Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Digitized Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/22564
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorWong, Kon-
dc.contributor.authorLi, Huiping-
dc.date.accessioned2018-02-06T17:49:16Z-
dc.date.available2018-02-06T17:49:16Z-
dc.date.issued2009-02-
dc.identifier.urihttp://hdl.handle.net/11375/22564-
dc.description.abstractDownlink power control and beamforming designs in wireless system have been a recent research focus. To achieve reliable and efficient designs, good estimation of wireless channel knowledge is desired. However, the presence of uncertain channel knowledge due to constant changing radio environment will cause performance degradation in system designs. Thus the mismatches between the actual and presumed channel state information (CSI) may frequently occur in practical situations. Robust power control and beamforming were introduced considering the channel uncertainty. In this thesis, a new robust downlink power control solution based on worst-case performance optimization is developed. Our approach explicitly models uncertainties in the downlink channel correlation (DCC) matrices, uses worst-case performance optimization and guarantees that the quality of service (QoS) constraints are satisfied for all users using minimum amount of power. An iterative algorithm to find the optimum power allocation is proposed. The key in the iteration is the step to solve an originally non-convex problem to obtain worst-case uncertainty matrices. When the uncertainty is small enough to guarantee that the DCC matrices are positive semidefinite, we obtain a closed-form solution of this problem. When the uncertainty is large, we transform this intractable problem into a convex problem. Simulation results show that our proposed robust downlink power control using the approach of worst-case performance optimization converges in a few iterations and reduces the transmission power effectively under imperfect knowledge of the channel condition.en_US
dc.language.isoenen_US
dc.subjectDownlinken_US
dc.subjectPower Controlen_US
dc.subjectWorst-case Performanceen_US
dc.subjectOptimizationen_US
dc.titleAn Efficient Design for Robust Downlink Power Control Using Worst-case Performance Optimizationen_US
dc.contributor.departmentElectrical and Computer Engineeringen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Applied Science (MASc)en_US
Appears in Collections:Digitized Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Li_Huiping_2009Feb_Masters.pdf
Open Access
2.82 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue