Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/22443
Title: Clinching of AA7075 Aluminum Sheets
Authors: Atia, Mostafa
Advisor: Mukesh, Jain
Department: Mechanical Engineering
Keywords: Die-less clinching, Joining by forming, AA7075 aluminum, temper, material flow
Publication Date: 2018
Abstract: Weight reduction, increased fuel economy, and increased safety of structures in transportation applications has led to much interest in lightweight higher strength structural aluminum alloys. Suitable joining techniques to create such structures with aluminum sheets are required. Generally, similar and dissimilar sheet metals can be joined by adhesive bonding, welding, and mechanical fastening. Difficulty of welding and long processing times for adhesive bonding make mechanical fastening a process of much interest for joining of high strength aluminum sheets. Among the different mechanical fastening techniques available in manufacturing, clinching is a common method of joining by forming in which a punch and die are used to form a geometrical interlock. However, the process introduces surface steps on both sides of the joined sheets where one side consists of a protrusion and the other a pit. Also, clinch joining, a well-accepted and widely used process for joining ductile sheet metals, is more challenging for high strength lower ductility aluminum sheets such as AA7075. The current work aims at studying clinch-ability of high strength lower ductility AA7075 aluminum sheets of different tempers by conventional as well as a new clinching technique called "die-less" clinching. A new tooling was designed in order to conduct die-less clinches. The results showed that room temperature clinching is possible for the softer tempers namely solution treated and annealed states. However, the peak aged sheets failed to form a successful joint. A novel electrical resistance heating technique (ERH) to provide ductility to the joined sheets was used to obtain die-less clinched joints in AA7075-T6. ERH technique provides a large range of heating temperatures from room temperature to 270°C for a current duration of 3 sec. The AA7075-T6 sheets showed a superior joining by using ERH. The joint showed a metallurgical locking mechanism in addition to the commonly available form locking mechanism.
URI: http://hdl.handle.net/11375/22443
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Thesis 26 11 2017.pdf
Open Access
14.29 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue