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Abstract

Consider a generalized multiterminal source coding system, where
(
`
m

)
encoders, each

observing a distinct size-m subset of ` (` ≥ 2) zero-mean unit-variance symmetrically

correlated Gaussian sources with correlation coefficient ρ, compress their observation

in such a way that a joint decoder can reconstruct the sources within a prescribed

mean squared error distortion based on the compressed data. The optimal rate-

distortion performance of this system was previously known only for the two extreme

cases m = ` (the centralized case) and m = 1 (the distributed case), and except when

ρ = 0, the centralized system can achieve strictly lower compression rates than the

distributed system under all non-trivial distortion constaints. Somewhat surprisingly,

it is established in the present thesis that the optimal rate-distortion preformance

of the afore-described generalized multiterminal source coding system with m ≥ 2

coincides with that of the centralized system for all distortions when ρ ≤ 0 and

for distortions below an explicit positive threshold (depending on m) when ρ > 0.

Moreover, when ρ > 0, the minimum achievable rate of generalized multiterminal

source coding subject to an arbitrary positive distortion constraint d is shown to be

within a finite gap (depending on m and d) from its centralized counterpart in the

large ` limit except for possibly the critical distortion d = 1− ρ.
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Notation and abbreviations

E[·] the expectation operator

(·)T the transpose operator

tr(·) the trace operator

det(·) the determinant operator

cov(Y |ω) E[(Y − E[Y |ω])(Y − E[Y |ω])T]

Y n (Y (1), · · · , Y (n))

|S| the cardinality of a set S

diag(a1, · · · , a`) an `× ` diagonal matrix with the i-th diagonal entry being ai, i = 1, · · · , `

e the base of the logarithm function throughout this paper
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Chapter 1

Introduction

1.1 Existing Work

Multiterminal source coding deals with the scenarios where (possibly) correlated data

collected at different sites are compressed in a distributed manner and then forwarded

to a fusion center for joint reconstruction. The fundamental problem here is to char-

acterize the optimal tradeoff between the compression rates and the reconstruction

distortions. The lossless version of this problem was largely solved by Slepian and

Wolf in their landmark paper [1]. Their result was later partially extended to the

lossy case by Wyner and Ziv [2] and by Berger [3] and Tung [4]. Though a com-

plete solution to the general lossy multiterminal source coding problem remains out

of reach, signigicant progress has been made on some special cases of this problem,

most notably the quadratic Gaussian case [5–11] and the logarithmic loss case [12].

In many applications, the data collected at one site may be partially contained

in those collected at another site. For example, in a distributed video surveillance

system, the scenes captured by different cameras can potentially overlap with each
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other. To model such scenarios, a so-called generalized multiterminal source coding

problem was introduced in [13]. Specifically, in generalized multiterminal source

coding, several encoders, each observing a subset of ` jointly distributed sources,

compress their observations in such a way that a joint decoder can reconstruct the

sources within a prescribed distortion level based on the compressed data. It is shown

in [13] that, for Gaussian sources with mean squared error distortion constraints, a

generalized multiterminal source coding system can achieve the same rate-distortion

performance as that of the centralized point-to-point system in the high-resolution

regime if the source-encoder bipartite graph and the probabilistic graphical model of

the source distribution satisfy a certain condition.

1.2 Organization of the Thesis

In this work, we shall continue this line of reasearch by considering a symmetric ver-

sion of the generalized Gaussian multiterminal source coding problem. Here we have

` zero-mean unit-variance symmetrically correlated Gaussian sources with correlation

coefficient ρ and
(
`
m

)
encoders, each of which has access to a distinct size-m subset

of these ` sources (see Fig 1.1 for an illustration of the case (`,m) = (3, 2)); more-

over, we impose a normalized mean squared error trace distortion constraint on the

joint source reconstruction (or equivalently, identical mean squared error distortion

constraints on individual source reconstructions). It is worth mentioning that this

seemingly simple symmetric setting is in fact non-trivial. Indeed, the associated rate-

distortion function was previously known only for the two extreme cases m = ` (the

centralized case) and m = 1 (the distributed case). Furthermore, there are two major

benefits to study this symmetric setting. First of all, it enables us to obtain results

2
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Figure 1.1: a generalized multiterminal source coding system with (`,m) = (3, 2)

that are more explicit and conclusive than those for a more generic setting in [13].

More importantly, it is instructive to think of m as a parameter that specifies the

amount of cooperation among the encoders; as such, one can gain a precise under-

standing of the value of cooperation in terms of improving compression efficiency by

investigating the gradual transition from a distributed system to a centralized system

with m varying from 1 to `.

The rest of this paper is organized as follows. We provide the problem definition

and the statement of the main results in chapter 2. The proofs of the main results can

be found in chapter 3, chapter 4 and chapter 5. We present some numerical results

in chapter 6. Chapter 7 contains the concluding remarks.

3
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1.3 Rate Distortion Theory

A branch theory in information theory called Rate Distortion Theory focuses on

finding the minimum encoding rate required to restore the original source data under a

given distortion, which was introduced by C.E.Shannon in 1948 and 1959. Obviously,

it is impossible to represent a continuous random variable perfectly with finite number

of bits. The construction must be lossy. It is impossible and unnecessary to avoid the

loss becasue of the limited sensitivity of information sink and human. Nevertheless, we

still need to know how ”good” the representation is as we want it as good as possible.

This work can be done by defining a distortion measure (or distortion function) which

can be seen as a distance between the source variable and its representation [14].

One way can be easily understood to solve this problem is the quantization of each

single random variable. However, it shows to be highly complicated to do the quan-

tization problem when the given rate rises up to 2 or even higher. Nevertheless, an

algorithm was developed to design quantization systems, which is called the Lloyd al-

gorithm [15] (for real-valued random variables) or the generalized Lloyd algorithm [16]

(for vector-valued random variables). Instead of quantifying a single random variable,

we represent the entire sequence of variables at once, which will lead us to achieve a

lower distortion for the same rate than by doing the quantization individually. That

is the most intriguing part of this theory, i.e., describing the sources jointly is simpler

compared with describing them separately.

4



Chapter 2

Problem Definition And Main

Results

Let X , (X1, · · · , X`)
T be an `-dimensional (` ≥ 2) zero-mean Gaussian random

column vector with covariance matrix

Σ(`) =



1 ρ · · · ρ

ρ
. . . . . .

...

...
. . . . . . ρ

ρ · · · ρ 1


We assume ρ ∈ (− 1

`−1 , 1) to ensure that Σ(`) is positive definite. Let X(t) ,

(X1(t), · · · , X`(t))
T, t = 1, 2, · · · , be i.i.d. copies of X.

Definition 1: A rate r is said to be achievable by an (`,m) generalized multi-

terminal source coding system under normalized mean squared error trace distortion

constraint d if, for any ε > 0, there exist encoding functions φ
(n)
S : Rm×n → C(n)S , S ∈

5
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I(`,m) , {S ⊆ {1, · · · , `} : |S| = m}, and a decoding function ψ(n) : ΠS∈I(`,m)C(n)S →

R`×n such that

1

n

∑
S∈I(`,m)

log |C(n)S | ≤ r + ε,

1

`n

n∑
t=1

tr(E[(X(t)− X̂(t))(X(t)− X̂(t))T]) ≤ d+ ε, (2.1)

where

X̂n , ψ(n)(φ
(n)
S (Xn

i , i ∈ S),S ∈ I(`,m)).

The minimum of such r is denoted by r(`,m)(d), which will be referred to as the

rate-distortion function of (`,m) generalized multiterminal source coding.

Remark 1: Due to the symmetry of the source distribution, r(`,m)(d) remains the

same if we replace the normalized mean squared error trace distortion constraint on

the joint source reconstruction in (2.1) with identical mean squared error distortion

constraints on individual source reconstructions given below

1

n

n∑
t=1

E[(Xi(t)− X̂i(t))
2] ≤ d+ ε, i = 1, · · · , `,

where X̂i(t) is the i-th entry of X̂(t), i = 1, · · · , `, t = 1, · · · , n.

Remark 2: It is clear that, for m = 1, · · · , `,

r(`,m)(d) = 0, d ≥ 1.

Henceforth we shall assume d ∈ (0, 1).

Remark 3: Note that an encoder that observes Xn
i , i ∈ S, is at least as powerful

6



M.A.Sc. Thesis - Yameng Chang McMaster - Electrical Engineering

as one that observes Xn
i , i ∈ S ′, for some S ′ ⊆ S, in the sense that the former can

perform any function that the latter can do. Given 1 ≤ m′ < m ≤ `, we can find,

for any (`,m′) generalized multiterminal source coding system, an (`,m) generalized

multiterminal source coding system such that each encoder in the (`,m′) system is

dominated (in terms of functionality) by an encoder in the (`,m) system. Therefore,

we must have r(`,m)(d) ≤ r(`,m
′)(d) for m > m′.

A complete characterization of r(`,m)(d) was previously known only for m = ` and

m = 1. It is instructive to review the relevant results for these two extreme cases since

they provide the necessary background and useful motivations for the introduction of

our new results.

First recall the following results, which can be specialized from the general theory

of circulant matrices [17]. For any `× ` real matrix Π of the form



a b · · · b

b
. . . . . .

...

...
. . . . . . b

b · · · b a


, (2.2)

its eigenvalues are given by

λi , a− b, i = 1, · · · , `− 1, (2.3)

λ` , a+ (`− 1)b, (2.4)

and we have

det(Π) =
∏̀
i=1

λi = (a− b)`−1(a+ (`− 1)b).

7
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The normalized eigenvectors corresponding to λ1, · · · , λ` can be constructed in such

a way that they are orthogonal to each other and do not depend on a and b. Typ-

ically these eigenvectors are chosen to be the Fourier basis, but it is also possible

to construct the real ones. The exact form of these eigenvectors is inessential for

our purpose. It will be seen that the source covariance matrix and the distortion

covariance matrices encountered in this work are all of the form (2.2); as a conse-

quence, they can all be diagonalized by the same unitary matrix. Note that, in an

(`,m) generalized multiterminal source coding system with m < `, each encoder can

only observe a subset of the sources; therefore, in principle it cannot decorrelate the

sources simultaneously through a unitary transformation and perform compression in

the transform domain (i.e., the eigenspace). Nevertheless, due to the special form of

the resulting distortion covariance matrix, one may still interpret the effect of such

a system and make sensible comparisons with that of the centralized system (i.e.,

m = `) in the transform domain.

For reasons that will become clear soon, we define

d−c , 1 + (`− 1)ρ,

d+c , 1− ρ,

and refer to them as critical distortions. It will be seen that these two critical distor-

tion are of special importance.

Now consider the case m = `. One can determine r(`,`)(d) by solving the following

convex optimization problem

r(`,`)(d) = min
D

1

2
log

det(Σ(`))

det(D)
(2.5)

8
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subject to 0 ≺ D � Σ(`),

1

`
tr(D) ≤ d,

where A ≺ (�)B means B − A is positive (semi)definite. The optimal solution to

this minimization problem is unique and is given by

D = D(`,`) ,



d θ(`,`) · · · θ(`,`)

θ(`,`)
. . . . . .

...

...
. . . . . . θ(`,`)

θ(`,`) · · · θ(`,`) d


,

where, for ρ ∈ (− 1
`−1 , 0],

θ(`,`) ,

 0, d ∈ (0, d−c ),

1−d
`−1 + ρ, d ∈ [d−c , 1),

(2.6)

and, for ρ ∈ (0, 1),

θ(`,`) ,

 0, d ∈ (0, d+c ),

d− 1 + ρ, d ∈ [d+c , 1).

An alternative approach is to solve the problem in the eigenspace. Let λ
(`)
1 , · · · , λ(`)`

be the eigenvalues of Σ(`). It follows from (2.3) and (2.4) that

λ
(`)
i = 1− ρ, i = 1, · · · , `− 1, (2.7)

λ
(`)
` = 1 + (`− 1)ρ. (2.8)

Note that the smallest eigenvalue coincides with d−c for ρ ∈ (− 1
`−1 , 0] and coincides

9
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with d+c for ρ ∈ (0, 1). One can determine r(`,`)(d) by solving the following distortion

allocation problem

r(`,`)(d) = min
d1,··· ,d`

∑̀
i=1

1

2
log

λ
(`)
i

di
(2.9)

subject to 0 < di < λ
(`)
i , i = 0, · · · , `,

1

`

∑̀
i=1

di ≤ d.

Its optimal solution is unique and is given by the well-knwon reverse water-filling

formula [14].

di , d
(`,`)
i ,

 d̃, d̃ < λ
(`)
i ,

λi, d̃ ≥ λ
(`)
i ,

i = 1, · · · , `, (2.10)

with d̃ chosen such that 1
`

∑`
i=1 d

(`,`)
i = d. Substituting (2.7) and (2.8) into (2.10)

gives, for ρ ∈ (− 1
`−1 , 0],

d
(`,`)
i =

 d, d ∈ (0, d−c ),

`d−1
`−1 − ρ, d ∈ [d−c , 1),

i = 1, · · · , `− 1,

d
(`,`)
` =

 d, d ∈ (0, d−c ),

1 + (`− 1)ρ, d ∈ [d−c , 1)

10
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and for ρ ∈ (0, 1),

d
(`,`)
i =

 d, d ∈ (0, d+c ),

1− ρ, d ∈ [d+c , 1),
i = 1, · · · , `− 1,

d
(`,`)
` =

 d, d ∈ (0, d+c ),

`d− (`− 1)(1− ρ), d ∈ [d+c , 1).

Note that d
(`,`)
1 , · · · , d(`,`)` are exactly the eigenvalues of D(`,`).

It can be readily seen that both approaches lead to the following result.

Proposition 1 : For ρ ∈ (− 1
`−1 , 0],

r(`,`)(d) =


1
2

log (1−ρ)`−1(1+(`−1)ρ)
d`

, d ∈ (0, d−c ),

`−1
2

log (`−1)(1−ρ)
`d−1−(`−1)ρ , d ∈ [d−c , 1).

For ρ ∈ (0, 1),

r(`,`)(d) =


1
2

log (1−ρ)`−1(1+(`−1)ρ)
d`

, d ∈ (0, d+c ),

1
2

log 1+(`−1)ρ
`d−(`−1)(1−ρ) , d ∈ [d+c , 1).

It is easy to show from (2.5) using Hadamard’s inequality and the arithmetic-

geometric means inequality (or from (2.9) using the arithmetic-geometric means in-

equality) that

r(`,`) ≥ r(`)(d) ,
1

2
log

(1− ρ)`−1(1 + (`− 1)ρ)

d`
.

We shall refer to r(`)(d) as the Shannon lower bound. Propositon 1 indicates that

r(`,`)(d) conicides with r(`)(d) when d ∈ (0, d−c ], for ρ ∈ (− 1
`−1 , 0], and when d ∈ (0, d+c ]

11
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for ρ ∈ (0, 1).

Next consider the other extreme case m = 1. The following result was first proved

in [6] for ρ ∈ [0, 1) and then in [7] for ρ ∈ (− 1
`−1 , 1).

Proposition 2 : For ρ ∈ (− 1
`−1 , 1),

r(`,1)(d) =
1

2
log

(1− ρ)`−1(1 + (`+ 1)ρ)

(d− θ(`,1))`−1(d+ (`− 1)θ(`,1))
, d ∈ (0, 1),

where

θ(`,1) ,
ρdγ(`,1)

γ(`,1) + (1− ρ)(1 + (`− 1)ρ)

with

γ(`,1) ,
−ξ +

√
ξ2 + 4(1− ρ)(1 + (`− 1)ρ)d(1− d)

2(1− d)
,

ξ , (1 + (`− 1)ρ)(1− ρ− d)− (1− ρ)d.

To understand its connection with r(`,`)(d), it is instructive to write r(`,1)(d) as

r(`,1)(d) =
1

2
log

det(Σ(`))

det(D(`,1))
,

where

D(`,1) ,



d θ(`,1) · · · θ(`,1)

θ(`,1)
. . . . . .

...

...
. . . . . . θ(`,1)

θ(`,1) · · · θ(`,1) d


.

12
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We can also express r(`,1)(d) alternatively as

r(`,1)(d) =
∑̀
i=1

1

2
log

λ
(`)
i

d
(`,1)
i

,

where

d
(`,1)
i , d− θ(`,1), i = 1, · · · , `− 1,

d
(`,1)
` , d+ (`− 1)θ(`,1),

are the eigenvalues ofD(`,1). It can be verified thatD(`,1) 6= D(`,`) and (d
(`,1)
1 , · · · , d(`,1)` ) 6=

(d
(`,`)
1 , · · · , d(`,`)` ) unless ρ = 0. Therefore, we must have, for ρ ∈ (− 1

`−1 , 0) ∪ (0, 1),

r(`,1)(d) > r(`,`)(d), d ∈ (0, 1).

One might be inclined to expect that r(`,m)(d) is strictly greater than r(`,`)(d) for

any m < ` unless the sources are independent or the distortion constraint is trivial.

Somewhat surprisingly, it was shown in [13] that, in the high-resolution regime (i.e.,

when d is sufficiently close to zero), r(`,m)(d) coincides with r(`,`)(d) when m ≥ 2.

However, the high-resolution condition in [13] is not explicit. Our first main result

shows that this high-resolution condition is in fact redundant when the correlation

coefficient ρ is non-positive.

Therorem 1 : For ρ ∈ (− 1
`−1 , 0] and m = 2, · · · , `,

r(`,m)(d) = r(`,`)(d), d ∈ (0, 1).

13
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For positive ρ, we have the following result, wihch provides an explicit high-

resolution condition under which r(`,m)(d) (with m ≥ 2) matches r(`,`)(d).

Theorem 2 : For ρ ∈ (0, 1) and m = 1, · · · , `,

r(`,m)(d) = r(`,`)(d), d ∈ (0, d(`,m)
c ],

where

d(`,m)
c , 1− (`− 1)ρ(1 + (m− 1)ρ)

(`− 1)mρ+ (m− 1)(1− ρ)
.

Remark 4 : We have d
(`,`)
c = d+c and d

(`,1)
c = 0. The statement of Theorem 2 is

trivial when m = ` and is void when m = 1.

Remark 5 : d
(`,m)
c is a monotonically increasing function of m for fixed ` and is a

monotonically decreasing function of ` for fixed m. Moreover, we have

lim
`→∞

d(`,m)
c = d(m)

c ,
(m− 1)(1− ρ)

m
,

lim
m→∞

d(m)
c = d+c ,

which implies that, for ρ ∈ (0, 1), r(`,m)(d) essentially matches r(`,`)(d) (and the Shan-

non lower bound r(`)(d) as well) all the way up to the critical distortion d+c when `

and m are sufficiently large (even if the ratio m
`

is close to zero).

It remains to understand the behavior of r(`,m)(d) when d > d
(`,m)
c for ρ ∈ (0, 1)

and m ≥ 2. To simplify the analysis, we shall consider the asymptotic regime where

14
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` goes to infinity with m fixed. Define

r
(`,m)
1 (d) ,

`

2
log

1− ρ
d

+
1

2
log `+

1

2
log

ρ

1− ρ
+O(

1

`
),

r
(`,m)
2 (d) ,

`

2
log

1− ρ
d

+
1

2
log `+

d− (m− 1)(1− ρ− d)

2m(1− ρ− d)

+
1

2
log

mρ(1− ρ− d)

(1− ρ)2
+O(

1

`
),

r
(`,m)
3 (d) ,

√
`

2
√
m

+
1

4
log `+

1

2
log

√
mρ

1− ρ

− 1 + (m− 1)ρ

4mρ
+O(

1√
`
),

r
(`,m)
4 (d) ,

1

2
log

ρ

d− 1 + ρ
+

(1− ρ)(1− d)

2mρ(d− 1 + ρ)
+O(

1

`
),

where g(`) = O(f(`)) means the absolute value of g(`)
f(`)

is bounded for all sufficiently

large `.

Theorem 3 : For ρ ∈ (0, 1) and m ≥ 1,

r(`,m)(d) ≤



r
(`,m)
1 (d), d ∈ (0, d

(m)
c ],

r
(`,m)
2 (d), d ∈ (d

(m)
c , d+c ),

r
(`,m)
3 (d), d = d+c ,

r
(`,m)
4 (d), d ∈ (d+c , 1).

Moreover, this upper bound is tight when m = 1 or d ∈ (0, d
(m)
c ].

Remark 6 : It follows from Proposition 1 that, for ρ ∈ (0, 1),

r(`,`)(d) =


`
2

log 1−ρ
d

+ 1
2

log `+ 1
2

log ρ
1−ρ +O(1

`
), d ∈ (0, d+c ),

1
2

log `+ 1
2

log ρ
1−ρ +O(1

`
), d = d+c ,

1
2

log ρ
d−1+ρ +O(1

`
), d ∈ (d+c , 1).

(2.11)

15
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Combining Theorem 3 and (2.11) shows that, for ρ ∈ (0, 1) and m ≥ 1,

lim sup
`→∞

r(`,m)(d)− r(`,`)(d) ≤ δ(m)(d), d ∈ (0, 1),

where

δ(m)(d) ,



0, d ∈ (0, d
(m)
c ],

1−ρ−m(1−ρ−d)
2m(1−ρ−d) + 1

2
log m(1−ρ−d)

1−ρ , d ∈ (d
(m)
c , d+c ),

∞, d = d+c ,

(1−ρ)(1−d)
2mρ(d−1+ρ) , d ∈ (d+c , 1).

Note that, as a function of d (with m fixed), δ(m)(d) is monotonically increasing for

d ∈ (0, d+c ) and monotonically decreasing for d ∈ (d+c , 1); moreover, it approaches

infinity as d → d+c . For fixed d, δ(m)(d) is a monotonically decreasing function of m

and converges to zero (though not uniformly over d) as m → ∞ except at d = d+c .

Therefore, for ρ ∈ (0, 1), r(`,m)(d) is within a finite gap (depending on d) from r(`,`)(d)

even in the limit of large ` when d 6= d+c ; moreover, this gap diminishes as m increases.

For ρ ∈ (0, 1), the gap between r(`,m)(d+c ) and r(`,`)(d+c ) can potentially approach

infinity as `→∞, and is indeed so when m = 1.

Remark 7 : In view of Theorem 3, (2.11), and Remark 3, we have, for ρ ∈ (0, 1)

and m ≥ 1,

lim
`→∞

1

`
r(`,m)(d) =


1
2

log 1−ρ
d
, d ∈ (0, d+c ),

0, d ∈ [d+c , 1),

which implies that the average minimum achievable rate per encoder of an (`,m)

generalized multiterminal source coding system is essentially independent of m when

` is sufficiently large.

Remark 8 : It is interesting to see that, for ρ ∈ (0, 1) and m ≥ 1, r(`,m)(d) remains

16
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bounded (though not uniformly over d) even in the limit of large ` when d ∈ (d+c , 1).

17



Chapter 3

Proof of Theorem 1

In view of Propositon 1, Proposition 2, and Remark 3, for ρ = 0 and m = 1, · · · , `,

r(`,m)(d) =
`

2
log

1

d
, d ∈ (0, 1).

Therefore, we shall only consider the case ρ ∈ (− 1
`−1 , 0). It suffices to show that

r(`,m)(d) ≤ r(`,`)(d), d ∈ (0, 1), (3.1)

since the other direction is trivially true (see Remark 3). To this end, we need the

following result, which can be obtained by specializing the well-known Berger-Tung

upper bound [3], [4], [18] to our current setting.

Proposition 3 : For any Gaussian random variables/vectors VS , S ∈ I(`,m), jointly

distributed with X such that VS ↔ (Xi, i ∈ S) ↔ (Xi′ , i
′ ∈ {1, · · · , `}\S, VS′ ,S ′ ∈

18
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I(`,m)\S) form a Markov chain for any S ∈ I(`,m), we have

r(`,m)(
1

`
tr(cov(X|VS ,S ∈ I(`,m)))) ≤ 1

2
log

det(Σ(`))

det(cov(X|VS ,S ∈ I(`,m)))
.

Equipped with Proposition 3, we are in a position to prove Theorem 1. Let M be

an m×m matrix given by

M ,



m− 1 −1 · · · −1

−1
. . . . . .

...

...
. . . . . . −1

−1 · · · −1 m− 1


.

For any γ > 0 and S , {i1, · · · , im} ∈ I(`,m) with i1 < · · · < im, define



U−S,1(γ)

...

...

U−S,m(γ)


,M



Xi1

...

...

Xim


+
√
γ



N−S,1
...

...

N−S,m


,

where (N−S,1, · · · , N
−
S,m)T is a Gaussian random vector with mean zero and covariance

matrix M . Moreover, we assume that X, (N−S,1, · · ·N
−
S,m)T, S ∈ I(`,m), are mutually

independent.

19
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Proposition 4 : We have

cov(X|U−S,1(γ), · · · , U−S,m(γ),S ∈ I(`,m))

=



d−(γ) θ−(γ) · · · θ−(γ)

θ−(γ)
. . . . . .

...

...
. . . . . . θ−(γ)

θ−(γ) · · · θ−(γ) d−(γ)


,

where

d−(γ) , 1−
(
`−2
m−2

)
(`− 1)(1− ρ)2

γ +
(
`−2
m−2

)
`(1− ρ)

,

θ−(γ) , ρ+

(
`−2
m−2

)
(1− ρ)2

γ +
(
`−2
m−2

)
`(1− ρ)

.

Setting d−(γ) = d gives

γ = γ(`,m) ,

(
`−2
m−2

)
(1− ρ)((`− 1)(1− ρ)− `(1− d))

1− d
.

Note that there is a one-to-one correspondence between d ∈ (d
−
c

`
, 1) and γ(`,m) ∈

(0,∞). Moreover,

θ−(γ(`,m)) =
1− d
`− 1

+ ρ,

which coincides with θ(`,`) in (2.6) for d ∈ [d−c , 1); in particular, θ−(γ
(`,m)
c ) = 0, where

γ(`,m)
c , −

(
`−2
m−2

)
(1− ρ)(1 + (`− 1)ρ)

ρ

is the value of γ(`,m) at d = d−c . Invoking Proposition 3 with VS , (U−S,1(γ
(`,m)), · · · , U−S,m(γ(`,m)))T,

20
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S ∈ I(`,m), (which satisfy the Markov chain condition in Proposition 3) proves (3.1)

for d ∈ [d−c , 1).

Now consider the case d ∈ (0, d−c ). Let

W−
i (d) , Xi +

√
d−c d

d−c − d
Z−i , i = 1, · · · , `,

where Z−1 , · · · , Z−` are mutually independent zero-mean unit variance Gaussian ran-

dom variables, and are independent of X, (N−S,1, · · · , N
−
S,m)T, S ∈ I(`,m). Construct

ΩS , S ∈ I(`,m), such that 1) ΩS ⊆ S,S ∈ I(`,m), 2) ΩS ∩ ΩS′ = ∅, S 6= S ′, 3)

∪S∈I(`,m)ΩS = {1, · · · , `}. Such a construction always exists. For example, we can let

ΩS ,


S, S = {1, · · · ,m},

{i}, S = {i−m+ 1, · · · , i}, i = m+ 1, · · · , `,

∅, otherwise.

Define VS , (U−S,1(γ
(`,m)
c ), · · · , U−S,m(γ

(`,m)
c ),W−

i (d), i ∈ ΩS)T,S ∈ I(`,m). It is clear

that such VS ,S ∈ I(`,m), satisfy the Markov chain condition in Proposition 3. More-

over,

cov−1(X|VS ,S ∈ I(`,m))

= cov−1(X|U−S,1(γ
(`,m)
c ), · · · , U−S,m(γ(`,m)

c ),S ∈ I(`,m))

+ cov−1

(√ d−c d

d−c − d
Z−1 , · · · ,

√
d−c d

d−c − d
Z−`

)T


= diag

(
1

d−c
, · · · , 1

d−c

)
+ diag

(
d−c − d
d−c d

, · · · , d
−
c − d
d−c d

)
= diag

(
1

d
, · · · , 1

d

)
,
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which implies

cov(X|VS ,S ∈ I(`,m)) = diag(d, · · · , d).

Invoking Proposition 3 proves (3.1) for d ∈ (0, d−c ).

22



Chapter 4

Proof of Theorem 2

It suffices to show that

r(`,m)(d) ≤ r(`,`)(d), d ∈ (0, d(`,m)
c ]. (4.1)

For any γ > 0 and S ∈ I(`,m), define

U+
S (γ) ,

∑
i∈S

Xi +
√
γN+
S ,

where N+
S is a zero-mean unit-variance Gaussian random variable. Moreover, we

assume that X, N+
S , S ∈ I(`,m) are mutually independent.
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Proposition 5 : We have

cov(X|U+
S,1(γ), · · · , U+

S,m(γ),S ∈ I(`,m))

=



d+(γ) θ+(γ) · · · θ+(γ)

θ+(γ)
. . . . . .

...

...
. . . . . . θ+(γ)

θ+(γ) · · · θ+(γ) d+(γ)


,

where

d+(γ) , 1− η3γ + η1
γ2 + η2γ + η1

, (4.2)

θ+(γ) , ρ− η4γ + η1ρ

γ2 + η2γ + η1
(4.3)
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with

η1 ,

(
`− 1

m− 1

)(
`− 2

m− 1

)
m(1− ρ)(1 + (`− 1)ρ),

η2 ,

(
`− 1

m− 1

)
(1 + (m− 1)ρ)

+

(
`− 2

m− 1

)
m(1 + (`− 2)ρ)

+

(
`− 2

m− 2

)
((`− 1)mρ+ (m− 1)(1− ρ)),

η3 ,

(
`− 1

m− 1

)
(1 + (m− 1)ρ) +

(
`− 2

m− 1

)
(`− 1)mρ2

+

(
`− 2

m− 2

)
(`− 1)ρ(1 + (m− 1)ρ),

η4 ,

(
`− 1

m− 1

)
ρ(1 + (m− 1)ρ)

+

(
`− 2

m− 1

)
mρ(1 + (`− 2)ρ)

+

(
`− 2

m− 2

)
(1 + (`− 2)ρ)(1 + (m− 1)ρ).

Setting θ+(γ) = 0 gives

γ = γ(`,m)
c ,

(
`−2
m−2

)
(1− ρ)(1 + (`− 1)ρ)

ρ
.

It can be verified that

d+(γ(`,m)
c ) = 1− η3γ

(`,m)
c + η1

(γ
(`,m)
c )2 + η2γ

(`,m)
c + η1

= 1− η3ργ
(`,m)
c + η1ρ

η4γ
(`,m)
c + η1ρ

= d(`,m)
c .

25



M.A.Sc. Thesis - Yameng Chang McMaster - Electrical Engineering

Invoking Proposition 3 with VS , U+
S (γ

(`,m)
c ),S ∈ I(`,m), (which satisfy the Markov

chain condition in Proposition 3) proves (4.1) for d = d
(`,m)
c .

Now consider the case d ∈ (0, d
(`,m)
c ). We will only give a sketch of the proof here

since it is similar to its counterpart in chapter 3. Let

W+
i (d) , Xi +

√
d
(`,m)
c d

d
(`,m)
c − d

Z+
i , i = 1, · · · , `,

where Z+
1 , · · · , Z+

` are mutually independent zero-mean unit variance Gaussian ran-

dom variables, and are independent of X, N+
S , S ∈ I(`,m). Construct ΩS , S ∈ I(`,m),

such that 1) ΩS ⊆ S,S ∈ I(`,m), 2) ΩS∩ΩS′ = ∅, S 6= S ′, 3) ∪S∈I(`,m)ΩS = {1, · · · , `}.

Define VS , (U+
S (γ

(`,m)
c ),W+

i (d), i ∈ ΩS)T,S ∈ I(`,m). It is clear that such VS ,S ∈

I(`,m), satisfy the Markov chain condition in Proposition 3, and

cov(X|VS ,S ∈ I(`,m)) = diag(d, · · · , d).

Invoking Proposition 3 proves (4.1) for d ∈ (0, d
(`,m)
c ).

Remark 9 : Setting d+(γ) = d gives

γ = γ(`,m) ,
η3 − η2(1− d) +

√
(η2(1− d)− η3)2 + 4η1d(1− d)

2(1− d)
.

Note that there is a one-to-one correspondence between d ∈ (0, 1) and γ(`,m) ∈ (0,∞).

The preceding argument in fact shows that, for ρ ∈ (0, 1) and m = 1, · · · , `,

r(`,m)(d) ≤ r̄(`,m)(d), d ∈ (0, 1), (4.4)
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where

r̄(`,m)(d) ,
1

2
log

(1− ρ)`−1(1 + (`− 1)ρ)

(d− θ(`,m))`−1(d+ (`− 1)θ(`,m))

with

θ(`,m) ,

 0, d ∈ (0, d
(`,m)
c ],

θ+(γ(`,m)), d ∈ (d
(`,m)
c , 1).

(4.5)

The equality in (4.4) holds for d ∈ (0, d
(`,m)
c ]. Moreover, by defining

(
`−2
`−1

)
, 0 and(

`−2
−1

)
, 0, one can readily verify that r̄(`,m)(d) coincides with r(`,m)(d) for d ∈ (d

(`,m)
c , 1)

when m = ` or m = 1. However, it is still unknown whether r̄(`,m)(d) = r(`,m)(d) for

d ∈ (d
(`,m)
c , 1) when 1 < m < `.

27



Chapter 5

Proof of Theorem 3

In view of Remark 9, Remark 3, and (2.11) it suffices to show that, for ρ ∈ (0, 1) and

m ≥ 1,

r̄(`,m)(d) =



r
(`,m)
1 (d), d ∈ (0, d

(m)
c ],

r
(`,m)
2 (d), d ∈ (d

(m)
c , d+c ),

r
(`,m)
3 (d), d = d+c ,

r
(`,m)
4 (d), d ∈ (d+c , 1).

First consider the case d ∈ (0, d
(m)
c ). When ` is sufficiently large, we have d ∈

(0, d
(m)
c ] and consequently

r̄(`,m)(d) =
1

2
log

(1− ρ)`−1(1 + (`− 1)ρ)

d`

=
`

2
log

1− ρ
d

+
1

2
log `+

1

2
log

ρ

1− ρ
+

1

2
log(1 +

1− ρ
`ρ

)

= r
(`,m)
1 (d).

Next we shall derive a few results that are needed for studying the remaining
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cases. It can be verified that

η1 = g1
`2m

((m− 1)!)2
+ h1

`2m−1

((m− 1)!)2
+O(`2m−2),

ηi = gi
`m

(m− 1)!
+ hi

`m−1

(m− 1)!
+O(`m−2), i = 2, 3, 4,

where

g1 , 0, g2 , mρ, g3 , mρ2, g4 , mρ2,

h1 , mρ(1− ρ),

h2 , (m+ 1)(1− ρ) +
(m+ 4)m(m− 1)ρ

2
,

h3 , h2ρ+ (1− ρ)(1 + (m− 2)ρ),

h4 , h2ρ+ (m− 1)ρ(1− ρ).

According to (4.2) and (4.3),

d =
(γ(`,m))2 + (η2 − η3)γ(`,m)

(γ(`,m))2 + η2γ(`,m) + η1
,

θ+(γ(`,m)) =
ρ(γ(`,m))2 + (η2ρ− η4)γ(`,m)

(γ(`,m))2 + η2γ(`,m) + η1
,

which implies

θ+(γ(`,m)) =
(ργ(`,m) + η2ρ− η4)d
γ(`,m) + η2 − η3

. (5.1)

Using the asymptotic expressions of η2, η3, and η4, we can rewrite (5.1) as

θ(γ(`,m)) =
ρdγ(`,m) (m−1)!

`m
− (m−1)ρ(1−ρ)d

`
+O( 1

`2
)

γ(`,m) (m−1)!
`m

+mρ(1− ρ) + h2−h3
`

+O( 1
`2

)
. (5.2)
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Note that

η3 − η2(1− d)

= mρ(d− 1 + ρ)
`m

(m− 1)!
+ (h3 − h2(1− d))

`m−1

(m− 1)!
+O(`m−2),

(η2(1− d)− η3)2 + 4η1d(1− d)

= m2ρ2(1− ρ− d)2
`2m

((m− 1)!)2
+ ζ

`2m−1

((m− 1)!)2
+O(`2m−2),

where

ζ , 2mρ(1− ρ− d)(h2(1− d)− h3) + 4mρ(1− ρ)d(1− d).

As a consequence,

γ(`,m) =
mρ(d− 1 + ρ)

2(1− d)

`m

(m− 1)!
+
h3 − h2(1− d)

2(1− d)

`m−1

(m− 1)!

+

√
m2ρ2(1− ρ− d)2 + ζ

`
+O( 1

`2
)

2(1− d)

`m

(m− 1)!
+O(`m−2).

(5.3)

Now we are in a position to study the remaining cases.

For d ∈ (0, d+c ) (if m = 1) or d ∈ [d
(m)
c , d+c ) (if m > 1), we have 1− ρ− d > 0. It
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follows from (5.3) that

γ(`,m) =
mρ(d− 1 + ρ)

2(1− d)

`m

(m− 1)!
+
h3 − h2(1− d)

2(1− d)

`m−1

(m− 1)!

+
mρ(1− ρ− d)

√
1 + ζ

`m2ρ2(1−ρ−d)2 +O( 1
`2

)

2(1− d)

`m

(m− 1)!
+O(`m−2)

=
mρ(d− 1 + ρ)

2(1− d)

`m

(m− 1)!
+
h3 − h2(1− d)

2(1− d)

`m−1

(m− 1)!

+
mρ(1− ρ− d)(1 + ζ

2`m2ρ2(1−ρ−d)2 )

2(1− d)

`m

(m− 1)!
+O(`m−2)

=
(1− ρ)d

1− ρ− d
`m−1

(m− 1)!
+O(`m−2),

which, together with (5.2) and some simple calculations, gives

θ+(γ(`,m)) =

ρ(1−ρ)d2
`(1−ρ−d) −

(m−1)ρ(1−ρ)d
`

+O( 1
`2

)

mρ(1− ρ) +O(1
`
)

=

(
d(d− (m− 1)(1− ρ− d))

`m(1− ρ− d)
+O(

1

`2
)

)(
1 +O(

1

`
)

)
=
d(d− (m− 1)(1− ρ− d))

`m(1− ρ− d)
+O(

1

`2
).

One can readily verify that

r̄(`,m)(d) =
`

2
log

1− ρ
d

+
1

2
log `− `− 1

2
log

(
1− θ+(γ(`,m))

d

)
+

1

2
log

(
ρd

1− ρ
+
d

`

)
− 1

2
log(d+ (`− 1)θ+(γ(`,m)))

= r
(`,m)
2 (d).
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For d = d+c , we have 1− ρ− d = 0. It follows from (5.3) that

γ(`,m) =
h3 − h2(1− d)

2(1− d)

`m−1

(m− 1)!

+

√
4mρ(1−ρ)d(1−d)

`
+O( 1

`2
)

2(1− d)

`m

(m− 1)!
+O(`m−2)

=
√
m(1− ρ)

`m−
1
2

(m− 1)!
+
h3 − h2ρ

2ρ

`m−1

(m− 1)!
+O(`m−

3
2 )

=
√
m(1− ρ)

`m−
1
2

(m− 1)!
+

(1− ρ)(1 + (m− 2)ρ)

2ρ

`m−1

(m− 1)!
+O(`m−

3
2 ),

which, together with (5.2) and some simple calculations, gives

θ+(γ(`,m)) =

√
mρ(1−ρ)2√

`
+ (1−ρ)2(1+(m−2)ρ−2(m−1)ρ)

2`
+O( 1

`2
)

mρ(1− ρ) +
√
m(1−ρ)√

`
+O(1

`
)

=

(
1− ρ√
`m

+
(1− ρ)(1−mρ)

2`mρ
+O(

1

`2
)

)
×
(

1− 1√
` mρ

+O(
1

`2
)

)
=

1− ρ√
`m
− (1− ρ)(1 +mρ)

2`mρ
+O(

1

`
3
2

).

One can readily verify that

r̄(`,m)(d) = −`− 1

2
log

(
1− θ+(γ(`,m))

1− ρ

)
+

1

4
log `+

1

2
log

(
ρ+

1− ρ
`

)
− 1

2
log

(
1− ρ+ (`− 1)θ+(γ(`,m))√

`

)
= r

(`,m)
3 (d).
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For d ∈ (d+c , 1), we have 1− ρ− d < 0. It follows from (5.3) that

γ(`,m) =
mρ(d− 1 + ρ)

2(1− d)

`m

(m− 1)!
+
h3 − h2(1− d)

2(1− d)

`m−1

(m− 1)!

+
mρ(d− 1 + ρ)

√
1 + ζ

`m2ρ2(1−ρ−d)2 +O( 1
`2

)

2(1− d)

`m

(m− 1)!
+O(`m−2)

=
mρ(d− 1 + ρ)

2(1− d)

`m

(m− 1)!
+
h3 − h2(1− d)

2(1− d)

`m

(m− 1)!

+
mρ(d− 1 + ρ)

(
1 + ζ

2`m2ρ2(1−ρ−d)2

)
2(1− d)

`m

(m− 1)!
+O(`m−2)

=
mρ(d− 1 + ρ)

1− d
`m

(m− 1)!

+

(
h3 − h2(1− d)

1− d
+

(1− ρ)d

d− 1 + ρ

)
`m−1

(m− 1)!
+O(`m−2).

(5.4)

Substituting (5.4) to (5.2) gives

θ+(γ(`,m)) =
d− 1 + ρ+ µ

`
+O( 1

`2
)

1 + ν
`

+O( 1
`2

)
,

where

µ ,
h3 − h2(1− d)

mρ
+

(1− ρ)d(1− d)

mρ(d− 1 + ρ)
− (m− 1)(1− ρ)(1− d)

mρ
,

ν ,
h3
mρ2

+
(1− ρ)(1− d)

mρ2(d− 1 + ρ)
.
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clearly we have

θ+(γ(`,m)) =

(
d− 1 + ρ+

µ

`
+O(

1

`2
)

)(
1− ν

`
+O(

1

`2
)

)
= d− 1 + ρ+

µ− (d− 1 + ρ)ν

`
+O(

1

`2
)

= d− 1 + ρ+

(
h3 − h2(1− d)

`mρ
+

(1− ρ)d(1− d)

`mρ(d− 1 + ρ)

− (m− 1)(1− ρ)(1− d)

`mρ
− h3(d− 1 + ρ)

`mρ2
− (1− ρ)(1− d)

`mρ2

)
+O(

1

`2
)

= d− 1 + ρ+

(
(h3 − h2ρ)(1− d)

`mρ2
+

(1− ρ)d(1− d)

`mρ(d− 1 + ρ)

− (m− 1)(1− ρ)(1− d)

`mρ
− (1− ρ)(1− d)

`mρ2

)
+O(

1

`2
)

= d− 1 + ρ+

(
(1− ρ)(1 + (m− 2)ρ)(1− d)

`mρ2
+

(1− ρ)d(1− d)

`mρ(d− 1 + ρ)

−(m− 1)(1− ρ)(1− d)

`mρ
− (1− ρ)(1− d)

`mρ2

)
+O(

1

`2
)

= d− 1 + ρ+
(1− ρ)2(1− d)

`mρ(d− 1 + ρ)
+O(

1

`2
).

One can readily verify that

r̄(`,m)(d) =
1

2
log

1 + (`− 1)ρ

d+ (`− 1)θ+(γ(`,m))
− `− 1

2
log

d− θ+(γ(`,m))

1− ρ

= r
(`,m)
4 (d).

This completes the proof of Theorem 3.
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Chapter 6

Numerical Results

Some numerical examples will be provided in this section to illustrate our main results.

