Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Digitized Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/22994
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorWillan, A. R.-
dc.contributor.authorBiernacka, Joanna-
dc.date.accessioned2018-05-31T16:16:18Z-
dc.date.available2018-05-31T16:16:18Z-
dc.date.issued1998-04-
dc.identifier.urihttp://hdl.handle.net/11375/22994-
dc.description.abstractDue to an increasing demand from decision makers for proper economic evaluations of health care services, cost-effectiveness analyses are becoming increasingly frequent. The statistic of interest in cost-effectiveness analysis is the incremental cost effectiveness ratio (ICER). When patient-specific data on costs and effects of alternative interventions is available, it can be used to quantify the uncertainty in the estimate of the ICER. Expressing this uncertainty by using confidence intervals has been recommended. However, because the statistic of interest is a ratio of two correlated random variables, its variance cannot be estimated exactly. Furthermore, the distribution of the ratio is unknown. Recently, several approximate methods have been proposed for calculating confidence intervals for the incremental cost-effectiveness ratio. These include two parametric methods: one which relies on a Taylor's Series approximation of the variance, and one based on Fieller's theorem; as well as a number of methods which rely on bootstrapping methodology. In this manuscript, these methods were applied to data obtained from a randomized clinical trial in which both health resources consumed and health outcomes were observed. Furthermore, several variations of the bootstrapping methods were proposed and applied to the same data set. Probabilities of the true ICER being in given ranges were also estimated using a bootstrapping approach. Finally, issues of sample size and power were briefly considered. The relative advantages and disadvantages of the different approaches were discussed.en_US
dc.language.isoenen_US
dc.subjectuncertaintyen_US
dc.subjectcosten_US
dc.subjectcost-effectiveen_US
dc.titleAccounting for Uncertainty in Cost-Effectiveness Studiesen_US
dc.typeThesisen_US
dc.contributor.departmentStatisticsen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Science (MS)en_US
Appears in Collections:Digitized Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
biernacka_joanna_m_1998Apr_masters.pdf
Open Access
30.17 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue