Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/22793
Title: Applications in Time-Frequency domain analysis
Authors: Yuvashankar, Vinay
Advisor: Von Mohrenschildt, Martin
Department: Software Engineering
Keywords: Time-Frequency;Wavelet;Morlet Wavelet;EEG;Modal;Analysis;Mechanical;Event;Related;Spectral;Perturbation;Continuous;Wavelet;Transform;Short;Time;Fourier;Transform
Publication Date: Nov-2017
Abstract: Time-Frequency decomposition is a signal processing method for analyzing and extracting information from aperiodic signals. Analysis of these signals are ineffective when done using the Fourier transform, instead these signals must be analyzed in the time and frequency domain simultaneously. The current tools for Time-Frequency analysis are either proprietary or computationally expensive making it prohibitive for researchers to use. This thesis investigates the computational aspects of signal processing with a focus on Time-Frequency analysis using wavelets. We develop algorithms that compute and plot the Time-Frequency decomposition automatically, and implement them in C++ as a framework. As a result our framework is significantly faster than MATLAB, and can be easily incorporated into applications that require Time-Frequency analysis. The framework is applied to identify the Event Related Spectral Perturbation of EEG signals; and to vibrational analysis by identifying the mechanical modal parameters of oscillating machines.
URI: http://hdl.handle.net/11375/22793
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
yuvashankar_vinay_201710_MASc.pdf
Open Access
2.76 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue