Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/23084
Title: Symmetric Generalized Gaussian Multiterminal Source Coding
Authors: Chang, Yameng Jr
Advisor: Chen, Jun Jr
Department: Electrical and Computer Engineering
Keywords: Gaussian source;mean squared error;multiterminal source coding;rate-distortion;reverse water-filling
Publication Date: 2018
Abstract: Consider a generalized multiterminal source coding system, where 􏱡(l choose m) 􏱢 encoders, each m observing a distinct size-m subset of l (l ≥ 2) zero-mean unit-variance symmetrically correlated Gaussian sources with correlation coefficient ρ, compress their observation in such a way that a joint decoder can reconstruct the sources within a prescribed mean squared error distortion based on the compressed data. The optimal rate- distortion performance of this system was previously known only for the two extreme cases m = l (the centralized case) and m = 1 (the distributed case), and except when ρ = 0, the centralized system can achieve strictly lower compression rates than the distributed system under all non-trivial distortion constaints. Somewhat surprisingly, it is established in the present thesis that the optimal rate-distortion preformance of the afore-described generalized multiterminal source coding system with m ≥ 2 coincides with that of the centralized system for all distortions when ρ ≤ 0 and for distortions below an explicit positive threshold (depending on m) when ρ > 0. Moreover, when ρ > 0, the minimum achievable rate of generalized multiterminal source coding subject to an arbitrary positive distortion constraint d is shown to be within a finite gap (depending on m and d) from its centralized counterpart in the large l limit except for possibly the critical distortion d = 1 − ρ.
URI: http://hdl.handle.net/11375/23084
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
CHANG_YAMENG_201804_MASc.pdf
Open Access
417.65 kBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue