 

if(any(intp)==1 Iany(intm)=1) 

casenum=2; 


end; 


% check the setpoint argument 
% for closed-loop simulation 
[nuc,pny] = size(controller); 
p = (pny/ny); 
if (nuc---=nu) 

error('Check the dimension of CONTROLLER.'); 

end; 

if (ws---=ny) 


error('Check the dimension of SETPOINT.'); 

end; 

if(ls<p) 


for is = Is+ 1 :p 
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setpoint(is,:) = setpoint(ls,:); 

end; 


end; 


%if [p(horizon)+1] > nm (the truncation order of the model), 
% make nm = p+1, and add the last step response coefficients 
% (p+ 1·nm) times to the MODEL 

if ((p+ 1)>nm) 
k = nmny; kx = nmny·ny+ 1; 

int = intm*ones(1,nu); 
for ib = nm+1:p+l 

model(k+l:k+ny,:) = model(kx:k,:)+int.*(model(kx:k,:) ... 
·model(kx·ny:kx·1,:)); 

k = k+ny; kx = kx+ny; 
end; 

nmny = k; nm = p+1; 

end; 


% Loop controller status 

% interpret uconstraints 

if (isempty(uconstraint)==O) 
[ nuconstraint,ncol]=size( uconstraint ); 
for ir = 1 :nuconstraint 

for iu = l:nu 

if ( uconstraint(ir ,iu )=-inf) 


uconstraint(ir,iu) = -l.OEIO; 

end; 


end; 

for iu = nu+ 1 :3*nu 


if (uconstraint(ir,iu)=inf) 
uconstraint(ir,iu) = l.OEIO; 

end; 
end; 

end; 
end; 

% interpret filter and disturbance time constants 

[ nrtfil,nctfil] =size( tfil ter); 

if (isempty(tfilter)) 
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tdist=[]; 
end; 
fa=ones(1,ny); 
KF = ones(nmny,ny); 

for i=1:ny 

if (isempty(tdist)) 

if (noutm(i)=Oinoutdm(i)=O) 


alpha(i)=1; 

else 


alpha(i)=O; 

end; 


else 

if tdist(i)=O 


alpha(i)=O; 

elseif tdist(i )=inf 


alpha(i)= 1 ; 

elseif ((noutm(i)=Oinoutdm(i)=O) & tdist-=inf) 


disp('W ARNING: tdist(i) must equal inf); 

disp(' for integrating outputs.'); 

disp(' tdist(i) will be set to inf.'); 

alpha(i)=1; 


else 

alpha(i)= exp( -deltltdist(i)); 

if alpha(i) < 0 Ialpha(i) > 1 

error('Disturbance time constants must be positive'); 


end; 

end; 


end; 

fb(i) = alpha(i)*fa(i)"2/(1 +alpha(i)-alpha(i)*fa(i)); 

end; 
KFA= zeros(nmny,ny); 
Ad=diag( alpha); 
for i=2:nm 

KFA((i-1)*ny+ 1 :i*ny,1 :ny)=KFA((i-2)*ny+ 1 :(i-1)*ny,1 :ny) + Ad/\(i-2); 
end; 

KFA(nmny+ 1 :nmny+ny,l :ny)=AdA(nm-1); 
KF(nmny+ 1 :nmny+ny,1 :ny)=zeros(ny,ny); 

KFB=KF A *diag(fb ); 
KF=KF+KFB; 
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hp =noutp.*noutdp-ones(ny,l); 

HP =diag(hp); 

em = noutm. *noutdm; 

CM =diag( em); 

hm = noutm.*noutdm-ones(ny,l); 

HM = diag(hm); 

gp = 2*ones(ny,l)-noutp.*noutdp; 

GP = diag(gp); 

gm = 2*ones(ny, 1 )-noutm. *noutdm; 

GM = diag(gm); 

t1 =clock; 


% Integrating Closed-loop simulation 

%Build a utility matrix used in the closed-loop simulation 

E = zeros(pny, 1 ); 

YP = zeros(npny,1); 

YM = zeros(nmny,1); 


Xdist=zeros(ny, 1); 

fprintf(' Time remaining %g/%g\n',tend,tend); 

setpointblock = setpoint(l :p,:)'; 

E = setpointblock(:) - E; 

Du = controller*E; 

u(l,:) = Du'; 

Du =u(1 ,:)'; 


if (isempty(uconstraint)==O) 

Dusign = sign(Du); 

Du = min(abs(Du),uconstraint(1,2*nu+1:3*nu)'); 

Du = Dusign. *Du; 

u(l,:) = Du'; 

u(l ,:) = max(u(l ,:),uconstraint(l ,1 :nu)); 

u(l,:) = min(u(l,:),uconstraint(1,nu+l:2*nu)); 

Du = u(l ,:)'; 


end; 

YPA =plant( I :npny, 1 :nu)*Du; 

YMA = model(l :nmny, 1 :nu)*Du; 


fori = 1 :(npny-ny) 

YPA(i) = YP(i+ny) + YPA(i); 
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end; 

YPA(npny-ny+ 1 :npny) == HP*YP(npny-2*ny+ 1 :npny-ny)+GP*YP(npny-ny+ I :npny) ... 


+YPA(npny-ny+ 1 :npny); 

for i == 1 :(nmny-ny) 
YMA(i) = YM(i+ny)+ YMA(i); 


end; 

YMA(nmny-ny+ I :runny)= HM*YM(nmny-2*ny+ 1 :nmny-ny)+GM*YM(nmny­


ny+ I :runny) ... 
+YMA(nrnny-ny+ I :nmny)+CM*Xdist; 


XdistA=Ad*Xdist; 

u_Iast=u(1 :nu); 

fprintf(l,'Manipulate input: ul = %6.3f\n',u_last); 

YPA(1 :ny )=input('plant output is :'); 

DY = YPA(l:ny)-YMA(l:ny); 


YMA = YMA + KF(I:nmny,1:ny)*DY; 

XdistA = XdistA + KF(nmny+ I :nmny+ny,1 :ny)*DY; 


YP=YPA; YM=YMA; 

Xdist = XdistA; 


y(2,:) = YP(I :ny)'; 

ym(2,:) = YM(l :ny)'; 


for k=2 :ntend+ 1 % Loop k closed-loop 

if ((fix(k/I 0)-k/1 0)===0) 

fprintf(' Time remaining %g/%g\n',tend-k*delt,tend); 


end; 


E = YM(ny+1:ny+pny); 

setpointbiock(:,I:p) = [setpointblock(:,2:p), ... 
setpoint(min(ls,p+k-1 ),:)']; 


E = setpointblock(:)- E; 

Du = controller*£; 


u(k,:) = u(k-I,:)+Du'; 

Du = u(k,:)'- u(k-1,:)'; 

if (isempty(uconstraint)==O) 

rusat = min(k,nuconstraint); 

Dusign = sign(Du); 
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Du = min(abs(Du),uconstraint(rusat,2*nu+ 1 :3*nu)'); 

Du = Dusign. *Du; 

u(k,:) = u(k-1,:)+Du'; 

u(k,:) = max(u(k,:),uconstraint(rusat, 1 :nu)); 

u(k,:) = min(u(k,:),uconstraint(rusat,nu+ 1 :2*nu)); 

Du = (u(k,:)-u(k-1,:))'; 


end; 

YPA = plant(1 :npny,1 :nu)*Du; 

YMA = model(l :nmny,1 :nu)*Du; 

fori= 1 :(npny-ny) 


YPA(i) = YP(i+ny) + YPA(i); 
end; 
YP A(npny-ny+ 1 :npny) = HP*YP(npny-2*ny+ 1 :npny-ny)+GP*YP(npny­

ny+ 1 :npny) ... 
+YPA(npny-ny+ 1 :npny); 

fori= 1 :(nmny-ny) 
YMA(i) = YM(i+ny)+ YMA(i); 

end; 
YMA(nmny-ny+ 1 :nmny) = HM*YM(nmny-2*ny+ 1 :nmny-ny)+GM*YM(nmny­

ny+ 1 :nmny) ... 
+YMA(nmny-ny+ 1 :nmny)+CM*Xdist; 

XdistA =Ad* Xdist; 

u _last=u(k, 1 :nu); 

fprintf(l,'Manipulate input: u = %6.3£\n',u_last); 

YPA(l :ny)=input('plant output is :'); 

DY = YPA(l :ny)-YMA(l :ny); 

YMA = YMA + KF(1 :nmny,1 :ny)*DY; 

XdistA = XdistA + KF(nmny+ 1 :nmny+ny,1 :ny)*DY; 

y(k+ I, I :ny) = YPA(I :ny)'; 

ym(k+I,1:ny) = YMA(l:ny)'; 

YP=YPA; YM=YMA; 

Xdist = XdistA; 


end; %Loop k closed-loop 

y = y(l :ntend+ I,:); 

ym= ym(l :ntend+ 1,:); 

u = u(1:ntend+I,:); 


end; % Loop simulation - integrating 

end; 

iftend ~= 0, 


fprintf('Simulation time is %g seconds.\n', etime(clock,ti)); 
end 
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Appendix E 

MIMO MPC Controller Code 

%y1-u1 

num11 =[0.002826 0.002826 0.002826]; 

den11 =[1 -2.044 1.224 -0.1722]; 

delt1 =0.02; 

delay11 =0; 

g11 =poly2tfd(num11,den11,delt1 ,delay11); 


%u1-u2 


%num12=[-1.068 1.022 0.006085]; 

%den12=[1 2.518 1.808 -0.3381]; 

num12=[0]; 

den12=[0 1]; 

delay12=0; 

g 12=poly2tfd(num12,den12,delt1 ,delay12); 


% y2-u1 


%num21 =[0.005902 -0.007659 0.01015]; 

%den21=[1 -0.8102-0.3305 0.1483]; 

num21=[0]; 

den21=[0 1]; 

delay21=0; 

g21 =poly2tfd(num21 ,den21,delt1 ,delay21 ); 


% y2-u2 


num22=[0.01822 0.01822 0.01822]; 

den22=[1 -1.068 0.1287 0.002569]; 

delay22=0; 

g22=pol y2tfd( num22,den22,delt 1 ,delay22); 

%plant model 

tfinal =0. 7; 

delt2=0.02; 
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nout=2; 

plant=tfd2step( tfinal,delt2,nout,g 11 ,g12,g21 ,g22); 

%calculate the MPC controller gain matrix for no plant/model mismatch, 

%output Weight=1, Input Weight=O 

%Input Horizon=5 , output Horizon=30 

model=plant; 

ywt=[1 1]; uwt=[2 5] ; 

M=4; P=40; 

Kmpc=mpccon(model,ywt,uwt,M,P); 

% Simulate and plot response for set point control through plant with different input 

weight and no disturbance. 

usat=[-20 -20 20 20 20 20]; 


tfilter=[] ;dmodel=[]; 

dstep=[]; dplant=[]; 

tend=2; 

r=[18 -12]; 

[yp, u,ym ]=mpcsim(plant,model,Kmpc, tend,r, usat, tfilter,dmodel,dplant,dstep); 

yp(:, 1 )=yp(:, 1 )+sspre(:, 1 ); 

yp(: ,2 )=yp(: ,2 )+tem(:, 1); 

u(:, 1 )=u(:, 1 )+60; 

u(:,2)=u(:,2)+85; 

YT=[yp,r(:, 1 )+sspre( :,1 ),r( :,2)+tem(:, 1)] ; 
plotall(YT,u,delt2) 
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