We focus on the case ρ > 0 since, in view of Theorem 1, the relevant plots are not

particularly interesting when ρ ≤ 0.

First we compare r̄(`,m)(d) (the best known upper bound on r(`,m)(d)), 1 < m < `,

with r(`,`)(d) (the rate-distortion function in the centralized setting), r(`,1)(d) (the

rate-distortion function in the distributed setting), and r(`)(d) (the Shannon lower

bound). Fig. 6.1 illustrates the case ` = 3 with ρ = 0.6. It can be seen that r(3,3)(d)

coincides with r(3)(d) when d ≤ d+c = 0.4, and r̄(3,2)(d) coincides with r(3,3)(d) as well

as r(3)(d) when d ≤ d
(3,2)
c = 11

35
≈ 0.314. On the other hand, r(3,1)(d) is strictly above

all the other curves for d ∈ (0, 1). See a similar plot for the case ` = 4 with ρ = 0.3

in Fig. 6.2, where d+c = 0.7, d(4,2) = 0.532, and d(4,3) = 133
205
≈ 0.649.

Next we compare δ(m)(d) for different values of m. Note that δ(m)(d) indicates the

asymptotic gap between r̄(`,m)(d) and r(`,`)(d) in the large ` limit. Fig. 6.3 provides

an illustration of δ(1)(d), δ(2)(d), and δ(3)(d) with ρ = 0.6. It can be ssen that all the

curves blow up at the critial distortion d+c = 0.4. Moreover, we have δ(2)(d) = 0 when
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Figure 6.1: An illustration of r(3)(d), r(3,1)(d), r̄(3,2)(d), and r(3,3)(d) with ρ = 0.6.
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Figure 6.2: An illustration of r(4)(d), r(4,1)(d), r̄(4,2)(d), r̄(4,3)(d), and r(4,4)(d) with
ρ = 0.3.
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Figure 6.3: An illustration of δ(1)(d), δ(2)(d), and δ(3)(d) with ρ = 0.6.

d ≤ d
(2)
c = 0.2, and δ(3)(d) = 0 when d ≤ d

(3)
c = 4

15
≈ 0.267. On the other hand,

δ(1)(d) is strictly above zero for d ∈ (0, 1). See also a plot of δ(1)(d), δ(2)(d), δ(3)(d),

and δ(4)(d) with ρ = 0.3 in Fig. 6.4, where d+c = 0.7, d
(2)
c = 0.35, d

(3)
c = 7

15
≈ 0.467,

and d
(4)
c = 0.525.

Finally we shall perform comparison in the eigenspace. Define

D(`,m) ,



d θ(`,m) · · · θ(`,m)

θ(`,m) . . . . . .
...

...
. . . . . . θ(`,m)

θ(`,m) · · · θ(`,m) d


,

where θ(`,m) is given by (4.5). One can interpret as D(`,m) the distortion covariance
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Figure 6.4: An illustration of δ(1)(d), δ(2)(d), δ(3)(d), and δ(4)(d) with ρ = 0.3.

matrix associated with r̄(`,m)(d). Indeed, we have

r̄(`,m)(d) =
1

2
log

det(Σ(`))

det(D(`,m))

or equivalently

r̄(`,m)(d) =
∑̀
i=1

1

2
log

λ
(`)
i

d
(`,m)
i

where

d
(`,m)
i , d− θ(`,m), i = 1, · · · , `− 1,

d
(`,m)
` , d+ (`− 1)θ(`,m)

are the eigenvalues of D(`,m). Note that (d
(`,`)
1 , · · · , d(`,`)` ) corresponds to the reverse

water-filling solution. Fig. 6.5 provides an illustration of λ
(3)
i , d

(3,1)
i , d

(3,2)
i , and d

(3,3)
i ,
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Figure 6.5: An illustration of λ
(3)
i , d

(3,1)
i , d

(3,2)
i , and d

(3,3)
i , i = 1, 2, 3, with ρ = 0.6 and

d = 0.5.

i = 1, 2, 3, with ρ = 0.6 and d = 0.5. Since d+c = 0.4 < d, the reverse water-

filling solution leaves some dimensions uncoded; indeed, it can be seen that d
(3,3)
i =

λ
(3)
i , i = 1, 2. In contrast, for m = 1 and m = 2, we have d

(3,m)
i < λ

(3)
i , i =

1, 2, 3, and consequently all dimensions are coded, which is suboptimal as comapred

to the reverse water-filling solution; nevertheless, increasing from m = 1 to m = 2

gets (d
(3,m)
1 , d

(3,m)
2 , d

(3,m)
3 ) closer to the reverse water-filling solution, resulting in an

improved rate-distortion performance. Fig. 6.6 depicts λ
(4)
i , d

(4,1)
i , d

(4,2)
i , d

(4,3)
i , and

d
(4,4)
i , i = 1, 2, 3, 4, with ρ = 0.3 and d = 0.6. Since d

(4,3)
c ≈ 0.649 > d, it follows that

(d
(4,3)
1 , d

(4,3)
2 , d

(4,3)
3 , d

(4,3)
4 ) coincides with (d

(4,4)
1 , d

(4,4)
2 , d

(4,4)
3 , d

(4,4)
4 ). That is to say, for

such d, the encoders in a (4,3) generalized multiterminal source coding system can

achieve the same effect as that of the reverse water-filling solution in the centralized

setting even though they cannot fully cooperate.
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Figure 6.6: An illustration of λ
(4)
i , d

(4,1)
i , d

(4,2)
i , d

(4,3)
i , and d

(4,4)
i , i = 1, 2, 3, 4, with

ρ = 0.3 and d = 0.6.

40



Chapter 7

Conclusion

We have studied the rate-distortion limit of generalized multiterminal source coding

of symmetrically correlated Gaussian sources. Although a complete characterization

of this limit has been obtained when the correlation coefficient is non-positive, a lot

remains to be done for the positive correlation coefficient case. We conjecture that

the upper bound established in the present work, i.e., r̄(`,m)(d), is tight even when d

is greater than d
(`,m)
c . However, a rigorous proof of this conjecture (even in the large `

limit) is likely to be non-trivial and may require new techniques yet to be developed.

We would like to mention that the proof of Theorems 1 and 2 was partly inspired

by the consideration of the graphical model (more precisely, the Markov network)

of a symmetric multivariate Gaussian distribution. It is of considerable interest to

know whether a more conceptual proof can be constructed along that line. Moreover,

probabilistic graphical models are expected to play an essential role in identifying the

non-Gaussian counterpart of our problem and establishing the corresponding results.
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Appendix A

Proof of Proposition 4

Let X̂−i (γ) , E[Xi|U−S,1(γ), · · · , U−S,m(γ),S ∈ I(`,m)], i = 1, · · · , `. We shall first prove

that

X̂−i (γ) = κ
∑

S∈I(`,m):i∈S

U−S,τ(i)(γ), i = 1, · · · , `,

where τ(i) indicates the position of i in S when the elements of S are arranged in

ascending order, and

κ ,
(1− ρ)

γ +
(
`−2
m−2

)
`(1− ρ)

.

It suffices to verify that, for any S ′ ∈ I(`,m) and i′ ∈ S ′,

E

Xi − κ
∑

S∈I(`,m):i∈S

U−S,τ(i)(γ)

U−S′,τ(i′)(γ)

 = 0 (A.1)
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Note that

Xi − κ
∑

S∈I(`,m):i∈S

U−S,τ(i)(γ)

=

(
1− κ

(
`− 2

m− 2

)
`

)
Xi + κ

(
`− 2

m− 2

)∑̀
j=1

Xj

− κ√γ
∑

S∈I(`,m):i∈S

N−S,τ(i).

(A.2)

One can readily compute that

E[XjU
−
S′,τ(i′)(γ)] =


(m− 1)(1− ρ), i = i′,

−(1− ρ), i ∈ S ′, i 6= i′,

0, i /∈ S ′,

(A.3)

∑̀
j=1

E[XjU
−
S′,τ(i′)(γ)] = 0, (A.4)

∑
S∈I(`,m):i∈S

E[N−S,τ(i)U
−
S′,τ(i′)(γ)] =


(m− 1)

√
γ, i = i′,

−√γ, i ∈ S ′, i 6= i′,

0, i /∈ S ′.

(A.5)
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Combining (A.2), (A.3), (A.4), and (A.5) gives (A.1). For i = 1, · · · , `,

E[(Xi − X̂−i (γ))2]

= E[(Xi − X̂−i (γ))Xi]− E[(Xi − X̂−i (γ))X̂−i (γ)]

= E[(Xi − X̂−i (γ))Xi] (A.6)

=

(
1− κ

(
`− 2

m− 2

)
`

)
E[X2

i ] + κ

(
`− 2

m− 2

)∑̀
j=1

E[XjXi]

− κ√γ
∑

S∈I(`,m):i∈S

E[N−S,τ(i)Xi
] (A.7)

= 1− κ
(
`− 2

m− 2

)
`+ κ

(
`− 2

m− 2

)
(1 + (`− 1)ρ)

= d−(γ),

where (A.6) and (A.7) are due to (A.1) and (A.2), respectively. Moreover, for i, i′ ∈

{1, · · · , `} with i 6= i′,

E[(Xi − X̂−i (γ))(Xi′ − X̂−i′ (γ))]

= E[(Xi − X̂−i (γ))Xi′ ]− E[(Xi − X̂−i (γ))X̂−i′ (γ)]

= E[(Xi − X̂−i (γ))Xi′ ] (A.8)

=

(
1− κ

(
`− 2

m− 2

)
`

)
E[XiXi′ ] + κ

(
`− 2

m− 2

)∑̀
j=1

E[XjXi′ ]

− κ√γ
∑

S∈I(`,m):i∈S

E[N−S,τ(i)Xi′ ] (A.9)

= ρ− κ
(
`− 2

m− 2

)
`ρ+ κ

(
`− 2

m− 2

)
(1 + (`− 1)ρ)

= θ−(γ),
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where (A.8) and (A.9) are due to (A.1) and (A.2), respectively. This completes the

proof of Proposition 4.
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Appendix B

Proof of Proposition 5

Let X̂+
i (γ) , E[Xi|U+

S (γ),S ∈ I(`,m)], i = 1, · · · , `. We shall first prove that

X̂+
i (γ) = α

∑
S∈I(`,m):i∈S

U+
S (γ) + β

∑
S∈I(`,m):i/∈S
i=1,··· ,`,

U+
S (γ),

where

α ,
(1 + (m− 1)ρ)γ +

(
`−2
m−1

)
m(1− ρ)(1 + (`− 1)ρ)

γ2 + η2γ + η1
,

β ,
mργ −

(
`−2
m−2

)
m(1− ρ)(1 + (`− 1)ρ)

γ2 + η2γ + η1
.

It suffices to verify that, for any S ′ ∈ I(`,m),

E

Xi − α
∑

S∈I(`,m):i∈S

U+
S (γ)− β

∑
S∈I(`,m):i/∈S

U+
S (γ)

U+
S′(γ)

 = 0, i = 1, · · · , `.

(B.10)
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Note that

Xi − α
∑

S∈I(`,m):i∈S

U+
S (γ)− β

∑
S∈I(`,m):i/∈S

U+
S (γ)

=

(
1− α

(
`− 1

m− 1

)
+ α

(
`− 2

m− 2

)
+ β

(
`− 2

m− 1

))
Xi

−
(
α

(
`− 2

m− 2

)
+ β

(
`− 2

m− 1

))∑̀
j=1

Xj

− (α− β)
√
γ

∑
S∈I(`,m):i∈S

N+
S

− β√γ
∑

S∈I(`,m)

N+
S .

(B.11)

One can readily compute that

E[XiU
+
S′(γ)] =

 1 + (m− 1)ρ, i ∈ S ′,

mρ, i /∈ S ′,
(B.12)

∑̀
j=1

E[XjU
+
S′(γ)] = m(1 + (`− 1)ρ), (B.13)

∑
S∈I(`,m):i∈S

E[N+
S U

+
S′(γ)] =


√
γ, i ∈ S ′,

0, i /∈ S ′,
(B.14)

∑
S∈I(`,m):i∈S

E[N+
S U

+
S′(γ)] =

√
γ. (B.15)

Combining (B.11), (B.12), (B.13), (B.14), and (B.15) gives (B.10).
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For i = 1, · · · , `,

E[(Xi − X̂+
i (γ))2]

= E[(Xi − X̂+
i (γ))Xi]− [(Xi − X̂+

i (γ))X̂+
i (γ)]

= E[(Xi − X̂+
i (γ))Xi] (B.16)

=

(
1− α

(
`− 1

m− 1

)
+ α

(
`− 2

m− 2

)
+ β

(
`− 2

m− 1

))
E[X2

i ]

−
(
α

(
`− 2

m− 2

)
+ β

(
`− 2

m− 1

))∑̀
j=1

E[XjXi]

− (α− β)
√
γ

∑
S∈I(`,m):i∈S

E[N+
S Xi]

− β√γ
∑

S∈I(`,m)

E[N+
S Xi] (B.17)

= 1− α
(
`− 1

m− 1

)
+ α

(
`− 2

m− 2

)
+ β

(
`− 2

m− 1

)
−
(
α

(
`− 2

m− 2

)
+ β

(
`− 2

m− 1

))
(1 + (`− 1)ρ)

= d+(γ),

where (B.16) and(B.17) are due to (B.10) and (B.11), respectively. Moreover, for
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i, i′ ∈ {1, · · · , `} with i 6= i′,

E[(Xi − X̂+
i (γ))(Xi′ − X̂+

i′ (γ))]

= E[(Xi − X̂+
i (γ))Xi′ ]− E[(Xi − X̂+

i (γ))X̂+
i′ (γ)]

= E[(Xi − X̂+
i (γ))Xi′ ] (B.18)

=

(
1− α

(
`− 1

m− 1

)
+ α

(
`− 2

m− 2

)
+ β

(
`− 2

m− 1

))
E[XiXi′ ]

−
(
α

(
`− 2

m− 2

)
+ β

(
`− 2

m− 1

))∑̀
j=1

E[XjXi′ ]

− (α− β)
√
γ

∑
S∈I(`,m):i∈S

E[N+
S Xi′ ]

− β√γ
∑

S∈I(`,m)

E[N+
S Xi′ ] (B.19)

= ρ− α
(
`− 1

m− 1

)
ρ+ α

(
`− 2

m− 2

)
ρ+ β

(
`− 2

m− 1

)
ρ

−
(
α

(
`− 2

m− 2

)
+ β

(
`− 2

m− 1

))
(1 + (`− 1)ρ)

= θ+(γ),

where (B.18) and (B.19) are due to (B.10) and (B.11), respectively. This completes

the proof of Proposition 5.
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