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Abstract

Time-Frequency decomposition is a signal processing method for analyzing and ex-

tracting information from aperiodic signals. Analysis of these signals are ineffective

when done using the Fourier transform, instead these signals must be analyzed in the

time and frequency domain simultaneously. The current tools for Time-Frequency

analysis are either proprietary or computationally expensive making it prohibitive

for researchers to use. This thesis investigates the computational aspects of signal

processing with a focus on Time-Frequency analysis using wavelets. We develop algo-

rithms that compute and plot the Time-Frequency decomposition automatically, and

implement them in C++ as a framework. As a result our framework is significantly

faster than MATLAB, and can be easily incorporated into applications that require

Time-Frequency analysis. The framework is applied to identify the Event Related

Spectral Perturbation of EEG signals; and to vibrational analysis by identifying the

mechanical modal parameters of oscillating machines.
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Notation and abbreviations

x[·] A function in the discrete time domain

x(·) A function in the continuous time domain

x̂(·) The Fourier Transform of the function

P(·) Energy Spectrum Function

W(·) Continuous Wavelet Transform Function

Ψ(·) Wavelet Function

BDF BioSemi Data Format

CTFT Continuous Time Fourier Transform

CWT Continuous Wavelet Transform

DFT Discrete Fourier Transform

DTFT Discrete Time Fourier Transform

EDF European Data Form

EEG Electroencephalography

ERP Event Related Potential

ESRP Event Related Spectral Perturbation

FFT Fast Fourier Transform

FFTW Fastest Fourier Transform in the West
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GSL GNU Scientific Library

PNG Portable Network Graphics

SIMD Single Instruction, Multiple Data

STFT Short Time Fourier Transform
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Chapter 1

Introduction

A signal is a function of time that can convey information [43]. It can originate from

a variety of sources (e.g. deep space electromagnetic radiation vs. orchestral sounds)

[44]. In the physical world a signal is analog, but usually it is converted and processed

digitally. Analog signals exist in the continuous time domain where the changes in

amplitude are tracked over time. Digital signals exist in the discrete time domain,

where the function is represented at regular intervals by a finite set of values. The

desire to study signal processing methods is fueled by the recent improvements in

computational speed and the concomitant cost-reduction of sensors.

One of the goals of signal processing is to identify repeating patterns that oc-

cur periodically. The amount of time it takes for a signal to repeat is known as its

period, and the amount of repetitions that occur within a second is known as its fre-

quency. These patterns can be analyzed with the Discrete Fourier Transform (DFT),

a mathematical method that decomposes a periodic signal into weighted complex

exponentials.

However, this method is ineffective at analyzing aperiodic signals. A signal, such as

1
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the sounds from an orchestra, has information in the temporal domain that would be

lost in the decomposition. By decomposing a signal in terms of complex exponentials,

which are periodic functions, the DFT removes the temporal information. Methods

to analyze a signal’s frequency and temporal information simultaneously — known

as Time-Frequency analysis — are required. In this document we will examine two

Time-Frequency methods called the Short Time Fourier Transform (STFT), and the

Continuous Wavelet Transform (CWT).

The STFT modifies traditional Fourier analysis by analyzing the signal in smaller

equally sized segments called windows. By successively performing the Fourier trans-

form in smaller segments we can gain some temporal resolution. It can be seen that

the temporal resolution is determined by the size of these windows; smaller windows

are better equipped to localize a signal’s attributes in time. However, dividing the

signal comes with a cost, it trades temporal resolution for frequency. The smaller

windows would be unable to analyze periods that occur over a long time because the

window is not large enough to encompass it. The window size could be increased to

identify the slow changes, but this would in turn reduce the resolution in the time

domain.

The CWT improves on the STFT by adjusting the window size according to

the frequency. This is accomplished by its use of wavelets, rather than complex

exponentials, as its analysis function. Wavelets have finite energy localized at a point

in time, while complex exponentials have energy at all times. Wavelets with the same

energy can be expanded for large windows, and compressed for small windows. The

signal is then correlated with both large and small windows which provides us with

a detailed decomposition of the signal’s entire frequency spectrum as a function of

2
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time.

While the STFT and CWT are powerful tools, they are expensive to compute for

non-trivial signals. This thesis discusses methods of generating the Time-Frequency

decompositions automatically. It begins with a short review of the mathematics of

the Fourier transform and introduces the need for Time-Frequency analysis. It then

describes the STFT and CWT as two methods for decomposing aperiodic signals. The

developed algorithms numerically approximate these methods, and are implemented

as a framework in the C and C++ programming languages. The framework is applied

to two signal processing scenarios in which Time-Frequency analysis is required. First,

it is compared with standard packages available for neuroscience researchers who work

with Electroencephalography (EEG) analysis. Second, due to work done within our

research group, the framework is applied to identify the mechanical modal parameters

of an oscillating machine.

3
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Chapter 2

Background

The focus of this chapter is to provide the background mathematics that will be used

to analyze a signal in the Time-Frequency domain. We will first review the time

and frequency domains, and introduce the Fourier Transform as a method of ana-

lyzing a signal’s frequency information. Time-Frequency analysis is then introduced

to overcome the limitations of Fourier analysis by analyzing a signal in both time

and frequency. We then discuss the Short Time Fourier Transform (STFT) and the

Continuous Wavelet Transform (CWT) as two methods that can decompose a signal

in the Time-Frequency domain.

2.1 The Time and Frequency Domains

A signal in the temporal domain shows the general nature of its changes as a function

of time, i.e. whether it is sinusoidal, random, repetitive, or transient in nature [53].

A signal such as a cosine function, which has a natural frequency of ω0, can be

represented in the time domain as

5
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Figure 2.1: The time representation of a cosine function

x(t) = cos(2πω0t). (2.1)

The cosine signal, visualized in Figure 2.1, repeats its values periodically. The

time it takes for the function to repeat or cycle is known as its period, given by p,

measured in seconds. Its frequency is the number of cycles it undergoes in one second,

defined as the inverse of the period, or

f =
1

p

and is measured in Hertz. A signal in the time domain can be transformed into

6



M.A.Sc. Thesis - V. Yuvashankar McMaster - Computing and Software

the frequency domain by separating it into weighted complex exponentials called the

energy spectrum density [27].

A periodic cosine function, such as equation 2.1, is represented in the frequency

domain as

X(ω) =
1

2
δ(ω − ω0) +

1

2
δ(ω + ω0).

The energy spectrum density of the cosine function, visualized in Figure 2.2, is defined

by two Dirac delta functions at the cosine’s natural frequency ω0. The Dirac delta

function is given by

δ(t) =

 +∞ t = 0

0 t 6= 0
, (2.2)

where it is constrained by

∫ +∞

−∞
δ(t)dt = 1. (2.3)

The frequency domain shows the energy and the phase shift of a signal as a function of

angular frequency ω. It is often used to identify the periodic properties that compose

a signal.

Aperiodic signals can be analyzed in the frequency domain as well. For example,

an aperiodic impulse function

x(t) = δ(t), (2.4)

is represented as a Dirac delta, would have an energy spectrum density of

X(ω) = 1. (2.5)

7
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−ω0 ω0

−1

−0.5

0.5

1

Figure 2.2: The Energy Spectrum of a Cosine Function

These functions are visualized in Figure 2.3. Note that the transformation of the signal

from the time domain to the frequency domain changes its nature. The continuous

signal is transformed into a discrete function, and the discrete function is transformed

into a continuous signal. This occurs when transforming a signal from one domain to

another.

The time and frequency domains highlight different properties in a signal. The

frequency domain shows the periodic and cyclic properties; while the time domain

is useful for identifying instantaneous and transient vibrations. Both domains are

important in signal processing as one provides information the other does not. For

example, an impulse function and random noise would have identical energy spec-

trum densities, it is only in the temporal domain that their transient nature would

be distinguished. Conversely, one would not use the temporal domain to analyze a

signal’s periodic properties, it would be easier to transform the signal into the fre-

quency domain to identify these features. Transforming signals to and from the time

and frequency domains is done through a method called Fourier analysis.

8
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−τ τ

−∞

+∞

(a) An Impulse Function

−ω0 ω0

−1

1

(b) The Energy Spectrum Density

Figure 2.3: Figure 2.3a shows the Impulse Function, and Figure 2.3b shows the Energy
Spectrum Density of the Impulse Function

2.2 The Fourier Transform

Fourier analysis decomposes a signal into complex exponentials [6]. The Continuous

Time Fourier Transform (CTFT) is defined as

X(ω) ≈
∫ +∞

−∞
x(t)e−iωtdt,

9
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where: i is the complex number equal to
√
−1, x(t) is a continuous signal for which

an integral exists, and ω is the angular frequency measured in radians per second.

The periodic nature of the complex exponential in the Fourier transform implies the

function X(ω) has a period of 2π. This property is defined as

X(ω) = X(ω + 2kπ),

where k is any integer. The CTFT can transform any aperiodic temporal signal into

an aperiodic function in the frequency domain.

The CTFT can be discretely sampled as the Discrete Time Fourier Transform

(DTFT) given by

X(ω) ≈
+∞∑

n=−∞

x[n]e−iωn,

where x[n] is a discrete and aperiodic function, and n can be any integer. The DTFT

definition is valid if it is assumed that the values of x and ω allow the infinite sum

to converge. The DTFT transforms a signal from the aperiodic time domain into the

periodic frequency domain. However, if the signal is discrete and periodic, then the

Discrete Fourier Transform (DFT) can be used.

The DFT is given as

Xk ≈
p−1∑
n=0

x[n]e−iω0kp, (2.6)

where: p is an integer representing the period, Xk are the Fourier series coefficients,

ω0 is defined as 2π/p, and k is any integer. The DFT transforms a periodic time

domain signal into a periodic function in the frequency domain. It uses a complex

10
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exponential in its analysis method which means it is Np periodic, or

Xk = Xk+Np,

where N and k can be any integer. A discrete and periodic signal can be analyzed

and transformed into the frequency domain by using equation 2.6. It can conversely

be synthesized with the Inverse Discrete Fourier Transform (IDFT) which is given as

x[n] =
1

p

p−1∑
n=0

Xke
iω0n.

The DFT is often used in signal processing because both the forward and inverse

transforms are discrete and finite. Their discrete nature makes them ideal for digital

circuits, and their finite summations ensure that a solution exists. The transfor-

mations between the time and frequency domains can be made less expensive by

automatic, rather than analytic, calculations.

The forward and inverse Discrete Fourier Transforms are computationally expen-

sive in the order of O(n2). In practice, a Fast Fourier Transform algorithm — such

as the Cooley-Tukey algorithm — is used to compute the DFT and IDFT, which re-

duces the computational complexity to O(n log(n)) [11]. The Fast Fourier Transform

(FFT) achieves this speed by numerically approximating the results of the DFT. Fig-

ures 2.4a, and 2.4b are the FFT of the cosine and the impulse functions discussed in

Section 2.1. It is evident that the numerical approximations do not match the energy

spectrums found in the previous section, but they are accurate enough to identify the

frequency information of a signal.

11
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(a) Cosine Function (b) Impulse Function

Figure 2.4: This figure shows the FFT of the cosine function (left) and the impulse
function (right), both functions were sampled at 512 Hz for 8000 samples. The cosine
function’s natural frequency was 1.0 Hz, and the impulse function was computed with
a Kronecker delta function.1

The FFT completely transforms a function from the time domain into the fre-

quency domain. This process loses all temporal information which renders the pro-

cessing of some signals more difficult. As it was pointed out earlier, the energy

spectrum densities of an impulse and random noise are the same. The impulse is lo-

calized in time, while the random noise exists at all times. Since the time information

is lost in the analysis process, it is not possible to differentiate between these signals

in the frequency domain.

2.3 Time-Frequency Analysis

Time-Frequency analysis is the method for studying a signal in both the temporal

and frequency domains. Fourier analysis is a complete transformation of a signal

into the frequency domain, which is ineffective for analyzing aperiodic signals. These

1The Kronecker Delta Function is defined in Section 6.1

12
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signals have information in the time domain that are best described in both time and

frequency (see Figure 2.5).

The mathematics of Time-Frequency analysis imposes a limit to the precision of

localizing a signal in time and frequency. The frequencies that compose a signal is

defined in terms of its oscillations versus the length of time. A signal needs time to

oscillate at a certain frequency, therefore it does not simultaneously have a precise

frequency at a certain time [17].

This phenomenon is best described by the Heisenberg Uncertainty Principle. In

quantum mechanics, one cannot accurately know a particle’s position and momentum

simultaneously. When a particle’s position is known with a high probability, its

momentum is less certain; and if the particle’s momentum is more certain, then

its location is not certain [47]. There is a trade-off between these two domains,

and Time-Frequency analysis is working with the trade-off between the time and

frequency domains. The Time-Frequency methods discussed in this thesis takes a

one-dimensional temporal signal and represents it in a two-dimensional function of

both time and frequency [42].

2.3.1 Short Time Fourier Transform

One method of exploring the trade off between the temporal and frequency resolutions

is the Short Time Fourier Transform or STFT. The STFT divides a signal into shorter

windows of equal length and then performs the DFT for each window [31]. The STFT

is defined as

STFT (τ, ω) =

∫ +∞

−∞
x(t)h(t− τ)e−iωtdt. (2.7)

13
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Figure 2.5: Time-Frequency Analysis was used to identify the gravitational waves
emitted from two merging black holes. The key identifying feature of these gravita-
tional waves is that the frequency increases at a very particular rate with respect to
time. Time-Frequency analysis is required to classify these signals accurately [1].

(a) STFT at a high temporal resolution (b) STFT at a low temporal resolution

Figure 2.6: The STFT of a signal at different temporal resolutions

14
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A window function h(t) is multiplied with the signal x(t), and then analyzed using

the Fourier transform. The window function leaves the signal unaltered around time

τ and reduces anything distant from time τ to zero [10]. One would usually use

a Rectangular or Hann Window function for the STFT of a signal. The result is

complex but typically it is plotted as the changing power spectrum as a function of

time, which is given as

P(τ, ω) = |STFT (τ, ω)|2. (2.8)

The STFT introduces the trade-off with the time and frequency domains by short-

ening the DFT windows — adding temporal information to the analysis process.

There are limitations however, one could shorten the windows to improve the tem-

poral resolution, but this means that the frequency resolution suffers. The shorter

windows would be unable to analyze the lower frequency components of the signal.

While on the other hand, if the window is kept large, then the frequency’s temporal

location is less accurate. To gain resolution in one domain, one must lose resolution

in the other. This is because the same Time-Frequency window that is used in the

lower frequencies are also used in the higher frequencies (see Figure 2.7). These non-

adaptive windows are either too large or too short to analyze the variety of frequencies

that can exist in a signal [52]. Figure 2.6 shows the STFT conducted on the same

signal with two different window sizes. Wavelet analysis improves on the STFT to

provide a better trade-off between the Time-Frequency resolution by changing the

time and frequency windows.

15
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Figure 2.7: Trade off between the temporal and frequency resolution [56]

2.3.2 Wavelets

The wavelet has its roots with a Hungarian physicist Denis Gabor. Gabor was in-

terested in decomposing a signal over elementary Time-Frequency “atoms”. In 1946

he proposed replacing the analysis function of the Fourier transform with a complex

exponential multiplied by a Gaussian window [17]. These Gabor atoms are used in

the Gabor Transform to improve the Time-Frequency resolution of the Short Time

Fourier Transform.

Thirty years later, the French geophysicist Jean Morlet developed a wavelet tool

using the Gabor atom to analyze the vibrations from the earth’s crust [23]. This

method was further refined with the help of a French physicist Alex Grossmann

[20]. It was with the collaboration of Grossmann and Morlet that the wavelet was

formalized. A wavelet ψ(t) is a wave that satisfies the following conditions

∫ +∞

−∞
ψ(t)dt = 0

∫ +∞

−∞
|ψ(t)|2dt = 1,

which implies that it is concentrated in time. Unlike complex exponentials which have

16



M.A.Sc. Thesis - V. Yuvashankar McMaster - Computing and Software

infinite energy for all time, wavelets have finite energy concentrated around a point.

This property is advantageous for analyzing transient signals. Wavelets are used

in many practical applications such as image compression, computer vision, signal

processing and harmonic analysis.

There are many different types of wavelets, the ones that pertain to wavelet anal-

ysis can be divided into real and analytic. A real wavelet exists in the real-time

domain, and must satisfy the admissibility condition

0 < Cψ =

∫ +∞

0

|ψ̂(ω)|2

ω
dω < +∞, (2.9)

where: ψ̂(ω) is the Fourier transform of the wavelet function, and Cψ is the admis-

sibility constant. The admissibility condition ensures that the wavelet is complete

and observes energy conservation. It also implies that ψ̂(ω) is differentiable, and

ψ̂(0) = 0. Real wavelets are used to detect transient frequencies in a signal and ana-

lyzing fractals. The Mexican Hat wavelet is a class of real wavelets which is defined

as

ψ(t) =
2√
3
π−1/4(t2 − 1)e

−t2
2 .

A wavelet is analytic if it exists in both the real and the complex domains where

ψ̂(ω) = 0 if ω < 0.

They are used to analyze the time evolution of frequency tones by separating the

amplitude and phase information of a signal. The Gabor wavelet is a class of analytic

wavelet functions which is further explored in the following section.
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The wavelet functions can be compressed and expanded to generate daughter

wavelets with a scale parameter s, which can be any positive and real number. When

the scale parameter increases so does the expansion of the wavelet. The addition of

the scaling factor must be normalized by

ψs(t) =
1√
s
ψ

(
t

s

)
s > 0 (2.10)

to ensure that no additional energy is introduced to the function [29].

Morlet Wavelet

The Gabor wavelet is a class of functions that is defined by the multiplication of

a complex exponential and a Gaussian window. In the literature, the complex rep-

resentation of the wavelet function is known as the Gabor wavelet, while the real

representation is known as the Morlet wavelet [26]. The Morlet wavelet is defined as

ψφ(t) = π−
1
4Cφe

− t
2

2 (eiφt − κφ), (2.11)

where the admissibility constant Cφ and the correction factor κφ are given by [4]

Cφ = (1 + e−φ
2 − 2e−

3φ2

4 )−
1
2 , (2.12)

κφ = e−
φ2

2 . (2.13)

The φ parameter is the central frequency of the Morlet wavelet measured in radians

per second. The larger the parameter the higher the frequency (see Figure 2.9). The
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Figure 2.8: The Morlet wavelet in the time domain

Morlet wavelet satisfies the conditions of a wavelet because it has finite energy, a

mean of zero, and a square norm of one (see Figure 2.8). The Fourier transform of

the Morlet wavelet is

ψ̂φ(ω) = Cφπ
− 1

4 (e−
1
2
(φ−ω)2 − κφe−

1
2
ω2

), (2.14)

where the factors Cφ and κφ are the same as equations 2.12 and 2.13 respectively.

The Morlet wavelet in the frequency domain is visualized in Figure 2.10.

When scaled the Morlet wavelet in the time domain can be normalized by the

relation outlined in equation 2.10. In the frequency domain, the normalization is the

inverse of the temporal domain [29], or

ψ̂φ,s(ω) =
√
sψφ(ω). (2.15)
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(a) φ = 6.0 (b) φ = 12.0

Figure 2.9: The Morlet wavelet at different central frequencies

Figure 2.10: The Morlet Wavelet in Frequency Space
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(a) s = 2.0
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Figure 2.11: The Morlet Wavelet at different scales

Figure 2.11 shows the effect of scaling the wavelet.

In order for the Morlet wavelet to be computed automatically, equation 2.11 must

be discretely sampled as

ψφ,s[n] =
1√
s
π−

1
4Cφe

(nδt)2

2s (e
iφnδt
s − κφ) n = 0, 1, 2, . . . N − 1 (2.16)

where δt is the time between each sample and is defined as the inverse of the sampling

frequency δt = F−1s . The wavelet in the frequency domain is sampled in the discrete

time domain by the following relation

ψ̂φ,s[n] =
√
sCφπ

− 1
4

(
e−

1
2
(φ−(snδω))2 − κφe−

1
2
(snδω)2

)
n = 0, 1, 2, . . . N (2.17)

where δ = 2πFs/N measured in radians per second. The advantage of using Morlet

wavelets is that the scales can be correlated with their corresponding continuous

frequencies by the following relationship

f =
φ

2πs
. (2.18)
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2.3.3 Continuous Wavelet Transform

The Fourier transform uses the complex exponential as its analysis function to decom-

pose a signal. The complex exponential contains energy at all times so it is ineffective

at localizing a signal in the temporal domain. The Continuous Wavelet Transform,

or CWT, instead uses wavelets as its analyzing function. Since wavelets are localized

in time and finite in energy, they are ideal for decomposing a signal in both time and

frequency. The CWT decomposes a signal over elementary Time-Frequency atoms

or wavelets, which can be used to construct a Time-Frequency representation of a

signal [36]. It accomplishes this by performing multiple convolutions of the signal

and wavelet function at different scales. The convolution of two functions x(t) and

ψ(t) is defined as

(ψ ∗ x)(t) ≡
∫ +∞

−∞
x(t)ψ(t− τ)dτ,

and the discrete convolution of x[n] and ψ[n] is

(ψ ∗ x)[n] =
N−1∑
k=0

x[k]ψ[n− k].

The CWT is the convolution of a signal x(t) and the complex conjugate of different

scaled daughter wavelets ψ(t/s) [26, 36]

Wφ(τ, s) =
1√
s

∫ +∞

−∞
x(t)ψ

(
t− τ
s

)
dt.

where: τ is the time delay measured in seconds and s is a real and positive scaling

factor. The CWT can be approximated in the discrete time domain as multiple
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convolutions of x[n] and different variations of ψ[n] given as

W [k, s] =
1√
s

N−1∑
k=0

x[k]ψ

[
n− k
s

]
. (2.19)

The original signal x(t) can be reconstructed by performing the inverse CWT

which is given as

x(t) =
1

Cψ

∫ +∞

−∞

∫ +∞

−∞
Wφ(τ, s)ψ

(
t− τ
s

)
dsdτ

s2

where Cψ is the admissibility condition outlined by equation 2.9 [9]. Like the STFT,

the CWT is normally visualized by its energy spectrum density which is given as

P(τ, ω) = |W(τ, ω)|2.

In order for a wavelet to be used in the CWT, the wavelet must satisfy the con-

dition

ψ̂(0) =

∫ +∞

−∞
ψ(t) = 0

which implies that it has a zero-mean. Another constraint is that the modulus of the

wavelet function |ψ̂(ω)| decreases to zero for ω → ±∞.

Unlike the Short Time Fourier Transform, the scaling of the daughter wavelets

changes the wavelet’s Time-Frequency resolution, making the Time-Frequency win-

dows more dynamic. Since all of the wavelets have the same energy, large amplitude

and short duration wavelets can be used to localize short high frequency information,

while low amplitude and long duration wavelets can be used to localize the lower
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Figure 2.12: The changing Time-Frequency Windows of the CWT [7]

frequencies. Figure 2.12 shows the method of varying the window sizes to analyze

both low and high frequency information. Flat windows at the bottom of the image

show the window size for analyzing low frequency information, and long and narrow

windows show the window size for analyzing high frequency information.
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Chapter 3

Computation

In order for a signal processing method to be robust, it must be able to analyze

a variety of signals automatically. While the previous chapter described the math-

ematical concepts of Time-Frequency analysis, these methods must be numerically

approximated in order to be useful. This section outlines the algorithms to gener-

ate the Time-Frequency decompositions automatically. Section 3.1 describes how the

STFT can be algorithmically computed. Section 3.2 describes how one can compute

the CWT, which includes choosing the right wavelet and scaling functions. Finally,

Section 3.3 describes the use of padding to improve runtime speed and transform

accuracy.

3.1 Short Time Fourier Transform

The computation of the Short Time Fourier Transform was performed with the Rect-

angular Windowing Function. The Rectangular Window Function maintains the

signal within a window, and replaces everything outside of it with zeros. If a discrete
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signal x[n] is of size N , and the rectangular window is of size A, then the ith window

would be

hi[n] =

 x[n] i < n < iA

0 else
(3.1)

It is assumed that N > A and i is any positive integer such that i ≤ N/A. The window

function was implemented by dividing the signal into smaller equally sized segments,

and then computing the DFT for each window. The algorithm for performing the

STFT with a rectangular windowing function is

1. Divide the signal x[n] into smaller windows

2. For each window:

(a) Compute the DFT of the window

(b) Compute the magnitude of the DFT

(c) Store the result

The data flow for the STFT is shown in Figure 3.1. In the data flow diagram it can

be seen that the signal of size N is divided into J windows of size a samples, where

J = dN/ae. The window size is left as an adjustable variable so the optimal window

for the signal can be determined by the user. These smaller windows are then copied

into a complex data array of size J and converted to the frequency domain using

the DFT. The energy spectrum density is acquired by taking the magnitude of the

array values. This is stored in a larger contiguous block of memory of size nJ which

contains the energy spectrum densities for all previous and subsequent windows.
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Figure 3.1: Data flow for the STFT
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3.2 Continuous Wavelet Transform

Since the CWT can be used in a variety of applications, several decisions must be

made to optimize it for Time-Frequency analysis. In this section we will discuss the

choice of analyzing wavelet, and scaling function.

3.2.1 Choice of Wavelet

Choosing the right wavelet can improve computation speed as well as the effective-

ness of the CWT. The vanishing moments, support size, regularity and selectivity in

frequency are all considered when choosing a class of wavelet functions. A wavelet

has p vanishing moments when

∫ +∞

−∞
tkψ(t)dt = 0 for 0 ≤ k < p. (3.2)

The wavelet’s vanishing moment means that the wavelet ψ(t) is orthogonal to any

polynomial of degree p−1. High vanishing moments are ineffective for low frequencies

and low vanishing moments are ineffective for high frequencies. Wavelets with high

vanishing moments have larger supports which means they require greater computa-

tional cost. One would use higher vanishing moments for numerical analysis, and low

vanishing moments for data compression. The regularity of the wavelet, which is the

number of continuous derivatives a wavelet has, must also be considered. A wavelet’s

regularity has more effect on compression and encoding, so it is not a significant factor

for choosing a wavelet for signal analysis [36].

The wavelet function for the Time-Frequency decomposition must have high van-

ishing moments, and must also be highly selective in the frequency domain. The
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Morlet wavelet was chosen because it satisfied both of these constraints. In fact, the

Morlet wavelet is known to be Time-Frequency optimal [58]. To ensure that the Mor-

let wavelet maintains its selectivity in the frequency domain, the central frequency

parameter φ was set to be 6.0. The central frequency parameter increases the tem-

poral resolution at the cost of frequency. Normally, this parameter is set between 5.0

and 6.0 to avoid floating point errors [29].

Time-Frequency Accuracy

A number of sources such as [14, 38, 57] represent the Morlet wavelet as

ψ̂(ω) = π−1/4H(ω)e−(sω−φ)
2/2. (3.3)

Where H(ω) is a Heaviside step function given as

H(ω) =

 1 ω > 0

0 ω < 0

This definition discards the κφ term which is used to satisfy the admissibility

condition. This is sometimes done in practical applications as the value is seen to be

negligible in floating point operations [4]. However, this introduces numerical error

which has to be corrected with a “Fourier Wavelength Factor”. While the Morlet

wavelet defined in Section 2.3.2 requires more computation, it was used over equation

3.3 for its improved Time-Frequency accuracy.
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3.2.2 Choice of Scaling Function

The fourth A key from the left of the piano or A4 has a dominant frequency of 440 Hz.

A3 — which is one octave below — has a frequency of 220 Hz, and A5 has a frequency

of 880 Hz. Sound does not scale linearly but rather it is exponential. C5 is not twice

the frequency as C3 but four times its frequency. A piano has 12 keys in every octave,

and its frequencies can be mathematically represented as

f(n) = 440
(

2
1
12

(n−49)
)
,

where: f(n) is measured in Hertz, and A4 is the 49th key from the left [8]. Since A4’s

dominant frequency is an integer, it is used as a basis for scaling the other frequencies.

Signals — such as sound and music — scale exponentially, so the wavelets that

analyze them should scale in the same manner. The dyadic scaling function, defined

by equation 3.4, was used because it scales by powers of two just like the frequencies

on a piano. The scaling function is also an orthonormal basis which removes all

redundancy when decomposing a signal in the Time-Frequency domain.

The dyadic scale as outlined by Mallet and Zhong was used to compute the Morlet

wavelet at different scales [37]. The scales are powers of two of the smallest scale s0.

The smallest scale s0 must be set such that the CWT can cover the entire Time-

Frequency domain. This condition can be satisfied by setting s0 to be sufficiently

small [36], for convenience s0 = δt. The largest scale needed to compute the lowest

frequency is represented as J , which is computed as J = log2N , where J is any

positive integer. The dyadic scaling function is defined as

sj = s02
j j = 0, 1, . . . J. (3.4)

30



M.A.Sc. Thesis - V. Yuvashankar McMaster - Computing and Software

To improve the frequency resolution of the wavelet transform, sub scales are added in

between. These sub scales, known as “sub-octaves” are denoted by a δj. The dyadic

scale then becomes

sj = s02
jδj j = 0, 1, . . . J. (3.5)

Dyadic Scaling Function Error

The dyadic scaling function means that the error interval is also dyadic. If the scale

is determined using equation 4.1, then the frequency is accurate to within

ferror(s) =
φ

2πs02s+δj
− φ

2πs02s−δj
(3.6)

where φ is the central frequency of the Morlet wavelet. The dyadic scales have smaller

windows in the lower frequencies, and larger windows in the higher frequencies, so

the error in the higher frequencies are larger. The resolution in the higher frequencies

can be increased by changing the sub-octave parameter δj.

3.2.3 Algorithm

The convolutions of the CWT are computationally expensive, and can be computed

in the frequency domain instead. This is done by using the convolution theorem,

which states that a multiplication in one domain is the convolution in the other and

vice versa [15]. The convolution of the wavelet and data functions are performed by

first multiplying them in the frequency domain, and then transforming it back into

the time domain by taking the IDFT. The algorithm to perform the CWT is

1. Compute the DFT of the signal
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2. For every scale:

(a) Compute the Fourier transform of the Morlet wavelet

(b) Multiply the wavelet and signal in the frequency domain

(c) Compute the IDFT of the multiplication

(d) Compute the magnitude and normalize with respect to the scale

Figure 3.2 shows the data flow of the CWT algorithm. The signal is first copied

into a block of contiguous memory of size n. It is then copied into a two dimensional

FFT array with real and complex values. Usually, the padding would be added around

the signal; but since the DFT is cyclic, all of the padding can be added to the end.

The DFT is then computed on the FFT array. The Fourier transform of the Morlet

wavelet at the specified scale is computed and stored in a complex two-dimensional

array. The Fourier transform of the Morlet wavelet and the signal are then multiplied

in the frequency domain and stored in a resulting data array. The IDFT of this

multiplication is then computed to perform the convolution. The magnitude of the

convolution is taken discarding the padding to obtain the energy spectrum density.

This is then stored in a larger contiguous memory block that contains all of the energy

spectrum densities for every scale.

3.3 Padding

Edge effects can sometimes be introduced when performing the FFT of a signal.

Since the FFT operates on a finite number of samples, when the DFT and IDFT

are performed, the signal is transformed from the frequency domain into the time
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Figure 3.2: Data flow for the Wavelet Analysis
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domain as a periodic signal. This introduces errors in the first and last samples of the

signal known as edge effects [48]. This issue can be mitigated by padding the signal

to improve the accuracy of the FFT. This section discusses the different methods of

padding the signal before transforming it into the frequency domain.

3.3.1 Zero Padding

The most common method of padding is to introduce zeros to the signal. Before

computing the Fourier transform, the number of samples are increased to the closest

power of two. The signal is then shifted to the center of the array and zeros are

added on either side. This method allows the use of the Cooley-Tukey FFT algorithm

[22, 50]. To zero pad a signal the size of the signal array is increased by a factor of

Npad = 2dlog2(N+1)e. (3.7)

3.3.2 Ramp Padding

This method doubles the size of the signal array from N to 2N . It ramps down the

first half of the original signal at the end of the array and ramps up the second half

of the signal before the beginning. If the original signal x[n] spans from 0 to A then

the ramp padded signal r[n] is

r[n] =


α(n)x[N/2 + n] 0 < n < N/2

x[n−N/2] N/2 < n < 3N/2

(1− α(n))x[n− 3N/2] 3N/2 < n < 2N

(3.8)

The ramping factor α is a linear ramp from zero to one or
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(a) An Impulse Response with no padding (b) The Cosine Response with no padding

Figure 3.3: Figures of the accuracy of without padding

α(n) =

(
N

2

)−1
n 0 < n < N/2

3.3.3 When to Use Padding

It is common practice to pad the signal array when computing its DFT, as this can

increase the speed and accuracy of the computation. The CWT can be computed with

or without padding, but this choice can change the accuracy of the decomposition.

One would notice edge effects if a periodic signal is padded with zeros. The CWT

of a periodic and an aperiodic signal was computed, the functions were sampled at

2048 Hz for 3.0 s. The periodic signal is represented by a constant cosine, and the

aperiodic signal is represented by an impulse at 2.0 s. Figure 3.3 shows the effect

of not padding a signal. Bands can be seen on the lower frequencies of the impulse

response, while the periodic cosine function does contain artifacts. The artifacts are

caused from not padding the aperiodic signal. The inverse relation can be seen when

computing the CWT with zero-padding.
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(a) An Impulse Response with padding (b) The Cosine Response with padding

Figure 3.4: Figures of the accuracy of with padding

Figure 3.4 shows the same functions computed with zero-padding. Zero padding

does not introduce artifacts for aperiodic signals (Figure 3.4a), but introduces artifacts

near the edges of the lower frequencies for periodic signals (Figure 3.4b). Padding a

periodic signal, or not padding an aperiodic signal will introduce additional noise and

inaccuracies in the analysis process, therefore the type of signal must be considered

before analyzing it with padding.
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Chapter 4

Implementation

To make the framework useful, the computation of the Time-Frequency methods were

implemented in the C++ programming language. This section outlines the tools and

methods that were used to perform the Time-Frequency computation. In addition,

speed up and accuracy methods are also discussed.

4.1 Choice of Programming Language

The algorithms outlined in Chapter 3 can easily be implemented in a numerical

computing environment such as MATLAB or Octave. While this process may be

easy, it sacrifices speed and efficiency. The Time-Frequency methods can be made

faster through low level memory manipulation. This is the reason that the algorithms

were implemented in the C and C++ programming languages.

The C++ language is often used in industrial applications which would allow the

Time-Frequency framework to be easily integrated. Finally, the C++ language has

many libraries and tools the can be used, such as FFTW and PNGWriter.
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4.2 Fast Fourier Transform

The open source library FFTW or Fastest Fourier Transform in the West was used

to compute the forward and inverse FFTs in the algorithms because of its speed and

accuracy [16]. The choice of using FFTW allows several computational optimizations

to be used such as reducing the need to compute FFT coefficients repeatedly.

The FFTW library requires two levels of computation to work. The first step is to

plan the method of performing the FFT. The second step is executing the plan, which

can be performed multiple times. The planning process consists of choosing the most

efficient algorithm for the particular computing architecture, and pre-computing the

coefficients that are required by the FFT. Separating the FFT into these steps, allows

these coefficients to be computed once and reused. The same coefficients can be used

for different data arrays, as long as the size of the data array does not change.

The computation of the Time-Frequency analysis can use this method to improve

the speed. Once the complex data arrays are allocated, the FFTW plans for the

forward and inverse DFTs are computed. The forward plan is used once to take the

FFT of the signal, and the inverse plan is used repeatedly to convert the convolutions

back into the time domain. This step does not require us to compute the FFTW

coefficients every time which saves significant computational resources.

Another interesting tool available when using FFTW is the ability to store wis-

dom, this is where FFTW tests multiple FFT algorithms and determines the fastest

algorithm for that specific case. The stored wisdom can be used to compute subse-

quent Fourier transforms more efficiently. CWTs require many Fourier transforms,

so the wisdom feature was used to improve the speed. Before the CWT is computed,

the Generate_FFTW_Wisdom() function can be called to compute the optimal FFT
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algorithm. This wisdom is then used to compute the subsequent FFTs.

One final note about computing the FFTs is the choice of using FFTW’s complex

one-dimensional method, or fftw_plan_dft_1d(). The library offers the faster op-

tion of performing a one-dimensional DFT of real data. While one can improve the

speed and memory usage by a factor of two using this method, it was not suitable

for computing the DFTs for Time-Frequency analysis. Since the Time-Frequency

decomposition has energy distributed over both the real and complex domain, it is

vitally important to compute the DFTs with the complex one-dimensional method

instead.

4.3 Scale Limits

The frequency of the CWT can be band limited such that only the relevant infor-

mation is analyzed to decrease the amount of computation. This method would be

useful when used with EEGs where one would limit the analysis of the signal to the

maximum and minimum neuron firing rates of 70 Hz, and 1 Hz respectively. Once

there is an upper and lower band limit, the scales and sub-scales are computed us-

ing equation 3.5. The corresponding scale given a frequency is determined by the

following relationship

s =


log2

(
φ

2πs0f

)
δj

 . (4.1)
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4.4 Convolution

To reduce the computation and memory cost of storing conjugate complex values,

FFT algorithms store the Fourier coefficients as

zk = zN−k.

The positive frequencies are stored in the first half of the output in order, and the

negative frequencies are stored in the second half of the array in reverse order [49].

The frequency array of an FFT algorithm would be ordered as

x[0], x[1], x[2], ...x[N/2], x[(N + 1)/2− 1], ...x[2], x[1].

The convolutions of the Time-Frequency decompositions are computed with com-

plex arrays. So they must be multiplied in the frequency domain with the negative

frequencies in mind. The method to multiply two data arrays in the frequency domain

is

1. Multiply x̂[0] and Ψ̂[0].

2. for i = 1..N/2− 1

(a) Multiply x̂[i] and Ψ̂[i]

(b) Multiply x̂[i] and Ψ̂[N − i]

The choice to use analytic wavelets allows this process to be further optimized.

All negative frequencies of an analytic wavelet are zero. Computing the wavelet in the

negative frequencies, and multiplying them with the data is unnecessary. These values
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can be set to zero to decrease computation time without any impact on accuracy.

4.5 Plotting

The Time-Frequency decompositions generate data in the time and frequency di-

mensions. In order to map these values onto an image, careful usage of logarithmic

mapping and colour schemes must be used. The results must be plotted linearly in

the time domain, with a log2 scale in the frequency domain, and a log10 scale in the

normalized amplitude domain. The amplitudes of the energy spectrum densities must

first be converted into colours to represent their relative normalized amplitudes with

respect to each other.

The plotting of the Time-Frequency decompositions is accomplished with the in-

teractive plotting interface gnuplot [25], it can also be saved as a PNG using the

PNGWriter library. PNGWriter allows the plotting and reading of standard color

spaces such as RGB and HSV. The library has additional tools to plot basic shapes

and curves like squares, diamonds and Bezier curves. To plot the energy spectrum

density of the Time-Frequency analysis, the values from the array are plotted pixel

by pixel. The size of the image is first computed as a function of the size of the

energy spectrum density array. The image width was calculated using an Ox and s

parameter

w = 2Ox + (N/s).

where: N is the number of samples in the time domain, Ox is the number of white

pixels that will be on either side of the image, and s is the stride parameter.
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The stride parameter is used to ensure that the image does not stretch horizontally.

If a signal is long in duration or has a high sampling rate then the energy spectrum

density of that image would appear squashed as the length of the temporal domain

is much longer than the frequency domain. The stride parameter determines the

number of samples to skip in the time domain to make the image more proportional.

The image height was calculated using an Oy and l parameter

h = 2Oy + (lJ)

where: J is the number of scales the Time-Frequency analysis was conducted on, Oy

is the number of white pixels that are placed above and below the energy spectrum

density graph, and l is the line size parameter which is used to increase the visibility

of the frequency resolution.

There is more temporal data than frequency data in the Time-Frequency decom-

position. If plotted as-is, the image would be too long in the time domain, and very

short in the frequency domain. This would make it difficult for a user to distinguish

the frequency components of a signal. The l parameter repeats the information of

each frequency scale l times to increase the vertical length without having to increase

the number of sub-octaves the wavelet transform must compute. Increasing the l

parameter adds vertical height to the image which allows greater visual fidelity in

the frequency domain. The energy spectrum density is plotted after the image size is

established.

The energy spectrum density is computed by first taking the logarithm of all of

the values. This is done using the log10() function from the <math.h> standard

library [46]. The logarithmic values are represented as a colour from blue to red,
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where blue is the lowest value and red is the highest value in the energy spectrum

density graph. PNGWriter plots a pixel given the amount of red, blue and green that

pixel needs, which are values between zero and one. The colour of a pixel, represented

as C(r, g, b), is determined by the following relationship

C(r) =

 4(v −min)/range v > 3
4
range

0 else

C(g) =


4(v −min)/range v < 1

4
range

1 + 4(min+ 0.75range− v)/range v > 3
4
range

0 else

C(b) =

 1 + 4(min+ 0.75range− v)/range 1
4
range < v < 1

2
range

0 else

where: v is the value to be converted, and range is the difference between the maxi-

mum and minimum values in the array. Figure 4.1 shows the colour bar ramping from

0.0 to 1.0. The image is generated by converting the values from the energy spectrum

density array to their corresponding color and then placing these colors onto the PNG

file pixel by pixel. Since PNGWriter references pixels from the top left corner of the

image, the energy spectrum density graph was plotted backwards, where the lowest

frequencies are plotted first and then the higher frequencies.

Markers and labels are then placed at regular intervals to mark the frequency

and time points on the axis. The interval marks on the axes were generated using

PNGWriter’s filledsquare() function. To ensure that the interval marks were
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accurate, the squares were drawn with the referential origin at the midpoint (Figure

4.2).
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Figure 4.1: The Colour Ramp from 0.0 to 1.0
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(a) Frequency

(b) Time

Figure 4.2: Interval Marker Geometry
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Chapter 5

Validation

The implementation of the Time-Frequency framework was validated by conducting

a series of tests with expected results. FFTW Version 3.3.6 was used with the FFTW

plan flag set to FFTW_ESTIMATE, which provided a reasonable execution time to val-

idate the framework. The specifications of the test computer is outlined in Table

5.1

CPU 2.7 GHz Intel Core i7
Memory 16.0 GB 1600 MHz DDR3
GPU Intel HD Graphics 3000 512 Mb
Storage Western Digital 500 GB Solid State SATA Drive
Operating System OSX 10.11.6
Compiler GCC 5.4.0
Optimization -O2

Table 5.1: Test Computer Properties
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5.1 Sampling Rates and Signal Length

The results of the decompositions do not vary with the sampling rate or signal length.

In order to test this, a cosine and Kronecker impulse function were sampled at rates

between 100 to 20 000 Hz. Separate tests simulated a signal varying between 1.0 s to

15.0 s. As expected, the wavelet transforms did not shift in the frequency or time

domains.

5.2 Sinusoidal

The CWT of a sinusoidal at a known frequency and amplitude was computed to test

if the same amplitude and frequency were observed in the analysis process. The CWT

of the signal

x(t) = Acos(ω0t), (5.1)

was computed. The CWT of equation 5.1 resembles the FFT as the maximums are

observed at ω0 with a magnitude of A. The CWT, however, provides both temporal

and frequency resolution, so the maximum at ω0 is observed for the entirety of the

signal. This test was conducted to confirm that the CWT does not shift in the

frequency and magnitude domain. The system was also introduced with cosines of

varying sample lengths and the results were unchanged.

5.3 Impulse Response

The CWT of an impulse function
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Figure 5.1: The CWT of a cosine function.

49



M.A.Sc. Thesis - V. Yuvashankar McMaster - Computing and Software

Figure 5.2: The CWT of an impulse function.

x[n] = δ[n− τ ],

was computed to ensure that it was accurate in the time domain. The CWT had a

global maximum at t = τ , which means the computation does not shift the signal

temporally.
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5.3.1 Phased Cosine Response

The CWT of a sinusoidal with a phase offset was computed, the magnitude and

frequency domains should not be affected by this offset. The Time-Frequency decom-

position of the signal

x(t) = Acos
(
ω0t+

π

4

)
(5.2)

was computed. The global maximum of the CWT of x(t) was equal to A, and was

observed at the frequency ω0.

5.4 Multiple Frequencies

A piecewise sinusoidal was analyzed to test both the STFT and the CWT’s ability to

analyze the Time-Frequency information of a signal. The Time-Frequency analysis of

x(t) =

 cos(ω0t) 1.5s ≤ t ≤ 2.0s

cos(ω1t) t < 1.5s t > 2.0s
(5.3)

where: ω0 and ω1 was set to two different frequencies. Both Time-Frequency analysis

methods were able to isolate and identify the correct frequencies for the appropriate

time durations.
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5.5 Numerical Experiments

The computed results were compared to analytic CWT functions to identify the

amount of error. The absolute error is defined as [3, 21]

eabs = |f(x)computed − f(x)|. (5.4)

This definition was used to compare the analytic and computed results of the Time-

Frequency analysis methods. The CWT of an impulse and a cosine were computed

analytically, and then compared with their CWT approximations to determine the

amount of absolute error.

5.5.1 Impulse

The CWT of an impulse at 2.0 sec was analytically computed as [29]

W(τ, s) = Cφπ
− 1

4
1√
s

[
e−

1
2( 2−τ

s )
2 (
eiφ(

2−τ
s ) − κφ

)]
. (5.5)

When using zero padding the maximum absolute error is shown in Table 5.2

5.5.2 Cosine

The CWT of a cosine, such as equation 5.1, was computed analytically. The transform

is determined to be [29]

W(τ, s) = Cφ

√
s

2
π−

1
4

[
e
−1
2
(φ−sω0)2 + κφe

−1
2
(sω0)2

]
eisω0τ . (5.6)
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Function Zero Padding No Padding

Impulse 6.60× 10−14 4.07× 10−5

Cosine 4.59× 10−2 7.46× 10−10

Table 5.2: Absolute errors obtained from the numerical experiments

Transform Impulse (s) Cosine (s)

STFT 1.5× 10−4 1.5× 10−4

CWT 8.16× 10−2 8.27× 10−2

Table 5.3: Computation times for the Time-Frequency methods

The absolute error between the analytic and computed cosine response is shown in

Table 5.2.

5.6 Execution Time

The framework was timed by running an impulse and cosine function 10 000 times

and dividing the total compute time by 10 000. The signals were sampled at 2048 Hz

for 3.0 s. The STFT was set to a window size of 500 samples over the entire frequency

band. The Continuous Wavelet Transform was computed with a Morlet wavelet with

a minimum frequency of 0.5 Hz, and a maximum frequency of 1024 Hz. The wavelet

was scaled dyadically, with a sub-octave resolution of 0.03125. Table 5.3 shows the

execution times for both the STFT and the CWT.
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Chapter 6

Application

This chapter describes the two scenarios where Time-Frequency analysis was used.

We first explore the current tools available in neuroscience for computing the Event

Related Spectral Perturbation (ERSP). We then apply the CWT to improve the

reliability of the ERSP computation. In section 6.2 Time-Frequency analysis is used

to identify the mechanical parameters of an oscillating machine. Data was analyzed

from research done within our lab group to identify a machine’s eigen frequencies and

their settling times.

6.1 EEG Analysis

In this section we provide begin with a background review of EEG analysis before

describing the role of Time-Frequency analysis in EEG analysis. We first describe

the use of EEGs, and then describe two methods of analyzing EEG signals, namely

Event Related Potentials (ERPs), and Event Related Spectral Pertubation (ERSP).

Then in section 6.1.4 we describe the method of using Time-Frequency analysis to
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improve the analysis process of EEG signals when performing ERSP computations.

The remainder of the section describes how this method is implemented within the

framework.

6.1.1 Electroencephalography (EEG)

Electroencephalography (EEG) is the record of the electric discharges from neurons

detected by electrodes on the surface of the scalp [43]. The method of recording

electro-physiological responses comprises of electrodes, amplifiers and methods of

storing the signal. EEGs can be recorded by invasive, or non invasive electrodes

placed on the scalp (Figure 6.1) [30, 39]. EEG electrodes are a combination of a

metal and their metallic salts as this provides reversible electron flow between the

electrode and the skin [13]. The most common electrodes used for clinical purposes

are made of silver/silver-chloride material [28].

The voltage fluctuations from EEGs are between 1 µV to 100 µV [30]. In most

applications the signal is band limited to record between 0.5 to 70.0 Hz [60]. The

signal from an EEG electrode is amplified and filtered to enhance these properties.

The recordings are converted into a digital signal, and stored as a function of time in

specialized data formats.

EEGs have been an important tool in understanding the function of the cerebral

cortex. The frequencies at which neurons fire can help identify and diagnose what

the brain is doing when exposed to a stimulus. Table 6.1 shows the different frequen-

cies found in the brain and the general types of mental states associated with each

frequency [30].
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Figure 6.1: A patient wired with EEG electrodes [40]

Wave Type Frequency (Hz) Description
δ 0.5 - 4.0 Deep REM sleep
θ 4.0 - 7.0 Linked to memory formation
α 8.0 - 15 Daydreaming and relaxing
β 15 - 30 Normal waking consciousness
γ 25 - 100 Attentively focusing

Table 6.1: Brain Activity and their corresponding frequencies found in EEGs
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H(z)
v[n]

V (z)

x[n]

X(z) = H(z)V (z)

Figure 6.2: Linear Stochastic Model of EEG signals

Attempts have been made to mathematically model the electrical neuron dis-

charges from the cerebral cortex. EEG signals have been mathematically modeled

both deterministically and stochastically, but there is not much academic consensus

on the correct modeling technique [51]. The most popular model that is used is the

linear stochastic model, which models a signal as a linear system driven by Gaussian

noise (Figure 6.2) [24].

A Gaussian noise function V (z) which has a variance of σ2
v is linearly filtered by

H(z), which produces an output EEG signal x[n]. It is advantageous to understand

the method of modeling EEGs as it provides a basis of developing useful algorithms

for extracting the signal from the noise. There are further specifications for the linear

stochastic model known as

• The Autoregressive Model

• The Autoregressive Moving Average Model

• The Autoregressive Model with an Impulse Input

• The Time-varying Autoregressive Model

In depth explorations of these methods are beyond the scope of this text, but the

interested reader may wish to consult the textbook in [51].

58



M.A.Sc. Thesis - V. Yuvashankar McMaster - Computing and Software

6.1.2 Event Related Potential (ERP)

An Event Related Potential (ERP) is the measurement of the electro-physiological

response by an organic body to an external stimulus. One can use ERPs to analyze

a variety of biological signals such as Electromyography (EMG), Electrocardiography

(ECG), and Electroencephalography (EEG). ERPs are conducted over many trials

and then averaged to help reduce the random background noise. The source of the

random noise can be from other bio-electric signals such as muscular, ocular and

cardiac interference. It can also be sourced from electromagnetic interference such

as the 60 Hz line noise found in North American electrical circuits. One method of

removing the noise is through a process called ensemble averaging.

Ensemble averaging is based on the idea that the ith trial of an ERP, given as

xi(n), is the sum of the signal s(n) and an uncorrelated signal of random noise vi(n).

This is represented as

xi(n) = s(n) + vi(n).

The random noise v(n) is assumed to be a zero-mean process

E[v(n)] = 0,

where E[·] is the mean function. The noise of the signal is represented by its corre-

lation function rv(k) given as

rv(k) = E[v(n)v(n− k)].
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When the noise of the signal is random, its variance is fixed and identical throughout

all of the trials

rv(0) = E[v2i (n)] = σ2
v , i = 1, . . . , N.

This property implies that the correlation function rv(k) decays to zero rapidly, so

the noise can be seen as uncorrelated from trial to trial. This means that the signal

can be added and averaged without having the noise accumulate. The correlation of

two different trials then becomes

E[vi(n)vj(n− k)] = rv(k)δ(i− j),

where δ(i) is the Kronecker delta defined as

δ[i] =

 1, i = 0

0, i 6= 0
. (6.1)

The Event Related Potential ERP (t) generated from ensemble averaging is defined

as the sum over N trials of a stimulus response Fk(t) shown as

ERP (t) =
1

N

N∑
k=1

Fk(t).

By using ensemble averaging the noise is removed, and the signal remains where

E[ERP (N)] = s(n).

The variance of the ERPs is known to be inversely proportional to the number of

trials N , which is given by
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V [ERP (n)] =
σ2
v

N
.

Ensemble averaging builds off of the linear stochastic model as it aims to subtract

the random background noise from the signal. This is done by conducting the same

experiment repeatedly and then averaging the responses.

When using ensemble averaging, one must assume that the linear stochastic model

holds, which may not always be the case. For example, one of the assumptions is that

the signals that are analyzed have a zero-mean. Unwanted noise may be introduce

into the analysis process if the system is analyzed with non-zero means. They also

assume that the signal is fixed and identical from trial to trial. This would be untrue

if the subject’s state is altered due to expectation, habituation, or environmental

activity. ERPs can also fail when the signal s(n) is correlated with the noise vi(n).

This may occur when the subject is aware of the experiment and is anticipating a

stimulus. Finally, the basis of ensemble averaging is that the noise has a predictable

statistical distribution. This assumption would not hold if the trials have the subject

blinking, which is known to introduce a lot of unwanted noise. Ensemble averaging

can help extract information from a signal, yet there are limitations on how effective

it can be in studying the cerebral cortex.

6.1.3 Event Related Spectral Perturbation

One can analyze the amplitude and phase of the Event Related Potentials, but these

methods have limits in their ability to fully decompose the signal’s information. EEG

signals have non-stationary and transient properties, which necessitates temporal and

frequency analysis. The transient nature of EEG signals are not suited for Fourier
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analysis as the sines and cosines are not localized in time. Event Related Spectral Per-

turbation (ERSP) is the Time-Frequency analysis method of the ERP [34, 35]. ERSP

analyzes the amplitude changes in the EEG signal’s frequency spectrum as a func-

tion of time. The signal can be transformed in the Time-Frequency domain through

several methods such as the STFT, Multi-Taper, Hilbert, and Wavelet Transforms.

Wavelets Analysis

The tracking of latency changes is an important aspect for ERP analysis, so the tem-

poral information cannot be discarded. The Time-Frequency localization of wavelets

— especially the Morlet wavelet — allows the transient and non-stationary EEG sig-

nals to be decomposed more effectively. For this reason the ERSP of an EEG signal

was computed using the Continuous Wavelet Transform [2].

6.1.4 Single Trial Baseline Removal

A method for tracking the transient changes in the amplitudes and latencies of EEG

signals is desired for neurosurgery and research. For example, the transient changes

in the brain can identify the early stages of injury to the central nervous system when

a patient is undergoing surgery. These methods require the background noise to be

removed without the need of multiple trials.

The goal of most EEG analysis methods is to quantify and extract the response

of a subject to a stimulus. To do this the response must be isolated from the brain’s

background neurological activity called the baseline. The baseline is the normal

activity in the brain sustained throughout the experiment, and the signal is the change

due to the stimulus.
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The classical method of removing the baseline is by computing the Z-Score or

standard score of the EEG signal [54, 55]. The standard score is defined as the number

of standard deviations a given value is from the mean. The Z-Score is defined as

zi =
xi − µ
σ

, (6.2)

where µ is the mean and σ is the standard deviation of x. Traditionally the baseline

is removed through a process called Multi-Trial Baseline Removal. This method

computes the average Time-Frequency spectrograph for all of the trials, and then

removes the baseline by calculating the Z-Score.

Multi-Trial Baseline Removal is defined as

ERSPz(f, t) =
ERP (f, t)− µb(f)

σb(f)
, (6.3)

where: ERP (f, t) is the average Event Related Potential response computed as a

function of frequency and time for all trials, µb(f) and σb(f) is the mean and variance

of the spectral frequency f . The mean and variance are respectively computed as

µb(f) =
1

mN

N∑
k=1

m−1∑
t=0

|Fk(f, t)|2, (6.4)

σb(f, k) =

√√√√ 1

mN − 1

m−1∑
t=0

(
|Fk(f, t)|2 − µ

′
b(f, t)

)2
. (6.5)

Multi-Trial Baseline Removal computes the mean and variance over N trials, where k

is the trial iterator and m is the number of samples before the stimulus. Like ERPs,

Multi-Trial baseline removal requires many trials to isolate the stimulus response. As
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a consequence, it has many of the same limitations of ERPs. For example, Multi-Trial

baseline removal is known to be sensitive to noisy data trials [19]. As it was pointed

out earlier, a method for removing the baseline trial by trial is required.

Single-Trial Baseline Removal removes the baseline from individual trials, and is

performed by the following method

P (f, t) =
|Fk(f, t)|2 − µ

′

b(f, k)

σ
′
b(f, k)

(6.6)

where: the power spectrum with the baseline removed is P (f, t), and Fk(f, t) is the

spectral estimate as a function of frequency and time at trial k. The term µ
′

b is the

mean of Fk(f, t) given by

µ
′

b(f, t) =
1

m

m∑
t=0

|Fk(f, t)|2 (6.7)

The mean of the Single-Trial method is computed from the initial time of analysis

until m, which is the number of samples before the stimulus. The term σ
′

b(f, k) is the

variance of Fk(f, t) calculated as

σ
′

b(f, k) =

√√√√ 1

m− 1

m∑
t=0

(
|Fk(f, t)|2 − µ

′
b(f, t)

)2
(6.8)

Once the baseline is removed, the ERSP is computed by averaging over all of the

trials given as

ERSP (f, t) =
1

N

N∑
i=1

Pi(f, t). (6.9)

Single-Trial Baseline Removal is used because it does not require multiple trials
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to acquire the signal. It is more robust because it can handle noisy data, which is

something that Multi-Trial Baseline Removal cannot.

6.1.5 ERSP Algorithm

The algorithm for computing the ERSP of the EEG signal with the single trial baseline

removal is

1. For every trial:

(a) Compute Algorithm 3.2

(b) Remove the baseline from the CWT

(c) Add the result to the ERSP

2. Divide the ERSP by the number of trials

6.1.6 Data Acquisition

In order to perform the algorithm, the signal must first be acquired from the exper-

iments. EEG data is commonly stored in the BioSemi Data Format (BDF), or the

European Data Format (EDF). In order to read these signals the EDFLib library was

used. The computation of the ERSP requires the data from all of the stimuli to be

known.

The data file is first opened using the EDFLib library. The data is then filtered

for the stimuli represented as “triggers” located in the trigger channel. Once the

location of the stimuli is known, the EEG information is copied into a contiguous

memory block which contains all of the information from all of the triggers. The

ERSP algorithm is computed on this data block.
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6.1.7 Baseline Removal

The open source library GSL or GNU Scientific Library was used to remove the

baseline from the signal [18]. The mean and variance were computed as outlined by

equation 6.7 and 6.8 respectively. Where m is the pre-event count which is computed

by multiplying the pre-event time tp with the sampling frequency Fs

m = Fstp. (6.10)

The baseline is then removed using the mean and variance equations outlined in

equation 6.6. Finally, the result is divided over the number of trials to obtain the

average.

6.1.8 Validation

A piecewise sinusoidal was analyzed to test the Single Trial Baseline Removal for the

ERSP functions. The CWT of the signal

x(t) =

 2cos(ω0t) 1.5 ≤ t ≤ 2.0

cos(ω0t) t < 1.5, t > 2.0
(6.11)

was performed and the baseline of cos(ω0t) was removed at all times, while only the

signal at 1.5 sec to 2.0 sec remained.

6.2 Mode Identification using Wavelet Transforms

Time-Frequency analysis was used to identify the modal parameters of an oscillating

machine. This was accomplished by striking the machine and recording its vibrations
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with a gyroscope. The modal parameters of the machine was analyzed by decom-

posing the impulse response using Time-Frequency analysis. This section will first

review the Impulse Response, and Modal analysis. We then describe the method of

analyzing a system’s modal parameters by decomposing a signal’s impulse response

in the Time-Frequency domain.

6.2.1 Impulse Response

An impulse response is the output of a system when the input is an impulse [33].

An impulse is given as a Dirac delta function, defined by equation 2.2, in continuous

time systems, and a Kronecker delta function, defined by equation 6.1, in discrete

time systems [12]. The impulse functions contains every frequency, so it is a useful

tool in signal processing for characterizing a system’s behavior.

A system is mathematically modeled in controls systems engineering as linear

functions. A function f is linear when it satisfies the homogeneity and additive

properties respectively given as

f(au) = af(u), (6.12)

f(u+ v) = f(u) + f(v), (6.13)

where a, u, and v are real numbers. A system is time invariant if the output of a

system g(t) is unchanged to the input f(t) regardless of the delay of the input given

as f(t− τ)
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g(t) = f(t)⇒ g(t− τ) = f(t− τ).

A general linear time invariant (LTI) system x(t) can be expressed as a function of

impulses

x(t) =

∫ +∞

−∞
x(τ)δ(t− τ)dτ. (6.14)

The unit impulse response of an LTI system h(t) is the response to the unit impulse

function δ(t)

δ(t)→ h(t). (6.15)

Since the system is LTI, the following relationship holds

δ(t− τ)→ h(t− τ).

Combining equations 6.14 and 6.15 and using the commutative property of the con-

volution, the output of a system from an impulse is

y(t) =

∫ +∞

−∞
x(τ)h(t− τ)dτ

=

∫ +∞

−∞
x(t− τ)h(τ)dτ

This implies that the impulse response contains a complete input-output description

of a system. When the impulse response is known, so is the output to any input [45].
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6.2.2 Modal Analysis

The free response of a viscously dampened single degree of freedom system is

x(t) = Ae−ζωntcos(ωdt+ θ) (6.16)

where: ωn is the undamped angular natural frequency, ζ is the dampening ratio, ωd is

the dampened natural frequency given as ωd = ωn
√

1− ζ2, and A is the magnitude.

If it is assumed that the signal x(t) is asymptotic — where the phase of the signal

varies faster than the frequency — then the signal can be represented as

x(t) = A(t)cos(δ(t)), (6.17)

which is a function modulated in amplitude and frequency, where A(t) and δ(t) are

A(t) = Ae−iζωnt (6.18)

δ(t) = ωdt+ θ. (6.19)

The Continuous Wavelet Transform can be used to identify the mechanical modal

parameters of these types of systems [5, 32]. This can be used in mechanical engi-

neering for identifying non trivial natural frequencies, dampening ratios, and settling

times for complex systems. The Continuous Wavelet Transform of equation 6.17 is

Wφ(τ, s) =

√
s

2
A(τ)ψ(sδ′(τ))eiδ(τ) (6.20)

=

√
s

2
Ae−ζωnτψ(sωd)e

i(ωdτ+θ) (6.21)
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where: ψ is the conjugate complex of a wavelet class, and s is the scale of the wavelet.

The absolute value of this CWT is at a maximum at a particular scale which is noted

as s0. The scale s0 is correlated to the oscillating frequency of the system. This means

that the CWT becomes

W(τ, s0) =

√
s0
2
Ae−ζωnτψ(s0ωd)e

i(ωdτ+θ). (6.22)

This can then be simplified by taking the logarithm, the CWT then becomes

ln |W(τ, s0)| = −ζωnτ + ln

(√
s0
2
A|ψ(s0ωd)|

)
. (6.23)

The linearity of the CWT means that an input signal with multiple modes such as

x(t) =
P−1∑
k=0

Ak(t)cos(δk(t)) (6.24)

would have a CWT of

Wφ(τ, s) =
P−1∑
k=0

√
sk
2
Ak(τ)ψ(sδ′k(τ))eiδk(τ). (6.25)

The dampening ratio ζ can be identified by the slope of the absolute logarithm of

the CWT. The dampened frequency can be identified as ωd = ω0/s0, and the settling

time is identified using the algorithm outlined in section 6.2.3. The CWT of a system

such as equation 6.24 is

Wφ(τ, si) =

√
si

2
Ae−ζiωniτψ(siωdi)e

i(ωdiτ+θi) (6.26)
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6.2.3 Mechanical Modal Analysis Algorithm

The algorithm to identify the settling time for the modal frequencies becomes

1. Compute Algorithm 3.2

2. Identify the local maximums for each frequency

3. Identify the peaks of the local maximums

4. For each peak

(a) Determine the settling time

6.2.4 Identifying the Modal Parameters

To identify the modal signatures of a single degree of freedom system, an impulse

is introduced, and its response is observed using the CWT. A mining machine was

struck with a hammer, and its response was recorded from an accelerometer sampled

at 500 Hz. To compute the modal parameters of the system, the wavelet transform is

first computed (Figure 6.3).

Local maximums were identified at each frequency. A difference quotient was then

computed on the local maximums to measure the rate of change. The peaks of the

local maximums of the frequencies are when the difference quotient changes from a

negative to a positive slope (Figure 6.4).

The settling times are then computed for the impulse response at the specific

frequency. Settling time is defined as the time for the response to reach and stay

within 2% of the final value [41]. Since an impact was introduced to a stationary

system, the settling time is the time it takes for the system to return to its resting
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Figure 6.3: Vibrational response to an impact

Figure 6.4: Local Maximums of the CWT at each frequency
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Figure 6.5: CWT of the impact at f = 82.5Hz

state. In this situation the settling time is the time it takes for the system to reach

within 2% of the mean output before the impact (Figure 6.5). Table 6.2 shows the

modal frequencies and settling times for the signal shown in Figure 6.3
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Frequency (Hz) Settling Time (s)
80.83± 3.50 0.92 ± 2.0× 10−3

42.20± 1.83 1.06 ± 2.0× 10−3

23.01± 1.00 0.68 ± 2.0× 10−3

12.82± 0.56 0.50 ± 2.0× 10−3

Table 6.2: Modal Parameters of an Oscillating Machine
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Chapter 7

Concluding Remarks

The focus of this thesis was to study and implement methods of performing Time-

Frequency analysis on a one-dimensional signal using the STFT and CWT. Through

the process of developing the framework, many inconsistencies were found in the

literature and nomenclature of the wavelet decomposition. As it was pointed out in

section 3.2.1 the definitions of the wavelet functions, and the method of computing the

wavelet transform were subject to change from article to article. As a consequence,

the wavelet transform results differ depending on the implementation method and

computational parameters used.

It would have been easier to utilize the pre-existing analysis functions found in

MATLAB, however this would introduce several compromises. First, these functions

are proprietary and require licensing, which limits its usability. Second, the MATLAB

programs require more time to compute as it is a general solution, and not optimized

for Time-Frequency analysis. Finally, the transform parameters, such as the wavelet’s

central frequency, are unknown. These parameters are vital for reducing error, and
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improving speed and efficiency. While independently implementing the framework re-

quired some additional steps, it ensured that the correct Time-Frequency parameters

were chosen and documented for the decomposition.

By implementing the framework in the C and C++ programming languages, we

were able to utilize low level computational and memory manipulations to improve

the speed while maintaining Time-Frequency accuracy. It also provides the user with

various options such as speed versus detail, and png versus gnuplot. The STFT

provides speed over detail, while the CWT provides detail over speed. The energy

spectrum densities could be plotted as a png image, or on the interactive plotting

library gnuplot for further manipulation.

Plotting the images were not trivial, as the Time-Frequency graphs are plotted

linearly in the time domain, in a log2 scale in the frequency domain, and in a log10

scale in the normalized amplitude domain. Plotting the png image for example,

required energy spectrums to be first converted into colours that represented low and

high values, and then graphed pixel by pixel using the open source library PNGwriter.

By doing this, we were able to generate a framework that is both functional, and free

from proprietary licensing.

7.1 Future Work

The work on this project is by no means complete as there are additional tools

that would help it improve its ability to decompose a signal in the Time-Frequency

domain. For example, the framework can be expanded to compute different types

of real and analytic wavelets rather than just the Morlet wavelet. One could also
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increase the Time-Frequency options available by implementing additional decompo-

sition methods such as the Winger-Ville distribution [59], as these methods have their

own advantages.

In this framework, only the energy of the signal is analyzed. The framework

could be expanded to analyze the phase information as well. Phase information can

show the transient changes in the frequency tones. This could be advantageous when

analyzing EEG signals to identify inter-trial coherence, which can show relations

between different EEG trials.

There is also room for additional speedup and efficiency optimizations. While

the framework is multi-threaded, the computation can be decreased significantly by

using Graphics Processing Units (GPUs). Time-Frequency analysis has many “Single

Instruction, Multiple Data” (SIMD) sections, which are more efficiently computed on

GPUs.
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