Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/22834
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorMalakhov, Dmitri-
dc.contributor.authorTallon, Paul-
dc.date.accessioned2018-05-04T13:52:52Z-
dc.date.available2018-05-04T13:52:52Z-
dc.date.issued2018-
dc.identifier.urihttp://hdl.handle.net/11375/22834-
dc.description.abstractPowder metallurgy (PM) steel is produced by near net shape manufacturing, which is used to fabricate alloy steels for many purposes. Designing new powder metal steels that can form a significant fraction of martensite relies on hardenability calculations developed for wrought steels. These proven tools are built upon assumptions for wrought steels that do not hold true for PM steels. One assumption is that the alloying elements are homogenized throughout the material. In admixed powder blends that are industrially sintered this is not the case. Using prealloyed powder is a solution to this issue, yet it places restrictions on alloy design and compressibility. There are tools available to computationally optimize diffusion problems, yet the complexity during the sintering of PM steel is such that a robust model has yet been produced. It is intuitive that with smaller particles of Fe sintering time can be reduced. A direct experimental investigation linking Fe-powders’ sizes and hardenability on Fe-C-Cr-Mn-Mo-Ni PM steel was subject to microstructure analysis and mechanical properties (Jominy test) for comparative analysis. Another assumption that is made for wrought steel is a consistent density of 7.87g/cm3. This is not the case for PM steel as the press and sinter method produces pores, decreasing the density. This directly affects the thermal conductivity and phase transformation of the steel. In an effort to understand how these differences affect Grossmann’s predictions of hardenability, a direct experimental investigation linking the density to hardenability was launched on prealloyed FL-4605 and FL-4605+2%Cu. Specifically the Jominy test was completed on a range of densities, as well as compared to software predictions. The chemical variations in admixed and sintered PM steel produce a unique system where one TTT diagram cannot predict the entire final microstructure. PM steel such as this is observed in industry, and can be created through incorporating larger Fe-particles such that less alloying constituents have a chance to fully alloy these regions. Since the large particles will not have the chance to be alloyed, they will not have the ability to form martensite. Since the regions between large particles will be alloyed, martensite will form, creating a hard matrix surrounding softer particles. This structure is characteristic of a metal matrix composite (MMC), and therefore should be treated as such. There are methods of MMC design that involve numerical methods of predicting strength and toughness. These methods, along with experimental data (tensile and Charpy testing) of Fe-C-Cr-Mn-Mo-Ni PM steels with ranging volume fractions of pearlitic inclusions were compared.en_US
dc.language.isoenen_US
dc.subjectPowdered Metalen_US
dc.subjectHardenabilityen_US
dc.subjectSinteringen_US
dc.subjectParticle Sizesen_US
dc.subjectMartensiteen_US
dc.subjectJominyen_US
dc.subjectMetal Matrix Compositeen_US
dc.subjectPearliteen_US
dc.subjectPorosityen_US
dc.subjectRockwellen_US
dc.titleAn Experimental Investigation of the Hardenabilities Tensile and Fracture Properties of Powdered Metal Steelsen_US
dc.typeThesisen_US
dc.contributor.departmentMaterials Science and Engineeringen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Applied Science (MASc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
An Experimental Investigation of the Hardenabilities Tensile and Fracture Properties of Powdered Metal Steels_Paul G. Tallon.pdf
Access is allowed from: 2018-06-30
6.62 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue