Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/22328
Title: Genetic Determinants of Rare Coding Variants on the Development of Early-Onset Coronary Artery Disease
Authors: Lali, Ricky
Advisor: Pare, Guillaume
Department: Biochemistry and Biomedical Sciences
Keywords: Rare Variants; Exome Sequencing; Next-Generation Sequencing; Genetics; Cardiovascular Disease; Early-Onset Coronary Artery Disease; Early-Onset Myocardial Infarction; Coronary Artery Disease; Myocardial Infarction; Early-Onset Coronary Artery Disease Genetics; Early-Onset Myocardial Infarction Genetics; Coronary Artery Disease Genetics; Myocardial Infarction Genetics; Mendelian Dyslipidemia; Familial Hypercholesterolemia; Rare Variant Association; Gene Risk Scores; Stem Cells; iPSC
Publication Date: Nov-2017
Abstract: Background: Coronary Artery Disease (CAD) represents the leading cause of mortality and morbidity worldwide despite declines in the prevalence of environmental risk factors. This trend has drawn attention to the risk conferred by genetic variation. Twin and linkage studies demonstrate a profound hereditary risk for CAD, especially in young individuals. Rare genetic variants conferring high risk for extreme disease phenotypes can provide invaluable insight into novel mechanisms underlying CAD development. Methods: Whole exome sequencing was performed to characterize rare protein-altering variants in 52 early-onset CAD (EOCAD) patients encompassing the DECODE study. The enrichment of Mendelian dyslipidemias in EOCAD was assessed through interrogation of pathogenic mutations among known lipid genes. The identification of novel genetic CAD associations was conducted through case-only and case-control approaches across all protein-coding genes using rare variant burden and variance component tests. Lastly, beta coefficients for significant risk genes from the European population in the Early-onset Myocardial Infarction (EOMI) cohort (N=552) were used to construct calibrated, single-sample rare variant gene scores (RVGS) in DECODE Europeans (N=39) and a local European CAD-free cohort (N=77). Results: A 20-fold enrichment of Familial hypercholesterolemia mutation carriers was detected in EOCAD cases compared to CAD-free controls (P=0.005). Association analysis using EOMI Europeans revealed exome-wide and nominal significance for two known CAD/MI genes: CELSR2 (P=1.1x10-17) and APOA5 (P=0.001). DECODE association revealed exome-wide and nominal significance for genes involved in endothelial integrity and immune cell activity. RVGS based upon beta coefficients of significant CAD/MI risk genes were significantly increased in DECODE (z-score=1.84; p=0.03) and insignificantly decreased among CAD-free individuals (z-score=-1.61; p=0.053). Conclusion: Rare variants play a pivotal role in the development early CAD through Mendelian and polygenic mechanisms. Construction of RVGS that are calibrated against population and technical biases can facilitate discovery of single-sample and cohort-based associations beyond what is detectable using standard methods.
URI: http://hdl.handle.net/11375/22328
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Lali_Ricky_2017August_MSc.pdf
Access is allowed from: 2018-08-30
Final Thesis3.71 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue