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ABSTRACT 

Background: Coronary Artery Disease (CAD) represents the leading cause of mortality 

and morbidity worldwide despite declines in the prevalence of environmental risk factors. 

This trend has drawn attention to the risk conferred by genetic variation. Twin and linkage 

studies demonstrate a profound hereditary risk for CAD, especially in young individuals. 

Rare genetic variants conferring high risk for extreme disease phenotypes can provide 

invaluable insight into novel mechanisms underlying CAD development. 

Methods: Whole exome sequencing was performed to characterize rare protein-altering 

variants in 52 early-onset CAD (EOCAD) patients encompassing the DECODE study. The 

enrichment of Mendelian dyslipidemias in EOCAD was assessed through interrogation of 

pathogenic mutations among known lipid genes. The identification of novel genetic CAD 

associations was conducted through case-only and case-control approaches across all 

protein-coding genes using rare variant burden and variance component tests. Lastly, beta 

coefficients for significant risk genes from the European population in the Early-onset 

Myocardial Infarction (EOMI) cohort (N=552) were used to construct calibrated, single-

sample rare variant gene scores (RVGS) in DECODE Europeans (N=39) and a local 

European CAD-free cohort (N=77). 

Results: A 20-fold enrichment of Familial hypercholesterolemia mutation carriers was 

detected in EOCAD cases compared to CAD-free controls (P=0.005). Association analysis 

using EOMI Europeans revealed exome-wide and nominal significance for two known 

CAD/MI genes: CELSR2 (P=1.1x10-17) and APOA5 (P=0.001). DECODE association 

revealed exome-wide and nominal significance for genes involved in endothelial integrity 
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and immune cell activity. RVGS based upon beta coefficients of significant CAD/MI risk 

genes were significantly increased in DECODE (z-score=1.84; p=0.03) and insignificantly 

decreased among CAD-free individuals (z-score=-1.61; p=0.053). 

Conclusion: Rare variants play a pivotal role in the development early CAD through 

Mendelian and polygenic mechanisms. Construction of RVGS that are calibrated against 

population and technical biases can facilitate discovery of single-sample and cohort-based 

associations beyond what is detectable using standard methods. 
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1.1 Coronary Artery Disease: Environment versus Genetics 

 Cardiovascular diseases (CVDs) represent the number one cause of death worldwide 

despite advancements in both preventative and therapeutic care 1–3. A significant 

proportion of CVDs (~42%) are attributed to Coronary Artery Disease (CAD), which is an 

inflammatory-metabolic disorder characterized by the formation of atherosclerotic plaques 

within the coronary arteries 4. These plaques directly contribute to the development of 

arterial stenosis which can result in both acute and chronic clinical complications such as 

myocardial infarctions and heart failure, respectively. Due to the severity of these clinical 

outcomes, CAD was recently established as the leading cause of global disease burden as 

measured by disability-adjusted life years (DALYS), which renders CAD is the leading 

cause of healthy years lost 4. Therefore, there is a strong initiative to establish diagnostic 

tests that can predict an individual’s risk for developing CAD at an early stage in order to 

facilitate timely medical intervention and better patient outcomes. Genetic testing offers a 

robust approach to predict onset and severity of CAD based on determining an individual’s 

genotype at risk loci. However, this remains a difficult endeavor as CAD is a complex 

disease driven by multiple genetic and environmental variables 4–6.  

The environmental risk factors predisposing individuals to CAD have been well 

established, and commendable efforts have been made by health policy advocates to reduce 

their exposure to the general population. However, risk factors such as smoking, 

cholesterol, diabetes, hypertension, and abdominal obesity are still key modifiable 

contributors to CAD 7. INTERHEART, a global case-control initiative sought to identify 

the magnitude of effect (odds ratio (OR)) conferred by these environmental factors on CAD 
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risk and determine the proportion of disease incidence that would be prevented if exposure 

was eliminated (i.e. the population attributable risk (PAR)) 7. The 5 bona-fide CAD 

environmental risk factors collectively accounted for a PAR of 80% and an OR of 68, 

which explains the majority of CAD risk (Table 1). However, seminal studies have 

methodically established that first-degree family history (that is parental CVD risk 

conferred on offspring) independently predicts CVD events in offspring 8. For instance, the 

Framingham Offspring Study conducted prospective follow-up in the offspring (N=2302) 

of participants in the original Framingham cohort who had either suffered a CVD event or 

were CVD free 8. Follow-up of offspring revealed that individuals with one or more parent 

afflicted with CVD were significantly more likely to manifest a cardiovascular event than 

individuals with parents that had not suffered a CVD (OR 3.0 male and 2.6 female) 8.  

The magnitude of risk for offspring CVD was slightly attenuated after accounting 

for the 5 environmental risk factors investigated in the INTERHEART study, but remained 

significant   (OR 1.5 male and 1.1 female) 8. A substantially stronger effect was observed 

when the analysis was restricted to offspring with both parents affected by premature CVD 

(i.e. father ≤ 55 years and mother ≤ 65 years) even after environmental risk-factor 

adjustment (OR 2.4 male and 2.8 female) 8.  

These findings provide robust evidence that CAD manifestation (among other 

CVDs) is dependent on one’s genetic composition, independent of environmental risk 

factors. Also, the results present a strong rationale for delineating genetic contributors to 

disease onset, especially among individuals that develop premature disease as they have 

not accumulated exposure to environmental risk factors. 
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Table 1.1: Comparison of the magnitude of effect conferred by environmental versus 

heritable CAD risk factors. 

Risk factor OR PAR % 

Smoking 2.78 35.7 

Apolipoprotein-B/Apolipoprotein-A1 3.25 49.2 

Diabetes 2.37 9.9 

Hypertension 1.91 17.9 

Abdominal obesity 1.12 20.1 

All of above 68.5 80 

Parental CVD - 1 or both parents (multivariate adjusted) 

1.5 - male 

1.1 - female 

23.1 † 

5.7 † 

Parental CVD – Both parents (multivariate adjusted) 

1.8 - male 

1.0 - female 

32.5 † 

0 † 

Premature parental CVD – 1 or both parents (multivariate 

adjusted) 

2.0 - male 

1.7 - female 

37.6 † 

29.6 † 

Premature parental CVD – Both parents (multivariate 

adjusted) 

2.4 - male 

2.8 - 

female 

45.7 † 

52 † 

All factors were found to be statistically significant (P<0.05) 

† PAR for heritable risk factors were estimated from OR and in-study CVD prevalence 

 

 

1.2 Twin studies and Mendelian disease: Establishing CAD heritability 

 

The genetic basis of CAD has been established through twin studies and cascade 

analysis of families with significant disease history. Twin studies demonstrate the risk of 

developing disease in monozygotic and dizygotic twin pairs, which share 100% and 50% 
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genomic identity, respectively. A benefit of twin studies is that they inherently control for 

extraneous variables that may otherwise contribute to disease manifestation (e.g. age and 

diet). As a result, differences observed in disease risk between monozygotic and dizygotic 

twins can largely be attributed to a genetic source. Marenburg et al. conducted a large 

longitudinal study of 10 000 monozygotic and dizygotic twin pairs and observed that 

monozygotic twins have a two-fold increase in relative risk (RR) over dizygotic twins for 

death by early onset CAD if their co-twins had previously died from the disorder (RR = 

8.1 vs. 3.8) 6,9. Interestingly, the RR steadily increased as age at death by CAD decreased 

9,  further suggesting that a genetic contribution to disease onset may be more prevalent in 

younger people. 

In addition to twin studies, familial cascade testing has provided evidence 

supporting a hereditary mechanism for disease onset. These studies are typically conducted 

by surveying families with significant disease history and identifying whether putative 

disease-causing mutations at candidate loci co-segregate with the phenotype of interest.  

Profound co-segregation can affirm a causal relationship between gene and disease and can 

also indicate on whether the mode of inheritance is dominant or recessive. However, most 

pedigrees are confounded by extraneous variables that can impede a clear genotype-

phenotype relationship from being established. Common confounders include 1) polygenic 

modes of inheritance (i.e. multiple genes additively contributing to disease risk), 2) 

incomplete penetrance, 3) presence of causal risk factors within affected individuals, and 

4) clinical mis-diagnoses of disease phenotype to due sub-clinical manifestations of 

disease.  
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Mendelian disorders are typically free of these confounders as they involve rare, 

highly penetrant mutations that confer their effect through a single gene with a defined 

pattern of inheritance. As such, Mendelian diseases that manifest with CAD as a primary 

phenotype have provided invaluable evidence to support a genetic contribution to disease 

onset. The most prominent Mendelian diseases that manifest with CAD are monogenic 

dyslipidemias, which result in severely perturbed lipoprotein metabolism and are sufficient 

towards promoting formation of atherosclerotic lesions. Well-established Mendelian 

disorders that affect lipoprotein metabolism include Familial hypercholesterolemia, 

Familial combined hyperlipidemia, Sitosterolemia, and Autosomal dominant coronary 

artery disease 2 10. These disorders elicit their affects through either an autosomal dominant 

or autosomal recessive mode of inheritance, depending on the affected gene (Table 1.2) 10. 

An example of CAD manifesting in a Mendelian pattern is depicted in Figure 1.1 which 

shows pedigrees of two British families affected with FH characterized by individuals with 

history of elevated LDL-C and CAD/MI in multiple generations 11. Individuals shown as 

half-shaded are heterozygote carriers of the p.Asp374Tyr gain-of-function mutation in 

(PCSK9), which had been shown to confer considerable risk for premature CAD. In both 

pedigrees, carrier status co-segregates completely with both CAD/MI and severe 

dyslipidemia, thus establishing a causal genotype-phenotype relationship assuming no 

other candidate mutations were identified. Absence of CAD/MI in some p.Asp374Tyr 

carriers can be attributed to early therapeutic intervention that more than likely prevented 

a clinical outcome. 
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Both familial cascade analysis and twin studies have benchmarked the genetic 

foundation of CAD development. By virtue of their study designs, these analyses are well 

structured to determine what proportion of phenotypic variability can be attributed to 

genetic or environmental causes. The heritability estimate corresponds to the ratio of 

additive genetic variance to total phenotypic variance for a given trait and provides a 

quantitative measure to assess the strength of genetic contribution to disease development. 

Both the early twin and cascade studies have established a heritably of 40-50% for CAD 

2,5,10, meaning that approximately half the phenotypic variability can be ascribed to genetic 

factors. Interestingly, it has been shown that CAD heritability is approximately 63% for 

early-onset cases, underscoring the notion that premature CAD is largely explained by an 

individual’s genetic composition 10. 
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Table 1.2: Summary data of Mendelian diseases with CAD as a hallmark phenotype  

(adapted from Stitziel et al. 2014) 10. 

Disease category Condition 
Gene(s) 

Involved 

Mode of 

Inheritance 

Major 

cardiovascular 

clinical 

outcomes 

Mendelian 

dyslipidemias 

Autosomal dominant 

familial 

hypercholesterolemia 

 

LDLR, APOB, 

PCSK9, STAP1 

Autosomal 

dominant 

>99th percentile 

plasma LDL-C; 

premature CAD 

 

Autosomal recessive 

familial 

hypercholesterolemia 

LDLRAP1 
Autosomal 

recessive 

>99th percentile 

plasma LDL-C; 

premature CAD 

Familial combined 

hyperlipidemia 
LPL 

Autosomal 

dominant 

 

Elevated 

plasma 

triglycerides, 

LDL-C and 

APOB; small, 

dense LDL-C;  

premature CAD 

Sitosterolemia 
ABCG5, 

ABCG8 

Autosomal 

recessive 

 

Elevated 

campesterol 

and sitosterol; 

premature CAD 

Autosomal dominant 

coronary artery disease 

2 

LRP6 
Autosomal 

dominant 

Metabolic 

syndrome; 

premature CAD 

Mendelian 

vasculaopathies 

Homocystinuria CBS, MTHFR 
Autosomal 

recessive 

 

Elevated 

homocysteine; 

premature CAD 

 

Pseudoxanthoma 

elasticum 
ABCC6 

Autosomal 

recessive 

Enhanced 

coronary 

stenosis and 

calcification; 

premature  

CAD 

 

LDLR = Low-density lipoprotein receptor; APOB = Apolipoprotein B-100; PCSK9 = 

Proprotein convertase subtilisin/kexin type 9; STAP1 = Signal Transducing Adaptor 

Family Member 1; LDLRAP1 = Low Density Lipoprotein Receptor Adaptor Protein 1; 

LPL = Lipoprotein lipase; ABCG5/8 = ATP binding cassette transporter family G type 

5/8; LRP6 = LDL Receptor Related Protein 6; CBS = Cystathionine beta-synthase; 

MTHFR = Methylenetetrahydrofolate reductase; ABCC6 = ATP binding cassette 

transporter family C type 6 
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1.3 Genome-wide association studies and the common variant-common disease hypothesis 

 

 Genetic variants that confer risk for CAD development can be identified through 

Genome Wide Association Studies (GWAS), which are case-control analyses that seek to 

elucidate statistically significant differences in the abundance of known genetic variants 

between cases individuals afflicted with disease phenotype (cases) and disease-free 

individuals (controls) across the entire genome 5,12. The variants analyzed in these studies 

occur at an intermediate to high frequency (i.e. Minor Allele Frequency (MAF) > 5%) in 

the study populations 5,12.  These common variants are preferentially queried in most case-

control association studies for two major reasons: (1) rarer variants typically do not meet 

the statistical threshold necessary to classify them as significant (especially while using 

Figure 1.1: Co-segregation of dyslipidemia and early CAD/MI with carrier 

status of the Arg474Tyr mutation in PCSK9 for two British families. 

Mutation carriers are shown as half shaded squares/circles and LDL-C values 

are shown immediately below individual symbols followed by pertinent 

phenotypic information. Squares and circles represent males and females, 

respectively. Arrows indicate the index cases in each family. 
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single-locus association models) and (2) common variants greatly contribute to disease 

prevalence despite typically having small effects on disease phenotype 13. Therefore, 

information from multiple common variants would have to be genotyped in a given 

individual before their risk stratification could be improved, which is the underlying 

motivation for the development of gene risk scores (GRS).  

The Coronary ARtery DIsease Genome wide Replication and Meta-analysis plus 

The Coronary Artery Disease (CARDIoGRAMplusC4D) consortium represents the largest 

aggregated dataset of genotyped CAD cases + controls (N=185000) and has provided 

invaluable insight into the genetic architecture of CAD. CARDIoGRAMplusC4D was 

conducted predominantly within individuals of European ancestry and has identified 58 

loci associated with CAD at genome-wide significance under either additive or recessive 

models of inheritance 5. However, a total of 129 loci were found to demonstrate either 

significant or suggestive associations with CAD at a false discovery rate of 5% (129 FDR). 

The MAFs among the genome-wide significant loci were largely common (median MAF 

0.22) and conferred only modest increases in CAD risk (median OR 1.07 for effect alleles 

conferring risk and OR 0.93 for effect alleles conferring protection). Collectively, the 

variants driving the 129 FDR association accounted for approximately 22% of CAD 

heritability, which is estimated to be at 40-50% based on seminal cascade and twin studies 

discussed earlier 5. Therefore, a large proportion of the heritability remains missing and 

may have to be accounted for through the discovery of additional common variants of low 

to modest effect or by low frequency (1% < MAF < 5%) and rare (MAF < 1%) variants 

conferring larger effects on disease risk. Overall, the CARDIoGRAMplusC4D meta-
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analysis queried ~9.4 million variants for association with CAD. Over 90% of these 

variants fell within either intergenic or intronic regions (Figure 1.2) which will 

preferentially lead to the discovery of alleles that mediate CAD risk through regulatory 

effects such as the altering of gene expression through disruption of transcription factor 

binding sites or modification of epigenetic hotspots. In contrast, only ~0.6% (58160 / ~9 

million total variant sites) of queried variants were located within the coding sequence or 

in canonical splice donor/acceptor sites. Considering that coding regions comprise 1.5-2% 

of the genome, this proportion substantially below what would be expected. Therefore, the 

risk elicited by higher impact variants that can alter protein structure remains largely 

unknown and must be accounted for by exome sequencing strategies. 

The loci found to reach genome wide significance were classified into gene 

ontologies known to be involved in the pathogenesis of CAD (section 1.8) such as lipid 

metabolism, endothelial integrity, and haemostasis (Figure 1.2) which emphasizes the 

essential role of these biological processes in conferring lifelong risk for CAD. However, 

the mechanisms by which many of the genome-wide significant loci confer CAD risk 

remain unknown. Conducting a systematic analysis to identify enrichment of rare variants 

in nearby genes can potentially lead to the discovery biologically relevant candidates.  
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Figure 1.2: Breakdown of genomic region annotations for 

9.4 million variants tested in the CARDIoGRAMplusC4D 

meta-analysis. Abbreviations are as follows: UTR5 = 5-prime 

untranslated region; UTR3 = 3-prime untranslated region; 

ncRNA = non-coding RNA.  

Figure 1.3 Functional distribution of 58 genome-

wide significant loci from the 

CARDIoGRAMplusC4D consortium. 
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1.4 Exome sequencing and rare variants 

GWAS have proved invaluable in enhancing our knowledge of the interactions 

between common variants and complex disease through the use of microarray-based 

genotyping. However, traditional GWAS have made little contribution to understanding 

the population genetics features of rare variation and the role of rare variants in complex 

disease development. Since it has been previously shown that rare variants collectively 

outnumber common variants and are enriched within the protein-coding regions (exons) of 

the genome, exome sequencing has emerged as a powerful tool for rare variant discovery 

and the standard laboratory for rare variant association studies 14–16.  

The development of exome sequencing strategies allows for both known and novel 

rare variations to be discovered within the highly conserved regions of the genome by 

virtue of de novo variant calling. Exome sequencing selectively captures the DNA 

sequence corresponding to coding regions, which make up approximately 1.5% of the 

genome’s 3 billion bases 17,18. Despite this low proportion, the exons contain approximately 

85% 17 of all disease-causing mutations which make them ideal sources to find causal 

variants that directly contribute to manifestation of complex diseases like CAD. Moreover, 

it has been shown that rare variants are enriched for protein-altering mutation types such 

as nonsynonymous variation (single nucleotide variants that result in an amino acid 

substitution within the protein sequences) and frameshift indels (insertions/deletions that 

alter the reading frame of the transcript) which hold great clinical significance as they are 

more likely to alter or perturb protein function, allowing them to exhibit higher penetrance 

within case populations 14–16. 



M.Sc. Thesis – Ricky Lali              McMaster University – Biochemistry and Biomedical Sciences 

14 
 

Therefore, it is proposed that rare variants hold significant biological relevance and 

can contribute to furthering our understanding of the molecular pathways and gene 

networks involved in the manifestation of complex disorders such as CAD. 

 

1.5 Defining and implementing rare variants in association analysis  

 

The rationale for assessing the contribution of rare variants on CAD has primarily 

emerged from three arguments: 1) the exponential population boom over the past 

millennium has led to an abundance of novel, rare variation compared to common variants 

across the genome, 2) the vast majority of damaging variants are rare due to the influence 

of purifying selection and 3) common variants have not accounted for total disease 

heritability, despite the efforts of very large and well-designed case-control meta-analyses. 

Taken together, these factors provide sufficient grounds to evaluate the effect of rare 

variants on CAD risk in order to determine whether they can account for missing heritably. 

However, in order to effectively employ rare variants in epidemiological analyses, it is 

essential to 1) accurately discriminate genuinely rare variants from those that are 

cryptically rare by virtue of small samples sizes and 2) employ appropriate statistical tests 

that are well powered to assess the putative associations between rare variants and the 

phenotype of interest. 

The recent developments of the Genome Aggregation Database (gnomAD) 19 and 

Exome Aggregation Consortium (ExAC) 20,21 have allowed investigators to accurately 

determine which variants are truly rare in their study cohorts by leveraging the immense 

sample size of these publically available consortia datasets (N = 60706 for ExAC and N = 

123236 for gnomAD). Specifically, by identifying the corresponding allele frequencies of 
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a given variant in gnomAD/ExAC, one is able to robustly demarcate genuinely rare 

variants and filter out variants that are actually common once inspected in large sequencing 

databases. Moreover, both gnomAD and ExAC have stratified allele frequencies across 

five major global ethnicities (Non-Finnish Europeans, Africans, South Asians, East Asians, 

and Latin Americans) and two founder populations (Finnish Europeans and Ashkenazi 

Jews) which will prevent spurious rare variant associations due to population stratification. 

Additionally, sequence consortia datasets allow investigators to experiment with differing 

allele frequency thresholds to define a “rare” variant in their cohort. These thresholds are 

expected to vary depending upon the mutation types of the variants under investigation (i.e. 

missense, nonsense, frameshift etc…) and the mode of inheritance model (i.e. additive, 

dominant, recessive). However, most typically, rare variant are defined having a MAF of 

less than 1-5% in the general population.  

Due to rare variants being individually very infrequent, they cannot be assessed 

using single locus association methods that are typically used for associating common 

variation with disease phenotype in GWAS. Specifically, single locus association tests such 

as chi-squared (χ2) conducted on individual rare variants in a case control analysis would 

result in a significant deflation of test-statistic resulting in p-values that fail to reach even 

nominal significance (i.e. P < 0.01) 22. Therefore, single locus association analyses are 

vastly under powered in the context of individual rare variants. 

One method by which rare variant association analysis can be conducted with high 

power (proposed by Li and Leal, 2008) 22 is if they are analyzed in aggregate across a 

specified genetic context (i.e. an individual gene or a set of genes involved in a single 
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pathway) (Figure 1.4). The in aggregate method represents a rare variant burden test that 

accounts for the inherent infrequency of individual rare variation by summing the allele 

counts for a specified set of rare variants (e.g. within a gene) across all samples under 

investigation (equation 1.1; where Bi represents the cumulative count of rare variants per 

individual given their genotype Gi across j variants in a gene). This approach allows rare 

variants to undergo association with disease phenotype collectively rather than 

independently which may allow for the discovery of genes with high evolutionary 

constraint. 

 

 

 

 

 

 

 

 

 

Figure 1.4 provides an arbitrary example of the in aggregate burden method where rare 

variants meeting a pre-specified “deleterious” criteria (in this case, any variant that alters 

the structure of the protein) are combined across a single gene (containing 3 exons) in cases 

and controls. Here, 20 rare, deleterious variants are observed in cases compared to only 9 

in controls, resulting in a large effect size (OR 2.2). 

Figure 1.4: In aggregate method of rare variant burden testing. Individual MAF 

for rare variants meeting specified “deleterious” criteria are summed to a single test 

statistic in both cases and controls and subsequently associated with disease phenotype.  

Rare, protein-altering variant 

        Total variants in cases = 20                                  Total variants in controls = 9 

𝐵𝑖 =  ∑ 𝐺𝑖𝑗

𝑀

j=1

 

 

Equation 1.1  

Exon 1           Exon 2          Exon 3 Exon 1           Exon 2          Exon 3 
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While burden tests provide a novel approach for assessing the collective effect of 

rare variants on disease risk, they hold the assumption that all variants in a given region or 

pathway exert their effect in a single direction. That is, variants that exhibit a neutral or 

protective effect on a given phenotype are regarded as causal risk alleles in the association 

model. This limitation has spurred the development of variance component tests which 

account for direction of effect by regressing individual rare variants on the phenotype of 

interest instead of combing them into an aggregate test statistic to be used in association 

testing 23. The distribution of test statistics obtained from multiple regressions of individual 

rare variants can be compared to a null distribution to determine statistical significance. 

This approach avoids the a prori assumption of directionality and significantly increases 

power of rare variant association when it is expected that target regions harbour a mixture 

of protective, neutral, and risk alleles. 

 

1.6 Notable examples of rare variant successes 

 

The distinct nature of rare variants can lend itself towards the discovery of novel 

genes that mediate disease risk outside of the common variant common disease paradigm 

and can result in the elucidation of novel biological mechanisms underlying disease 

development. This is effectively illustrated by a large, case-control study of early MI 

conducted by Do et al. 2015 2. In this analysis, whole-exome sequencing was used to 

identify the association between the burden of rare, protein-altering variants within 

Apolipoprotein A-V (APOA-V) and onset of early CAD/MI (p = 5x10-7 ; OR = 2.2) 2. 

Previous to this analyses it was well established that common variants within the APOA-

1-APOC-III-APOA-IV-APOA-V locus had been associated with CAD as observed in the 
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CARDIoGRAMplusC4D consortia (OR = 1.16) 5,12. However, due to the extensive linkage 

disequilibrium (LD) at this locus, the causative gene could not be defined. Since rare 

variants are inherently infrequent, they are unlikely to exist in LD amongst each other or 

with common variants. Therefore, the burden of rare variants within a particular gene in 

this locus provides strong rationale for it being the main mediator of disease risk. 

Furthermore, carriers of  rare, protein altering variants in APOA-V were also found to 

exhibit increased triglyceride levels, which underscores the importance of accounting for 

triglycerides as a strong, modifiable risk factor for CAD/MI and weakens the notion that 

development of atherosclerotic plaques are driven solely by LDL cholesterol. Since 

publication of this work, a candidate-gene exome sequencing analysis conducted by Khera 

et al. 2017 further demonstrated that the burden of rare, protein-altering mutations within 

Lipoprotein lipase (LPL) were also associated with both increased triglycerides and early 

onset CAD/MI 24.  

Additionally, rare variant association analyses recently resulted in the discovery of a 

novel gene associated with LDL cholesterol. Specifically, investigators conducted whole-

exome sequencing in phenotypic extreme cohort comprised of individuals within the 99th 

and 1st percentile of LDL cholesterol as cases and controls, respectively 25. A total 8 gene-

based burden and variance component tests were conducted for rare, protein-altering 

variants and revealed a significant association between Patatin-like phospholipase domain-

containing 5 (PNPLA5) with LDL cholesterol at high effect (p = 3x10-7; Beta = 1.2 

mmol/L) 25. The PNLPA5 locus was not found to reach genome wide significance in the 

Global Lipids Genetic Consortium (GLGC) GWAS and probably modifies LDL 



M.Sc. Thesis – Ricky Lali              McMaster University – Biochemistry and Biomedical Sciences 

19 
 

cholesterol levels through the presence rarer mutations which is likely a consequence of 

higher evolutionary constraint for this gene. Interestingly, the burden of rare variants in 

PNPLA5 along with 3 other previously known lipid genes determined to be significant 

(LDLR, APOB, PCSK9) resulted in a combined LDL heritability estimate of 5.4% which 

is quite extensive when considering that common variants across 18 novel loci associated 

with LDL in the GLGC only accounted for 2.6% of LDL heritability 25.  

Taken together, the study results indicate that rare variant association analyses can lead 

to the discovery of novel disease etiology and identification of new risk genes which can 

refine diagnostic criteria for CAD and improve individual risk stratification for prognostic 

measures, respectively.  

 

1.7 Identifying protective effects of damaging mutations: A noteworthy application of  

whole-exome sequencing 

 

Exome sequencing has mediated the discovery of numerous genes that confer risk 

for CVDs through loss-of-function (LOF) mechanisms 2,26,27. However, certain genes 

harbouring LOF mutations confer protection against complex diseases which has 

accelerated the development and clinical implementation of therapeutic inhibitors to 

prevent primary disease outcomes for high risk individuals. Most recently, numerous 

clinical trials have been shown to robustly reduce incidence of CAD and dyslipidemia in a 

manner that directionally mimics LOF mutations in the targeted gene, thus establishing a 

sound correlate between pharmacological intervention and genetic predisposition 28. 

However, the impact of lifelong exposure to LOF mutations on CAD risk can only be 

identified through genetic epidemiology. To date, there have been three genes identified 
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through exome sequencing in which LOF mutations confer protection against CAD: (1) 

Niemann–Pick C1-like 1 (NPC1L1) 29, Apolipoprotein-C3 (APOC3) 30, and Angiopoietin 

like-4 (ANGPTL4) 31. Large, multi-ethnic case-control study designs were used to identify 

significant enrichment of LOF alleles within these genes amongst individuals with no 

presentation of dyslipidemia or CAD. For the purposes of this work, only APOC3 will be 

discussed as this discovery was a result of whole-exome sequencing with no a prioi 

hypothesis. However, a summary of all three genes is provided in Table 1.3. 

 

1.7.1 APOC3 

 

APOC3 is a peripheral membrane protein located within the APOA-1-APOC-III-

APOA-IV-APOA-V locus, which has robustly been shown to confer risk for CAD in large 

genome-wide meta-analyses 5. APOC3 synthesis occurs largely within hepatocytes and is 

shown to associate with both triglyceride-rich lipoproteins (TRLs) (e.g. chylomicrons, 

very-low density lipoprotein) and HDL. APOC3 is a robust regulator of triglyceride 

homeostasis by acting as an inhibitor of LPL, an enzyme that catalyzes the hydrolysis of 

triglycerides to free fatty acids along the capillary endothelium 30,32. Additionally, APOC3 

acts in an LPL-independent manner to prevent hepatic uptake of TRL remnants by 

disrupting their association with remnant receptors 30,32.  

Due to the evidenced heritability of plasma triglycerides and their correlation with 

CAD, the TG and HDL Working Group of the National Heart, Lung, and Blood Institute 

Grand Opportunity Exome Sequencnig Project v6500 (NHLBI-GO ESP6500) sought to 

further demarcate the genetic architecture of triglyceride homeostasis by sequencing the 

protein-coding regions genome in 3734 individuals of European or African ancestry across 
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7 cohorts with relevant phenotypic data for cardiovascular disease. The investigators 

restricted analysis to rare (MAF < 1%) SNVs resulting in missense, nonsense, or splice site 

mutations 30. In the discovery, investigators determined the gene-based burden of rare 

mutations within APOC3 was most strongly associated with plasma triglycerides in 

Europeans (P=7x10-6) and Africans (P=1x10-5) after adjustment with principle components 

of ancestry 30. Heterozygote carrier frequency of one or more rare mutations found in 

discovery sequencing was 1/150 where carriers had a 39% reduction in mean plasma 

triglycerides (P=6x10-9) compared to non-carriers 30. The rare variants contributing to the 

gene-based association signal in discovery whole-exome sequencing (one missense, one 

nonsense and two splice-site) were further genotyped in 34,002 CAD patients and 76,968 

disease-free controls of European, African, and Hispanic ancestry across 15 studies within 

the NHLBI-GO ESP 6500. A total of 498 individuals (113 cases and 395 controls) were 

found to be heterozygous for at least one of the genotyped variants and a 40% decreased 

risk for CAD compared to non-carriers (OR 0.60; P=4x10-6) after adjusting for principle 

components 30.  

An antisense inhibitor of APOC3 mRNA (ISIS 304801) has recently demonstrated 

promising clinical efficacy in treating patients suffering from severe hypertriglyceridemia. 

Gaudet et al. 2014 recruited three patients presenting with triglyceride levels ranging from 

15.9 to 23.5 mmol/L 30. All patients harboured either a homozygous or trans compound 

heterozygous mutation in LPL which compromised the catalytic activity of each copy by 

95% 30. Patients were administered ISIS 304801 at a 300 mg dosage once a week over a 

13 week period and were evaluated in comparison to the initial baseline measurements. At 
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end of treatment, plasma triglyceride levels declined by 56 to 86% across all three patients 

with 2/3 patients reaching levels as low as 2.6-2.8 mmol/L during the treatment period 30. 

These findings, when taken together with the aforementioned association between APOC3 

and CAD, provide tremendous promise that pharmacological modification of plasma 

triglycerides may be preventative for CAD development or associated complications. 
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Table 1.3: Summary descriptions of genes conferring protection against CAD when harbouring LOF mutations. P-values and 

odds ratios correspond to the association between mutation carrier status and CAD. 

Gene 

Mutation carrier 

frequency in 

CAD 

cases/controls 

(%) 

P-value 
Odds ratio  

(95% CI) 

Pharmacological 

inhibitor 
Drug type 

Effect of pharmacological 

inhibitor in clinical trials 

ǂ 

NPC1L1 0.04/0.09 0.008 
0.47 (0.25-

0.87) 
Ezetimibe 

Small 

molecule 

inhibitor 

 

6.4% risk reduction for 

CVD death, MI, unstable 

angina (with 

hospitalization), coronary 

revascularization, or stroke. 

 

APOC3 0.3/0.5 4x10-6 
0.60 (0.47-

0.75) 
ISIS 304801 

Small 

inhibitory 

RNA 

 

56 to 86% decrease in 

plasma triglycerides. 

 

ANGPTL4 0.07/0.13 0.04 0.47 (NA) REGN1001 
Monoclonal 

antibody 

 

42% and 31% decrease in 

plasma triglycerides for 

mice and non-human 

primates, respectively. 

 

ǂ percent values represent difference in relative risk between control and treatment groups 
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1.8 Pathophysiology of CAD 

 

The molecular mechanisms underlying CAD pathogenesis can offer tremendous 

value in facilitating the prioritization of statistically significant genes associated with a 

disease phenotype. This will ultimately serve to discriminate genes that have a potential 

role in disease progression from those that are statistical artefacts. 

The development of CAD can largely be attributed to disturbances in homeostatic 

maintenance of inflammatory and metabolic pathways that collectively contribute to the 

formation of atherosclerotic plaques within the coronary arteries. Plaque development is a 

highly progressive process with clinical complications such as angina and myocardial 

infarction typically arising in men > 55 and women > 65 years of age 33. Plaque formation 

begins when the arterial endothelium encounters excessive concentrations of plasma Low-

Density Lipoprotein Cholesterol (LDL-C), which is responsible for transporting 

endogenous cholesterol from the liver to extra-hepatic tissues 34. Upon reaching a variable 

threshold concentration within the vasculature, plasma LDL-C will transcytose through the 

arterial endothelial monolayer and enter the sub-endothelial space known as the tunica 

intima, which represents the foci of atherosclerotic plaque development 33,34. Following 

transcytosis, LDL-C particles become vulnerable to enzymatic, cell-mediated oxidation, 

primarily from myeloperoxidases and lipoxygenases expressed by resident macrophages 

and endothelial cells, respectively 33–35. Oxidized LDL-C (oxLDL-C) is highly atherogenic 

as it contributes to chemo-attraction of pro-inflammatory cells, endothelial cell 

dysfunction, and vascular smooth muscle cell (VSMC) proliferation which are all 

necessary processes for establishing the initial stages of plaque development. 
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1.8.1 Chemo-attraction of pro-inflammatory cells  

Resident macrophages within the tunica initma express scavenger receptors such 

as scavenger receptor class A member I/II (SCARAI/II) and scavenger receptor class B 

member I (SCARB1) that facilitate phagocytosis of cellular debris, apoptotic cells, and 

foreign organisms 33. These receptors have shown to display high affinity to oxLDL-C 

compared to standard LDL-C due to the increased hydrophilic incurred upon cell-mediated 

enzymatic oxidation. The scavenger receptors facilitate the uptake of oxLDL-C which 

causes a significant increase in their intracellular lipid content and results in intimal 

macrophages adopting a “foam”-like appearance (foam cells) 33,34. This phenotypic change 

is accompanied by increased secretion of pro-inflammatory cytokines such as macrophage-

colony stimulating factor (mCSF) and monocyte chemo-attractant protein 1 (MCP-1) 

which act collectively to recruit pro-inflammatory monocytes to the early plaque foci 33. 

Upon reaching the intimal layer, recruited monocytes readily differentiate into 

macrophages and further internalize oxLDL-C to become foam cells which accumulate and 

contribute to the formation of a fatty-streak.  

 

1.8.2 Endothelial cell dysfunction 

 

The pro-inflammatory milleau generated by migration of innate immune cells into 

the arterial intima induces the expression of lectin-like oxidized receptor 1 (LOX1) on the 

surface of endothelial cells 36. LOX1 is able to preferentially bind oxLDL-C ligand which 

results in a nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) 

mediated intracellular cascade, leading to transcriptional activation of endothelial adhesion 

molecules such as intercellular adhesion molecule 1 (ICAM-1) and vascular-cell adhesion 



M.Sc. Thesis – Ricky Lali              McMaster University – Biochemistry and Biomedical Sciences 

26 
 

molecule 1 (VCAM-1) 37. These adhesion molecules mediate the process of extravasation 

of pro-inflammatory monocytes which involves rolling adhesion of these cells across the 

surface endothelial layer followed by paracellular transport into the arterial intima.  

Additionally, the NF-kB mediated intracellular cascade, induced by LOX1-oxLDL-

C interaction, enhances endothelial transcription of chemokine c-c motif ligand 3 (CCL3) 

and chemokine c-c motif ligand 4 (CCL4) chemoattractants which are able to recruit type 

1 T helper (TH1) cells to the arterial intimal via extravasation 36. TH1 cells play an active 

role in exacerbating the atherosclerotic plaque and are largely responsible for the 

manifestation of clinical complications such as MI (discussed in section 1.7).  

 

1.8.3 VSMC proliferation and migration 

 

VSCMCs exhibit both contractile and synthetic properties as they are actively 

involved in maintaining vasomotor tone and synthesizing extracellular matrix (ECM) 

proteins such as elastin and collagen which provide the arteries with structural integrity. 

Presence of oxLDL-C has been shown to induce VSMC proliferation and migration from 

the tunica media to the intimal layer where they participate in the formation of a fibrous 

cap that surrounds the lipid-rich fatty streak. Specifically, oxLDL-C stimulate secretion of 

growth factors such platelet derived growth factor (PDGF) and basic fibroblast growth 

factor (bFGF) from endothelial cells which collectively shift VSMCs from a quiescent, 

contractile state to a proliferative, migratory phenotype whilst up-regulating their capacity 

to synthesize ECM proteins (mainly Type IV and V collagens). The increased deposition 

of collagen within the arterial intima results in the formation of a fibrous cap that envelopes 

the fatty streak and prevents it from advancing into the arterial lumen. However, as the 
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fibrous cap progressively enlarges, it can begin to narrow the luminal area and occlude 

blood flow, leading to localized tissue ischemia and subsequent infarction if the plaque is 

sufficiently advanced. 

 

1.9 Mechanisms of Acute Coronary Syndromes 

 

Acute Coronary Syndromes (ACS) refer to any set of clinical outcomes consistent 

with coronary vessel occlusion and myocardial ischemia 34. There are three primary 

outcomes defined by the American College of Cardiology (ACC) that demonstrate high 

prevalence amongst individuals with CAD: unstable angina (UA), non-ST-elevated 

myocardial infarction (NSTEMI) and ST-elevated myocardial infarction (STEMI) 38. 

These outcomes range in clinical severity in terms treatment strategies and patient 

prognosis (Figure 1.5A) and typically manifest based on both the degree of coronary vessel 

occlusion and structural integrity of the fibrous cap.  

UA and NTEMI are collectively categorized as non-ST-elevated acute coronary 

syndromes (NSTEACS) and result from transient or intermittent obstruction of blood flow 

due to narrowing of the arterial lumen by progressive plaque growth 38. NSTEACS 

manifest as irregular pains that occur in the chest, arm, and/or jaw in the absence of physical 

exertion 35. Additionally, the pain does not typically alleviate with rest or short-term 

pharmacological interventions such as calcium-channel blockers (diltiazem) or 

vasodilators (nitroglycerin) 35,38. The most prominent distinction between UA and 

NSTEMI is the presence of plasma cardiac troponin I (cTnI) and T (cTnT), which are 

diagnostic of more extensive myocardial ischemia 35. 
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Unlike NTSEACS, cases of STEMI are attributed to sudden death or immediate 

need of clinical involvement through percutaneous coronary intervention or coronary 

bypass surgery 35. This is largely a consequence of unstable fibrous caps which can rupture 

and expose lipid-laden core of the atherosclerotic plaque to the clotting factors circulating 

in the arterial lumen 35,39. Due to the thrombogenecity of the lipid core, contact with clotting 

factors will lead to the formation of a thrombus at the rupture site which will frequently 

cause complete vessel occlusion and manifest as a clinically severe acute ischemic event 

(Figure 1.5B) 40. Atherosclerotic plaques with high macrophage and TH1 content tend to 

be particularly susceptible to plaque rupture as cross-talk between these cells mediate the 

degradation of interstitial collagens via matrix-mettaloproteinases (MMPs) 33,39. MMPs are 

proteolytic enzymes that exhibit high affinity toward interstitial collagens and are 

overexpressed in inflammatory states due to the binding of CD40 ligand (TH1 derived) to 

CD40 expressed on the cell surface of macrophages 40. This interaction can induce 

increased macrophage expression of MMPs which ultimately results in the degradation of 

the fibrous cap, rendering it vulnerable to rupture.  
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Figure 1.5: Summary of ACS. (A) Schematic of the continuum of clinical severity for 

types of ACS observed as a result of CAD. (B) depiction of thrombus formation due to 

a thin fibrous cap resulting in complete vessel occlusion and STEMI (B). Panel B was 

taken from Libby et al. 2013 40. 
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2.1 Introduction 

Seminal epidemiological analyses have consistently demonstrated that genetic 

factors profoundly impact the risk for developing CAD among young individuals 8–10. 

These observations are founded on the principle that patients presenting with CAD at an 

early age are unlikely to have been chronically exposed to common risk factors that may 

have otherwise mediated disease onset (described further in section 1.1). As such, 

considerable interest has been drawn towards conducting extreme phenotype sampling 

(EPS)  where individuals are selectively recruited from the tails of a given continuous 

phenotypic distribution (e.g. age) in order to enrich for rare causal alleles in CAD cases 

and protective alleles in disease-free controls. Therefore, EPS can lead to substantial 

increases in statistical power to detect rare variant association signals 41,42 which would 

otherwise have to be addressed through exorbitantly large sample sizes.  

Power estimates are also expected to increase through the biological validation of 

putative disease-causing variants within candidate genes that participate in molecular 

pathways known to be involved in CAD pathogenesis 43. Specifically, the effects variants 

discovered through next-generation sequencing technologies can be ascertained by 

functionally profiling their effects in in vitro cellular models as opposed to relying on in 

silico pathogenicity scores which cannot always accurately discriminate between neutral 

and risk alleles, especially among missense variants. Therefore this strategy allows for the 

stringent filtering of non-functional neutral alleles that dampen rare variant association 

signals by leveraging basic science techniques of site-directed mutagenesis and 

overexpression 
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Therefore, employing both EPS and biological validation techniques in rare variant 

association studies of CAD will vastly empower the ability to identify rare causal variants 

and establish sound phonotypic correlates at the molecular level. 

We herein propose our pilot study – DECODE, a comprehensive investigation of 

an early-onset CAD (EOCAD) cohort that will undergo whole-exome sequencing to 

identify rare variants of high effect that can be biologically profiled in order to identify 

genes that are causally linked to CAD. Through this endeavor, we aim to refine our 

understanding of the genetic determinants underlying CAD and account for the heritability 

not currently explained by common variants. 

 

2.2 Hypothesis 

 

1.) We hypothesize that rare genetic variation within the protein coding regions of the 

genome play a vital role in CAD development, especially in individuals with very 

early CAD. We propose that genomic and in vitro cellular analyses of early-onset 

CAD-case samples can discover genes harbouring these variations and elucidate 

their biological consequences by leveraging extreme phenotypic sampling and the 

use of well-defined external and internal control datasets. 

 

2.3 Primary objectives 

 

1.) To identify and biologically characterize rare, protein-altering genetic mutations 

responsible for very early CAD using burden and variance component testing under 

case-only and case-control study designs. DECODE study participants will be 

consented and their blood will be drawn for downstream genomic, macrophage and 
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stem cell analysis. These analyses will act to determine the genetic contributors to 

early onset CAD and assess their phenotypic and functional consequences in the 

context of vascular abnormalities. 

2.) To develop per-sample correction factors that can be used to calibrate ‘N of 1’ 

benchmarking analyses in practical applications such as rare variant association 

testing and calculation of rare variant gene scores. 

3.) To determine the prevalence of monogenic dyslipidemias (especially familial 

hypercholesterolemia) in young, angiographically-proven CAD patients by 

evaluating rare, protein-altering variants in known genes. In doing so, we aim to 

establish criteria for familial hypercholesterolemia screening in early CAD patients. 

 

2.4 Methods 

 

 

2.4.1 Study population 

 

A total of 55 participants were recruited into the DECODE study through both Hamilton 

Health Sciences Heart Investigation Unit and Lipid Clinic from September 2014 to May 

2016. In order qualify for inclusion, all individuals had to exhibit angiographically-proven 

CAD with at least 70% stenosis in a single coronary vessel at age 40 or under for males 

and 45 or under for females. Individuals with co-morbidities including chronic kidney 

disease (CKD), type I diabetes mellitus, insulin-dependent type II diabetes mellitus, 

chronic hepatitis, HIV, vasculitis, systemic autoimmune disease, or chronic consumers of 

amphetamine/steroids were deemed has having a secondary cause of CAD and were not 

further considered as study candidates. This study has received annual approval from the 
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Hamilton Research Ethics Board since conception and is in full compliance with the 

Declaration of Helsinki. All eligible individuals provided written consent to participate in 

this study. 

2.4.2 Blood collection protocol 

 

All DECODE study participants underwent cardiac catheterization at the Hamilton Health 

Sciences Heart Investigation Unit. 10mL whole-blood was drawn into 3 purple-top EDTA 

vacutainers for genomic, stem cell and macrophage analysis. Blood was also drawn into 

PaxGene RNA tubes for gene expression analysis (Figure 2.1). For the genomic arm, DNA 

was extracted from peripheral blood leukocytes using the QIAsymphony SP with the 

QIAsymphony DNA mini kit (QIAGEN). Samples were thereafter quantified on the Qubit 

2.0 fluorimeter using Qubit dsDNA High Sensitivity assay kit (Life Technologies) prior to 

library preparation for sequencing. 

 

2.4.3 Ion AmpliseqTM exome library preparation 

 

PCR-based exome enrichment was used to prepare exome libraries using the Ion 

AmpliSeqTM Exome RDY Panel and Library Kit Plus with HiQ chemistry (Life 

Technologies). Briefly, unique 2X Exome Primer Pools and PCR master mix (5X Ion 

AmpliSeqTM HiFI Mix, Nuclease-free Water) were added to 100 ng of starting DNA across 

12 wells and amplified on the Veriti 96-well Thermal Cycler (Life Technologies) using 

standard parameters defined for Ion AmpliseqTM enrichment (Table 2.1). PCR reactions 

were pooled into single wells to generate per sample whole-exome libraries. Library 

amplicons were ligated with Ion XpressTM barcode and P1TM adapter sequences for cross-
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sample pooling and hybridization to Ion Sphere Particles (ISPs), respectively for template 

preparation. Ligated exome libraries were normalized to 100 pm after quantification using 

quantitative PCR (qPCR) on the ViiA 7 platform (Life Technologies) using the Ion Library 

TaqMan® Quantitation Kit.
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Figure 2.1: Blood collection workflow for the genomic, stem-cell, macrophage, and gene-expression arms of the DECODE 

study.  Blood collection and specimen processing/storage was performed by OPSCC and Clinical Research and Clinical Trial 

(CRCTL) personnel, respectively at the Hamilton General Hospital.
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Table 2.1: PCR run parameters for Ion AmpliseqTM exome enrichment. 

Stage Temperature (oC) Time (minutes) Cycles 

Polymerase activation 99 2:00 1 

Denaturation 99 0:15 

10 Elongation 60 16:00 

Annealing 60 16:00 

 

2.4.4 Template preparation 

 

For sequencing on the Ion S5XLTM instrument, barcoded exome libraries were pooled in 

groups of 2 and loaded onto the Ion Chef TM platform with Ion 540TM Chef Reagents and 

Ion S5TM Solutions (Life Technologies). Here, library amplicons hybridize with ISPs and 

are clonally amplified with emulsion PCR using biotin-complexed primers. Template-

positive ISPs are enriched using streptavidin bead pull down and are treated with NaOH 

(8M) to remove the complimentary strand bound to the biotin-complexed primers. Single-

stranded DNA template-ISP complexes were thereafter loaded in 2 plex onto the Ion 540TM 

chip (Life Technologies). Samples sequencing on the Ion ProtonTM instrument underwent 

template preparation using the Ion PITM Template OT2 200 Kit v3 and the Ion One Touch 

2 system (Life Technologies). Single-stranded DNA template-ISP complexes were loaded 

in 2-3 plex onto the Ion P1TM chip (Life Technologies). 

 

2.4.5 Exome sequencing and read mapping 

 

Prepared template DNA underwent semiconductor-based long-read sequencing on the Ion 

ProtonTM and Ion S5XLTM platforms (Life Technologies) at the Genetics and Molecular 
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Epidemiology Laboratory at the David Braley Cardiac, Vascular and Stroke Research 

institute. Prior to variant calling, reads are pre-processed to trim adapter sequences and 

low-quality base calls at their 3’ ends since higher quality base calls tend to be concentrated 

closer to the 5’ end where the flow signal is strongest. Quality trimming is conducted using 

phred-scaled, per-base quality scores and initiates once these quality scores fall below a 

pre-specified threshold. Bases falling below this threshold will thereafter be excluded from 

downstream analysis. Trimmed reads that exhibit a short length (< 8 bp), contain adapter 

dimers, or lack sequencing keys are filtered from analysis in order to facilitate their 

downstream alignment. Additionally, polyclonal reads (i.e. reads from multiple templates 

on a single ISP) are filtered out in order to optimize flow signal strength. 

Pre-processed reads (mean ~250bp) were aligned to the GRCh37/hg19 human reference 

genome assembly using version 5.2 of the torrent mapping aligning program (TMAP 5.2) 

(Life Technologies). TMAP functions by first generating a composite list of Candidate 

Mapping Locations (CML) using various subsets of four established alignment algorithms 

(BWA-short, BWA-long, Sequence Search and Alignment Hashing Algorithm, and Super-

maximal Exact Matching). The CML lists are used to align reads to the reference assembly 

using the Smith Waterman Algorithm in order to obtain multiple alignment sets which can 

be aggregated together to elucidate the alignment set with the highest overall mapping 

quality. The most optimal alignment set represents the Binary Alignment (BAM) file that 

is used as the input to evaluate candidacy of potential variants. 

Following read alignment, duplicate reads are typically marked and removed using and 

picard mark duplicates and samtools remove duplicates, respectively.  However, reads 
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generated using Ion AmpliseqTM Exome panel should not be undergo duplicate marking 

and removal as the reads are expected to have the same start sites due to PCR-based exome 

capture. As such, duplicate removal could potentially result in an underestimation of 

coverage at a given variant site, which could ultimately compromise the overall sensitivity 

of the final variant call set. 

 

2.4.6 Sequencing quality control 

 

Per-base depth of coverage values were computed using the GATK DepthOfCoverage tool 

across Ion AmpliseqTM Exome target regions. In house shell scripts were subsequently used 

to calculate 3 coverage-based metrics to assess the quality of a given exome: 1) mean depth 

of coverage across target bases, 2) proportion of target bases covered by at least 20 reads 

(% > 20X coverage), and 3) the proportion of target bases covered by at least 0.2% of the 

mean depth of coverage (coverage uniformity). Samples that were lower bound outliers (< 

Q1-1.5xIQR) in any of these metrics after initial sequencing were re-sequenced and 

combined with their previous exome in order to achieve higher quality. Additionally, any 

samples achieving < 75% 20X coverage were also re-sequenced and combined with their 

previous exome regardless if they were outliers in this category or of their performance in 

the other coverage-based sequencing metrics. 2 additional metrics were used to gauge 

sequencing quality independent of coverage: 1) proportion of reads mapped to target 

regions (% on-target reads), and 2) proportion of bases with a phred scaled quality of at 

least 20 (% Q20 bases). Lower-bound outliers in these 2 categories underwent both library 

preparation and sequencing again and kept independent of their previous exome. Both non-
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coverage-based metrics were obtained directly from the ion torrent browser. All metrics 

were stratified according to sequencing platform (Ion ProtonTM or Ion S5XLTM), number 

of samples loaded onto sequencing chip (3plex or 2plex), and template preparation strategy 

(IonChefTM or IonOneTouchTM). 

 

2.4.7 Variant calling 

 

Single nucleotide variants (SNV) and insertion/deletions (INDEL) were called with version 

5.2 of the Torrent Variant Caller (TVC 5.2) (Life Technologies) from pre-processed BAM 

files according to variant filtering parameters defined in germline, low-stringency settings 

by Ion Torrent (Table 2.2). Briefly, genotype likelihoods were assigned for candidate 

variants and were used to compute the posterior probability of a variant genotype 

(heterozygous (0/1) or homozygous alternate (1/1)) using Bayesian or Frequentist methods. 

Variants that were successfully genotyped were subsequently filtered if they exhibited low 

depth of coverage (DP ≤ 5.0 SNV; DP ≤ 10.0 INDEL), low phred-scaled quality (QUAL 

≤ 15.0 SNV; QUAL ≤ 20.0 INDEL), low alternate allele count to read ratio (AF < 0.1 SNV; 

≤ 0.25 INDEL ), high strand bias (STB ≥  0.98 SNV; STB ≥ 0.90 INDEL), mapped to large 

homopolymer regions (HRUN ≥  8 SNV & INDEL), high degree of signal shift (RBI ≥  

0.25 SNV & INDEL), or low relative rad quality (MLLD ≤ 5 SNV & INDEL).  

Homozygous reference calls were generated by creating a hotspot variant call file (VCF) 

from the previously combined callset using the TVC utils prepare_hotspot function. 

Variants were individually re-called across all samples using the hotspot VCF as an input 
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file. Variants present within the hotspot VCF but absent in the individual sample VCF were 

assigned either a missing (./.) or homozygous reference (0/0) genotype.  

Variant data for each sample was formatted in variant call format (VCF) to display the 

chromosome, genomic position (hg19), reference allele, alternate allele, variant phred-

scaled quality, pass/fail status, sequencing metrics and genotyping metrics for all variants. 

Variants were identified and genotyped individually across all samples and then merged 

into a single VCF file using the Genome Analysis Toolkit’s (GATK) 44 CombineVariants 

tool. 

 

Table 2.2: Quality metrics and thresholds used in germline, low stringency settings to filter 

out low-quality variant calls  

TVC filtering 

parameters 

SNV 

threshold 

INDEL 

threshold 
Short description 

Depth of 

coverage (DP) 
≤ 5 ≤ 10 

Number of reads aligned to candidate 

variant site 

Phred-scaled 

variant quality 

(QUAL) 

≤ 15 ≤ 20 
The probability that a candidate variant 

is not an error 

Alternate allele 

count to read 

ratio (AF) 

≤ 0.10 ≤ 0.25 

Ratio of number of reads calling a 

variant allele to the total reads aligning 

to candidate variant site 

Strand bias 

(STB) 
≥ 0.98 ≥ 0.90 

Reads with variant allele are mapped 

disproportionately to either forward or 

reverse strand 

Homopolymer 

run (HRUN) 
≥ 8 ≥8 

Number of successive identical 

nucleotides in reference sequence 

harbouring a candidate variant 

Signal shift 

(RBI) 
≥ 0.25 ≥ 0.25 

Deviation between predicted and 

observed flow signal 
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Relative read 

quality (MLLD) 
≤ 5 ≤ 5 

Difference in mean log likelihood that 

the reads covering a candidate variant 

site are in support of either a variant call 

or a reference allele (based on read 

mapping quality and base quality scores) 

 

Additional variant filtering was conducted according to threshold values published in a 

benchmarking analysis conducted by Damiati et al. 2016 45. Briefly, variants generated 

from the NA12878 HapMap sample using the Ion AmpliseqTM library preparation pipeline 

and TVC 5.2 (NA12878-Ampliseq) were assessed for accuracy against the gold standard 

variants from the NA12878 consensus sequences obtained from the Genome in a Bottle 

(GIAB) consortium (NA12878-GIAB) 46.  The proportion of true positive variants (variants 

and corresponding genotypes observed in NA12878-Ampliseq that concordantly matched 

NA12878-GIAB) and false positive variants (variants and corresponding genotypes 

observed in NA12878-Ampliseq that discordantly matched NA12878-GIAB) were 

evaluated based on 11 TVC filtering parameters. A total of 5/11 filtering parameters that 

best differentiated true positive from false positive variants were chosen for both SNVs 

and INDELs (Table 2.3). The stringency of the filtering thresholds were demarcated as 

low, medium, and high which corresponded to 90, 95, and 99% of true positive calls 

retained within the in NA12878-Ampliseq variant call set, respectively. 
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Table 2.3: Damiati variant filtering thresholds for SNVs and INDELs at 3 stringency levels 

(adapted from Damiati et al. 2016) 

  SNV filtering parameters 

Stringency 

% true 

positives 

retained 

Genotype 

quality 
Strand bias 

Variant 

quality 

Flow 

evaluator 

alternate 

allele 

counts † 

Flow 

evaluator 

depth of 

coverage 

† 

Low 99 ≤ 5 ≥ 0.90 20 ≤ 2 ≤ 6 

Medium 95 ≤ 8 ≥ 0.70 20 ≤ 2 ≤ 6 

High 90 ≤ 20 ≥ 0.60 30 ≤ 2 ≤ 10 

  INDEL filtering parameters 

Stringency 

% true 

positives 

retained 

Genotype 

quality 

Length of 

homopolymer 

stretch 

Variant 

quality 

Flow 

evaluator 

alternate 

allele 

counts † 

Flow 

evaluator 

depth of 

coverage 

† 

Low 99 ≤ 5 ≥ 6 ≤ 20 ≤ 4 ≤ 10 

Medium 95 ≤ 8 ≥ 5 ≤ 30 ≤ 4 ≤ 20 

High 90 ≤ 20 ≥ 4 ≤ 40 ≤ 4 ≤ 25 

† Flow evaluator filtering parameters represent values predicted according to flow signal 

information. 

 

2.4.8 Variant annotation 

 

All variants passing filtering QC underwent gene based annotation using the ANNOVAR 

geneanno pipeline with the refGene database 47. Specifically, variants were classified to 1 

of 9 genomic regions (Table 2.4): 1) exonic, 2) splicing, 3) non-coding RNA (ncRNA), 4) 

UTR5, 5) UTR3, 6) intronic, 7) upstream, 8) downstream, or 9) intergenic and annotated 

to the gene harbouring the variant in question. Variants classified as exonic were further 

classified according to 8 mutation types (Table 2.5):  1) frameshift insertion, 2) frameshift 
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deletion, 3) stopgain, 4) stoploss, 5) nonframeshift insertion, 6) nonframeshift deletion, 7) 

nonsynonymous SNV, 8) synonymous SNV. Nonsynonymous SNVs were annotated with 

5 in silico pathogenicity algorithms to assess whether they conferred deleterious/damaging 

effects on protein function using version 3.0 of the dbNSFP database (dbNSFP v.3.0) 48 

(Table 2.6): 1) Sorting Intolerant From Tolerant (SIFT), 2) Polymorphism Phenotyping 2 

HumDiv (Polyphen-2-HDIV), 3) Polymorphism Phenotyping 2 HumVar (Polyphen-2-

HVAR), 4) Combined Annotation Dependent depletion (CADD), and 5) Mendelian 

Clinically Applicable Pathogenicity (M-CAP) 49. Lastly, variants were annotated according 

to their corresponding allele frequencies and counts in major external exome sequencing 

databases using in-house shell scripts. These databases included the 1000 Genomes Phase 

3 Project (1KGP3)  50, NHLBI GO Exome Sequencing Project (NHLBI GO ESP) 6500 51, 

and version 0.3 of the Exome Aggregation Consortium (ExAC v0.3) 20,21. 

 

Table 2.4: Genomic region annotation descriptions 

Mutation 

type 
Short description 

Exonic Sequence within the coding region (exon) of a gene 

Splicing 2-bp sequence corresponding to splice donor/acceptor sites 

ncNRA 
Sequence corresponding to an un-translated, functional RNA 

molecule 

UTR5 
Sequence corresponding to the untranslated region on the 5’ end of a 

gene 

UTR3 
Sequence corresponding to the untranslated region on the 3’ end of a 

gene 

Intronic Sequence within the non-coding region of a gene 

Upstream Sequence within 1 kb upstream of transcription start site 

Downstream Sequence within 1 kb downstream of transcription end site 
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Intergenic Sequence corresponding to non-coding regions between genes 

 

 

Table 2.5: Mutation type descriptions 

Mutation type Short description 

Frameshift insertion 
Nucleotide insertion that alters the reading frame of the mRNA 

transcript 

Frameshift deletion 
Nucleotide deletion that alters the reading frame of the mRNA 

transcript 

Stopgain SNV that results in a premature stop codon 

Stoploss SNV that results in loss of a native stop codon 

Nonframeshift 

insertion 

Nucleotide insertion that maintains the reading frame of the 

mRNA transcript 

Nonframeshift 

deletion 

Nucleotide deletion that maintains the reading frame of the 

mRNA transcript 

Nonsynonymous 

SNV 
SNV that results in an amino acid substitution 

Synonymous SNV 
SNV that results in maintenance of the reference amino acid 

(i.e. silent mutation) 

 

 

Table 2.6: In silico pathogenicity score descriptions 

In silico 

pathogenicity 

algorithm 

Mutation types 

annotated 
Pathogenicity prediction 

SIFT Nonsynonymous SNV 

Amino acid conservation at the variant site 

is assessed by comparing sequence 

homology to closely related species. 

Amino acid substitutions within highly 

conserved proteins or protein domains are 

deemed more deleterious. 
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Polyphen-2-

HDIV 
Nonsynonymous SNV 

A Naïve Bayes classifier trained using 

supervised machine learning is trained 

using variants that are known to be 

causative for Mendelian diseases as 

curated in in the UniprotKB database as 

the diseased set. Polymorphic variants in 

related species that are known not to 

induce a functional effect as curated in the 

UniprotKB database are used as the benign 

set. 

Polyphen-2-

HVAR 
Nonsynonymous SNV 

A Naïve Bayes classifier trained using 

supervised machine learning is trained 

using all known disease-causing variants 

as curated in in the UniprotKB database as 

the diseased set. Variants classified as 

common (MAF >1%) with no known 

involvement in disease onset were used as 

the benign set. 

CADD 

Nonsynonymous SNV, 

nonframeshift 

insertion/deletion, 

frameshift 

insertion/deletion, 

intronic, intergenic 

A support vector machine with linear 

kernel based on 63 annotations  is trained 

on ~14 million observed human-

chimpanzee allelic variations with an allele 

frequency > 95% in the human genome 

(i.e. fixed alleles) as the diseased set 

compared to ~14 million simulated 

variants as the benign set. 

M-CAP Nonsynonymous SNV 

A gradient boosting tree classifier trained 

using known rare, pathogenic missense 

variants in the Database of Human Genetic 

Data (HGMD) as the disease set and rare, 

missense variants in ExAC as the benign 

set. 
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2.4.9 Sex check 

 

Genetic sex was determined by calculating the heterozygous to non-reference homozygous 

ratios for X-chromosome variants using an in-house shell script. Ratios were subsequently 

plotted to establish genetically defined male/female clusters. Samples demonstrating 

inconsistency between reported and genetically determined sex were flagged. 

 

2.4.10 Ethnicity check 

 

Variants used for ethnicity check were comprised of low-frequency and common SNVs 

(MAF>0.01) with call-rates > 99%. All variants also underwent LD-pruning using plink 

v1.9 52 with a window size of 100, window shift of 50, and an r2 threshold of 0.2.  

Eigenvectors corresponding to the first 20 principle components were determined using 

plink v1.9 52. The first 2 principle components were used as dependent and independent 

variables identify ethnic clustering. Eigenvectors for the same principle components were 

also calculated for reference ethnicities from HapMap 3 which were used to identify 

discrepancies in reported versus genetic ethnicity. Reference HapMap data was obtained 

from the HapMap ftp repository: ftp://ftp.ncbi.nlm.nih.gov/hapmap/genotypes/hapmap3/.  

 

2.4.11 Genotypic concordance 

 

All sequenced individuals were genotyped on the HumanCoreExome Beadchip (Illumina). 

Sequence and genotype data was evaluated for overall genotypic concordance using the 

GATK GenotypeConcordance tool 44. Overall concordance was evaluated over the 

intersection of sites in sequencing and genotype data and was calculated as the proportion 

of total genotypes that were concordant (i.e. N concordant genotypes / total genotypes). 

ftp://ftp.ncbi.nlm.nih.gov/hapmap/genotypes/hapmap3/
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2.4.12 Sequencing quality metrics 

 

Per-base depth of coverage values were computed using the GATK DepthOfCoverage tool 

44 across Ion AmpliseqTM Exome target regions. In house shell scripts were subsequently 

used to calculate 3 coverage-based metrics to assess the quality of a given exome: 1) mean 

depth of coverage across target bases, 2) proportion of target bases covered by at least 20 

reads (% > 20X coverage), and 3) the proportion of target bases covered by at least 0.2% 

of the mean depth of coverage (coverage uniformity). Samples that were lower bound 

outliers (< Q1-1.5xIQR) in any of these metrics after initial sequencing were re-sequenced 

and combined with their previous exome in order to achieve higher quality. Additionally, 

any samples achieving < 75% 20X coverage were also re-sequenced and combined with 

their previous exome regardless if they were outliers in this category or of their 

performance in the other coverage-based sequencing metrics. 2 additional metrics were 

used to gauge sequencing quality independent of coverage: 1) proportion of reads mapped 

to target regions (% on-target reads), and 2) proportion of bases with a phred scaled quality 

of at least 20 (% Q20 bases). Lower-bound outliers in these 2 categories were re-sequenced, 

but kept independent of their previous exome. Both non-coverage-based metrics were 

obtained directly from the ion torrent browser. All metrics were stratified according to 

sequencing platform (Ion ProtonTM or Ion S5XLTM). 

 

2.4.13 Statistical analysis 

 

All statistical computations including means and standard deviations (SD) for clinical and 

sequencing data were calculated using R version 3.2.2 unless otherwise stated. Differences 
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in sequencing quality metrics across sequencing platform and exome library preparation 

strategies were assessed using multiple linear regression to account for covariates. 

Differences in variant counts after implementation of Diamati filtering criteria were 

determined with either student’s t-test (parametric) or wilcoxin rank sum test (non-

parametric) depending on if comparison sets were normally distributed. Normality was 

assessed using the shapiro-wilk test for normality. Figures were generated using the 

ggplot2 package. All data in the form 𝑥 +/- 𝑦 represents 𝑚𝑒𝑎𝑛 +/- 𝑆𝐷, unless otherwise 

stated. 

 

2.4.14 Induced pluripotent stem cell workflow 

 

For the stem cell arm of DECODE, patient-specific blood cells will be reprogrammed into 

induced pleuripotent stem cells using ectopic expression of a cocktail of transcription 

factors such as OCT4, SOX2, and Nanog. These cells will be expanded in vitro and 

differentiated into appropriate lineages. Throughout the differentiation process, the 

emergence of a highly proliferative, immature cell type (progenitors) will be monitored 

using a reporter system and proliferation assays (i.e. BrDU/Ki-67 growth curves). The 

derived cells will then be characterized phenotypically and functionally through the use of 

lineage-specific markers and gene expression (RNA-seq), respectively. 
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2.5 Results 

 

 

2.5.1 Clinical features of the DECODE cohort  

 

The DECODE study population included 40 males and 15 females with mean age 

(at time of CAD diagnosis) of 35.8 and 39.6, respectively (Figure 2.2 and Table 2.7). Most 

participants presented with severe coronary disease with 83% having had a NSTEMI or 

STEMI and 58% with significant occlusion in multiple coronary vessels (Table 2.7). 

Additionally, 62% of participants declared positive first-degree family history of 

cardiovascular disease (Table 2.7) including MI (91%), angina (5%), stroke (2%), or 

peripheral artery disease (2%). Prevalence of CAD risk factors included 46% of 

participants being previous or current smokers, 44% having hypertension, 9% having a 

BMI > 40 kg/m2 (mean 33 kg/m2), and 17% having non-insulin dependent type II diabetes 

mellitus (Table 2.5). Median LDL-C and total cholesterol were 3.2 mmol/L and 4.7 

mmol/L, respectively with 20% of participants on statin treatment at time of angiography 

(Table 2.8). 
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Table 2.7: Summary of clinical features for the DECODE cohort (n=55). Median values  

are provided for continuous variables. 

Clinical feature Mean +/- SD (median) or proportion 

Sex  

Male (%) 73 

Age at diagnosis  

All 36.7 +/- 4.3 (37.5) 

Male 35.6 +/- 3.9 (37.0) 

Female 39.7 +/- 4.1 (41.0) 

Clinical outcome (%)  

Stable CAD 17 

NSTEMI 35 

STEMI 48 

No. of diseased coronary vessels (%)  

1 40 

2 34 

3 26 

First-degree family history of CVD (%) 62 

Smoking (%) 46 

Hypertension (%) 44 

Non-insulin dependent diabetes mellitus (%) 17 

BMI > 40 kg/m2 (%) 9 

BMI (kg/m2) 32.6 +/- 7.4 (31.5) 
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Table 2.8: Summary of lipid panel measurements for the  

DECODE cohort (n=55). Median values are provided for continuous  

variables. 

Lipid feature Mean +/- SD (median) or proportion 

LDL-C (mmol/L) 3.26 +/- 1.0 (3.2) 

HDL-C (mmol/L) 0.937 +/- 0.18 (0.92) 

Total cholesterol (mmol/L) 4.85 +/- 1.5 (4.7) 

Triglycerides (mmol/L) 2.31 +/- 2.11 (1.8) 

Statin treatment (%) 20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Age distribution of males and 

females in the DECODE cohort. Dashed lines 

represent the traditional upper-bound age cutoffs 

for males and females used in most 

epidemiological studies to classify CAD as 

early-onset. 
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2.5.2 Ethnic composition of DECODE cohort 

 

DECODE is predominantly composed of individuals with European ancestry (78%). 

However, there remainder of the population is ethnically diverse with representatives of 

multiple ancestries (2 South Asian (6%), 1 African American (2%), 1 Arab (2%), 1 East 

Asian (2%), 2 European-South Asian Mixed (4%), 3 European-Native Mixed (6%), 1 

Latino-Egyptian Mixed (2%)) (Figure 2.3). 

 

 

 

 

 

 

 

2.5.3 Sequencing quality control 

 

Among 6 sequencing based quality metrics (4 coverage-based, 2 non-coverage-based), 

higher mean depth of coverage was found to associate with lower plexity (i.e. 2 plex chip 

loading) (P = 0.003; beta = 51.6) after adjustment for sequencing platform and template 

preparation strategies. Additionally, higher coverage uniformity was associated with 

template preparation on the IonChefTM after adjustment for sequencing platform and 

European/South Asian 

South Asian 

East Asian 

African 

Arab 

Latin/Egyptian 

European/Native 

European 

Figure 2.3: Ethnic distribution of DECODE cohort.  
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plexity (P = 1.4x10-4; beta = 5.6). Across DECODE exomes, % 20X coverage and both 

non-coverage-based metrics (% on-target reads and % Q20 bases) demonstrated consistent 

performance across all strata and were not found to be associated with sequencing platform, 

plexity, or template preparation strategy (P>0.05). 

In an additional ~230 non-DECODE exomes that were also run through the 

IonAmpliseqTM pipeline, the associations for higher mean depth with  2plex chip loading 

and higher coverage uniformity with IonChefTM template preparation strategy were 

validated (P = 3.1x10-15; beta = 29.5 and P = 8.8x10-12; beta = 5.1, respectively). However, 

higher % 20X coverage in non-DECODE exomes was found to associate with both 2plex 

chip loading and template preparation on the IonChefTM (P = 0.007; beta = 3.7 and P = 

0.005; beta = 5.4, respectively). For non-coverage-based metrics in non-DECODE exomes, 

high % on-target reads were modestly (low beta value) associated with 2plex chip loading 

(P = 0.0002; beta = 1.7). No associations were found between % Q20 bases and any strata 

in non-DECODE exomes. After combining DECODE and non-DECODE exomes, another 

modest association between % on-target reads and template preparation on the IonChefTM 

(P = 5.6x10-5; beta = 1.2) was identified. All associations individually determined in 

DECODE and non-DECODE sets were maintained in DECODE + non-DECODE exomes. 
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Table 2.9: Summary (mean +/- SD) of sequencing quality metrics for DECODE cohort 

(n=55) stratified by sequencing platform, plexity, and use of Ion ChefTM or Ion 

OneTouchTM for template preparation and chip loading. Orange and blue shading for 

coverage-based and non-coverage based parameters, respectively. 

Sequencing 

metric 

Ion 

ProtonTM 

Ion 

S5XLTM 3 plex 2 plex 
Ion 

ChefTM 

Ion 

OneTouchTM 

Mean depth 

of coverage 

75.3  

(+/- 21.6) 

110.7  

(+/- 29.2) 

71.7                  

(+/- 

30.1) 

110.9  

(+/-

15.5) 

106.1  

(+/- 

30.5)  

75.4  

(+/- 20.0) 

% 20X 

coverage 

83.7  

(+/- 6.1) 

93.7  

(+/- 4.5) 

83.1  

(+/- 

5.8) 

93.1  

(+/- 

4.9) 

93.0  

(+/- 5.0) 

83.2 

 (+/- 4.9) 

Coverage 

uniformity 

88.5  

(+/- 2.8) 

93.6     

(+/- 2.4) 

88.5  

(+/- 

3.4) 

92.9    

(+/- 

2.5) 

93.6  

(+/- 2.2) 

84.0  

(+/- 2.3) 

% on-target 

bases 

94.9  

(+/- 0.8) 

93.3  

(+/- 1.6) 

95.0    

(+/-0.8) 

93.4  

(+/-1.5) 

93.5    

(+/-1.6) 

94.9  

(+/- 0.7) 

% Q20 bases 

81.0       

(+/- 0.08) 

83.9      

(+/- 0.01) 

81.1     

(+/- 

0.1) 

83.2                

(+/- 

0.02) 

83.6      

(+/- 

0.01) 

80.9  

(+/- 0.09) 

 

2.5.4 Variant counts 

 
Default TVC along with low, medium, and high Damiati filters were applied to all 

reference and variant calls across 55 DECODE exomes as described in section 2.4.6 and 

Table 2.2. Total variant counts deviated significantly across all stringencies (Figure 2.4 and 

Table 2.10). Overall, Damiati low, medium, and high stringencies were on average 5, 13, 

and 35 % lower than default variant filtering settings defined in TVC 5.2, which itself 

resulted in 42102 (95% confidence interval (CI) 41218-42985) total variants calls per 

sample (Figure 2.4). The smallest and largest sequential decrease in variant counts was 

between TVC and low (5%) and medium and high (19%), respectively. All Damiati filters 

were also applied to ~230 non-DECODE exomes to ensure that the pattern observed for 
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the DECODE-specific distribution of variant counts was not due to sampling bias. Overall, 

no significant difference was observed in variant count across each filtering parameter 

between DECODE and non-DECODE exomes (P>0.05 for TVC, low, medium, and high). 

 

Table 2.10: P-values corresponding to difference in total variant counts between all variant 

filtering criteria.  

TVC vs 

Damiati 

low 

TVC vs 

Damiati 

Medium 

TVC vs 

Damiati 

High 

Damiati Low 

vs Damiati 

Medium 

Damiati 

Low vs. 

Damiati 

High 

Damiati 

Medium vs 

Damiati High 

0.002 1.23x10-9 2.21x10-16 1.45x10-4 3.2 x 10-16 3.49x10-10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Total variant counts for 52 DECODE participants 

after filtering with default TVC and all Damiati stringencies. 
Mean values for each filtering criteria are represented by the 

height of the bars. Error bars depict 95% confidence intervals. 
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2.5.5 Sex check 

 
The plotting of heterozygous to non-reference homozygous ratios for X-

chromosome variants (het:hom-X) resulted in defined clustering of males and females 

within the DECODE cohort (Figure 2.4). The difference in het:hom-X values between 

males and females was significant (P = 6.4 x 10-8) with means of 0.28 +/- 0.23 and 1.72 +/- 

0.20, respectively. A single individual (DECODE 0014) with reported male sex 

demonstrated excess heterozygosity on the X-chromosome and was therefore found to 

group with het:hom-X values of reported female participants (arrow in Figure 2.5). This 

individual was subsequently flagged and subject to additional quality control to confirm a 

sex check mismatch (see section 3.3.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: Heterozygous to non-reference 

homozygous ratio for X chromosome variants 

(het:hom-X) for 55 DECODE participants. 
Het:hom-X values are stratified by reported sex 

(male or female). Red arrow represents a reported 

male sample grouping with the het:hom-X values of 

reported female participants. 
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2.5.6 Ethnicity check 

 
No apparent discrepancies between reported and genetic ethnicity were detected. 

 

 

2.5.7 Genotypic concordance 

 

A single sample (DECODE 0014) was determined to have an overall genotypic 

concordance of < 90% between exome sequencing and microarray genotyping data. 

Overall genotypic concordance was 99.4 % (+/- 1.3) across all DECODE participants after 

excluding the aforementioned sample. 

 

2.6 Discussion 

 

We have herein introduced and described  the DECODE study, a multi-arm 

investigation of  52 EOCAD participants that have underwent whole-exome sequencing in 

order to identify rare protein-altering variants of high effect with the goal of delineating 

novel gene-based associations demonstrating both statistical and biological validity with 

CAD. 

We have employed the use EPS to recruit individuals with very early disease in 

order to enrich for rare causal alleles which empowers downstream statistical approaches 

to detect rare variant association signals. In fact, several recent analyses have used 

simulation data to empirically demonstrate substantial increases in statistical power for rare 

variant associations as sampling from phenotypic distributions becomes increasingly 

extreme. This is largely evidenced by substantial increases in the MAF of causal variants 

in extreme populations as the corresponding MAFs in the general population decrease (i.e. 
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the rarer the causal allele is in the general population, the more enriched it will be in an 

extreme cohort) 41. The statistical benefits of EPS have also been demonstrated in 

application-based studies. Peloso et al. 2016 identified that the well-defined association 

between the rare variants in the ABCA1 gene and HDL-C was substantially more 

significant when employing extreme sampling versus random sampling (P = 0.0006 vs P 

= 0.03) when assessing the rare variants in aggregate 42. Moreover, the association signal 

detected in the extreme population required x% fewer participants as compared to the 

random sample to achieve the same study power. As such, this study effectively illustrates 

the ability to identify rare variant association signals using EPS which may only 

demonstrate nominal or no significance with random sampling. 

The stringent upper-limit age cutoffs of ≤ 40 for males and ≤ 45 for females 

establishes DECODE as the youngest cohort to participate in research-based 

cardiovascular genetics study. Typical upper bound age cutoffs to meet early-onset 

requirements for CAD are ≤ 50 for males and ≤ 60 for females 2. Therefore, the 25 and 

33% reductions from traditional age cutoffs for DECODE males and females, respectively 

represents a stringent application of EPS which has yet to be implemented in a research-

focused genetic epidemiological studies of early cardiovascular disease. Our study 

endeavor therefore possesses the ability to identify novel gene-based association signals 

(driven by the enrichment of rare casual variants within extreme samples) which could not 

otherwise be detected with more liberal EPS requirements. 

The gains in statistical power obtained through extreme phenotypic sampling can 

be further supplemented by biologically characterizing putative disease-causing alleles. 
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Thormaehlen et al. 2015 restricted analysis to rare missense variants with confirmed 

functional in vitro effects and observed a 10-fold increase in the strength of association 

between LDLR mutation carrier status and early-MI risk 43. Therefore, functional 

modelling resulted in considerable increases in power to detect exome-wide association 

signals for a given sample size. 

Our approach in performing biological validation of candidate variants discovered 

through exome sequencing meticulously expands upon the methodology employed by the 

aforementioned flagship study. Specifically, by leveraging the differentiation capacity of 

induced pleuripotent stem cells, we are able profile rare protein-altering variants in a tissue-

specific manner in order to assess their functional effects in the appropriate cellular lineage. 

In doing this, we are not limited in our capacity to biologically model variants from across 

exome, which represents a remarkable opportunity to establish novel and sound 

relationships between gene and phenotype. 

Among all DECODE participants, CAD risk factors including smoking, 

hypertension, insulin-dependent diabetes mellitus, and BMI were modestly prevalent 

(Table 2.7) and will have to be adjusted for in downstream analyses in order to avoid 

association signals that are mediated by confounding variables.  Median lipid panel 

measurements were not indicative of cohort-wide dyslipidemia even when taking into 

account use of cholesterol-lowering medications (Table 2.8 which lends evidence to the 

variety of molecular phenotypes that can potentially characterize individuals with EOCAD. 

We further demonstrate potential sequencing workflow optimization in order to 

trend toward achieving higher mean depth, % 20X coverage, and coverage uniformity with 
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IonAmpliseqTM Exomes. Firstly, both mean depth and % 20X coverage can be optimized 

when multiplexing 2 samples per sequencing chip as opposed to 3. This is largely 

attributable to more sequencing wells available per-sample which increases the capacity 

for identical target regions to achieve a high degree of sequence information. This 

ultimately translates to higher absolute coverage. Secondly, we find that use of the 

IonChefTM for template preparation results in higher coverage uniformity by streamlining 

the processes exome library amplification, enrichment and chip loading. The sequential 

automation of these processes ultimately allows for template sequences to effectively 

saturate all wells on a sequencing chip which maximizes the proportion of target regions 

that achieve sequencing read coverage and also minimizes sample to sample variability in 

coverage uniformity incurred by human error. These findings collectively demonstrate the 

importance of identifying associations among core sequencing metrics in order minimize 

preventable loss in data quality. 

In order to evaluate the sensitivity of our variant calls, we leveraged the emergence 

of publicly available consensus sequences have provided the opportunity to conduct 

benchmarking analyses in order to ascertain accuracy of local variant calling/filtering 

algorithms for given sequencing chemistries and workflows. Since consensus sequences 

are devoid of poorly mapped genomic regions (i.e. regions harbouring segmental 

duplications, short tandem repeats, and copy number variations) and contain highly reliable 

variants calls that are mutually detected across multiple sequencing chemistries and variant 

callers, they can serve to modulate the sensitivity and specificity of variant calling/filtering 

procedures based long-term study objectives. The recent work published by Damiati et al. 
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2016 was able to identify 5 variant filtering metrics for SNV and INDELs called from 

exomes generated using the IonAmpliseqTM Exome library preparation strategy and TVC 

45. After employing these filtering criteria at 3 stringency levels (low, medium, and high), 

we observed significant decreases in total variant counts (Table 2.3 & Figure 2.4). While 

gains in positive-predictive value are expected with increased filtering stringency, we are 

also limiting our sensitivity to detect true gene-based associations as we increase variant 

filtering stringency due to the inflation of false negative variant calls. Therefore, it is 

essential implement higher variant filtering stringencies with caution in order to avoid 

missing true associations. Results pertaining to variant calling benchmarking using in-

house sequencing workflows are described in Chapter 6. 

Finally, we used 3 sample level quality control procedures (sex check, ethnicity 

check, and genotypic concordance) that are adept at detecting aberrations during library 

and template preparation such as sample swaps and sample admixtures (i.e. sample 

contamination due to the mixing of DNA from two or more samples). Sex check revealed 

a discrepancy in a sample that was reported male, but demonstrated excess heterozygosity 

for X-chromosome variants which is indicative of female sex. This sample also had low 

overall genotypic concordance, but not to an extent that warrants evidence of sample swap. 

Therefore, these results collectively point to a case sample admixture which is further 

supported by evidence provided in section 3.3.2 where this sample was also found to 

exhibit excess autosomal heterozygosity. Although, no further discrepancies were 

identified among other DECODE participants, it is essential to institute stringent sample-

level quality control in order to prevent the inclusion of samples that could lead to false 
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positive or negative association signals, especially among larger sample sizes where the 

likelihood of observing samples that fail quality control procedures increases by chance 

alone.  
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CHAPTER 3 – Whole Exome Quality Control: Understanding 

Patterns of Genetic Variation 
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3.1 Introduction 

Over the past five years, exome sequencing has demonstrated a marked increase in 

research utility by facilitating the discovery of novel genes involved in complex disease 

susceptibility and protection 2,26,27. In order to reach sound statistical and biological 

conclusions on genetic predisposition, it is essential to conduct robust quality control of 

variant calls at the sample level by leveraging population genetic effects which can assess 

the quantity and distribution of different variant types. Such effects include (but are not 

limited to) the proportion of variants previously identified and curated, ratio of 

heterozygous to homozygous genotypes, and the ratio of transition to transversion 

mutations. Since these metrics are largely dependent upon population genetic phenomena, 

the values obtained from locally sequenced samples can be evaluated against those 

expected due to phenomena such as genetic drift, genetic bottlenecks and purifying 

selection. More formally, the values derived from local sequences can be directly compared 

to corresponding statistics obtained from high-quality sequencing datasets (e.g. 1KGP3). 

This can prove invaluable for detecting quality confounders such as sample contamination, 

sample relatedness and spurious variant calling which can all critically impact the 

outcomes of sequencing based epidemiological analyses. These parameters are also useful 

when assessed in conjunction with sample ethnicity checks since variant types and counts 

differ significantly between genetically diverse and inbred populations, such as in Africans 

and Finnish-Europeans, respectively. Therefore, it is good practice to stratify the 

calculation of these quality control metrics by ethnic composition should there be a 

sufficient number of samples representative of different ancestries. Overall, conducting 
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systematic quality control of sequencing data with population-based metrics can provide a 

comprehensive understanding of the patterns of different classes of genetic variation and 

can be used to mark and remove samples with significant deviations from expected values. 

 

3.2 Methods 

 

SNVs and INDELs called using TVC 5.2 (manufacturer settings) (fully described in section 

2.3.6) for 55 DECODE samples were evaluated through 6 quality metrics ideal for 

sequencing data: 1) percent concordance with dbSNP version 146 53, 2) heterozygous to 

non-reference homozygous ratio, 3) transition to transversion ratio, 4) nonsynonymous 

SNV to synonymous SNV ratio, 5) frameshift INDEL to non-frameshift INDEL Ratio and 

6) singleton counts. Where applicable, these metrics were stratified according to 1) variant 

curation in dbSNP (known/novel), 2) genomic region (non-coding/coding), and 3) MAF 

within coding regions (rare coding/common coding). Singleton counts were further 

stratified according to mutation type (either nonsynonymous or synonymous SNV). 

DECODE sample variants were annotated with rsIDs from the dbSNP 146 database using 

SnpEff software. Variants without a corresponding rsID were identified as novel. Variants 

were annotated to genomic region and mutation type using ANNOVAR geneanno pipeline 

(described in further detail in section 2.3.7) and according to allele frequency using their 

corresponding MAF in the ExAC v0.3 database. Coding variant were defined as falling 

within exons or splice donor/acceptor sites and rare variants were defined has having MAF 

< 1% in all major ExAC ethnicities. 
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Statistical significance between all stratified pairings for the six population genetic 

parameters was tested using either a student’s t-test (parametric) or wilcoxin rank sum test 

(non-parametric) depending on whether the data was normally distributed. Normality was 

tested using the shapiro-wilk test of normality. Due to a small sample size, samples were 

flagged and marked for exclusion only if they demonstrated extreme deviation from the 

sampling distribution (less than or greater than 6 times the inter-quartile range (IQR)) after 

accounting for ethnicity. 

 

3.3 Results and Discussion 

 

 

3.3.1 dbSNP 146 concordance 

 

dbSNP represents a publically available repository of curated multi-ethnic genetic 

variation. Currently, version 146 contains ~ 153 million variant sites (91% SNV and 9% 

INDEL) with more being added to upcoming releases of the database. Concordance with 

dbSNP allows one to determine what proportion of variants called per sample have 

previously been curated (i.e. are considered known). A low proportion of known variants 

is typically indicative of an excess of false positive calls due to poor read alignment or 

liberal variant QC. However, it is essential to stratify dbSNP concordance according to 

MAF since rare variants, by virtue of being inherently in-frequent, will be less likely to 

have been previously reported whereas common variants should be expected to near full 

concordance. This pattern is observed in the DECODE cohort as novel variants composed 

a significant portion of rare relative to common variants (P=3.3 x 10-19) with 99.5% of 

common variants being curated (Figure 3.1B and Table 3.2). Additionally, an increased 
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proportion of known variants was observed among coding regions (P=2.0x10-11) (Figure 

3.1A and Table 3.2). This is likely a consequence of the extensive use of whole-exome 

sequencing strategies in research and clinical-based studies which inherently limits the 

ability to curate non-coding variants. This observation is in stark contrast to earlier reports 

(using older versions of dbSNP) claiming that the majority of coding variation is novel. 

Therefore, it is essential to annotate variants using up to date databases in order to properly 

assess the distribution of novel and rare alleles across the genome. 

 

 

 

A. B. P = 2.00 x 10
-11

 P = 3.29 x 10
-19

 

Figure 3.1: Variant concordance with dbSNP 146 in 52 DECODE participants. 

Percent mean concordance is grouped by (A) genomic region (i.e. coding or non-

coding) and (B) allele frequency in coding regions (common coding or rare coding). 

Error bars depict 95% confidence intervals. The standard error did not deviate 

appreciably from the mean for common coding variants. 
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3.3.2 Heterozygous to non-reference homozygous ratio 

 

The heterozygous to non-reference homozygous (het:hom) ratio is an useful 

parameter to detect sample admixture caused by multi-sample contamination. Admixed 

samples will result in excess heterozygosity due to the presence of multiple alleles at 

candidate non-reference homozygous sites. The genotypes for all variant calls from the 

autosomal chromosomes were evaluated to assess both genotyping quality and degree of 

genetic variation within samples, as non-European samples (that are not founder 

populations) are likely to be more genetically diverse and consequently harbour more 

heterozygous variation. A single sample (DECODE 0014) of mixed European and South 

Asian ancestry demonstrated extreme heterozygosity among all autosomal variants 

(het:hom0014 = 3.3; het:homDECODE (mean +/- SD) = 1.8 +/- 0.1) which is likely a 

consequence of sample admixture. This sample was consequently flagged for downstream 

analysis. The remaining upper-bound outliers represented individuals of South Asian and 

African ancestry (DECODE 0005 and DECODE 0018) and displayed only modest 

heterozygous inflation. Therefore, these samples were not considered to have excess 

heterozygosity, especially when considering their ethnicity among a largely European 

cohort. Novel and rare variants demonstrated significantly higher het:hom ratios compared 

to known and common variants (P = 1.5 x 10-9 and P = 6.7 x 10-15) (Figure 3.2 and Table 

3.2). Homozygous variants (if found to be disease-causing) are predicted to have greater 

effect on disease risk and often result in more extreme disease phenotypes due to gene 

dosage effects. Therefore, it is unlikely that individuals will harbour 2 copies of a 

deleterious variant which explains depletion of homozygous genotypes among novel and 
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rare alleles. No significant association in het:hom ratio was identified when stratified by 

coding and non-coding regions (P>0.05). 

 

 

3.3.3 Transition to transversion ratio 

 

Transitions and transversions are single nucleotide variants that are characterized 

by purine-purine (A <-> G) or pyrimidine-pyrimidine substitutions (C <-> T) (transitions) 

and purine-pyrimidine substitutions (A <-> C; A<->T; G<->C; G<->T) (transversions), 

respectively.  It has been consistently shown that transversion variants are enriched 

amongst protein-altering genetic alterations such as nonsynonymous and nonsense 

P = 6.69 x 10
-15

 P = 1.51 x 10
-9

 A. B. 

Figure 3.2: Heterozygous to non-reference homozygous ratio for variant 

genotypes in 52 DECODE participants. Mean het:hom is grouped according to 

curation (known or novel) (A) and allele frequency in coding regions (common 

coding or rare coding) (B). Due to substantial differences in het:hom ratio between 

common and rare coding variants, the y-axis is plotted on a log scale . Error bars 

depict 95% confidence intervals. 
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mutations compared to transitions which tend to result in silent mutations and a more 

conserved polypeptide sequence 2,18,26,54. Consequently, transversions are not typically 

observed as readily as transitions in protein-coding regions. This may also be partially 

attributable to C to T transitions at CpG dinucleotides. CpG regions are hotspots for 

epigenetic modification as cytosine nucleotides that become methylated can undergo 

spontaneous deamination at the 6’ carbon to generate thymine. This renders CpG 

dinucleotides as highly mutable, resulting in a mutation rate that is nearly 10-fold greater 

than other dinucleotide pairs 55. As such, it is ideal to calculate non CpG transition to 

transversion ratios in order to account for preferential mutation bias.  

In line with this evidence, it is observed that protein-coding regions are depleted 

for transversion variants relative to non-coding regions (P = 1.5 x 10-18) (Figure 3.4 and 

Table 3.2) even after comparing to non CpG transitions. Additionally, there is significant 

abundance of transversions among novel and rare alleles (P = 1.9x10-64 and P = 1.0 x 10-12 

)  (Figure 3.3 and Table 3.2). This supplements evidence that transverions are maintained 

at low frequency by purifying selection to maintain protein-conservation. 
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3.3.4 Nonsynonymous to synonymous SNV ratio 

 

Nonsynonymous (NS) and (S) mutations are SNVs that result in amino-acid 

substitutions and maintenance of the reference amino acid, respectively. Novel and rare 

alleles are enriched for NS mutations (P = 2.9 x 10-30 and P=7.3 x10-33) (Figure 3.4 and 

Table 3.2) since variants that alter conserved protein structure are selected against. 

 

3.3.5 Frameshift to non-frameshift insertion/deletion ratio 

 

Frameshift (FS) and non-frameshift (NFS) mutations result from insertions or 

deletions (INDELs) within the protein-coding regions of the genome. FS INDELs perturb 

the reading frame of the protein-coding sequence which severely disrupts structure and 

function of the translated protein and often results in complete loss-of-function for the 

affected allele. Therefore, FS mutations are strongly selected against and are observed 

Figure 3.3: Non-CpG transition to transversion ratio for variants in 52 

DECODE participants. Mean non-CpG transtion:transversion is grouped 

according to genomic region (coding or non-coding) (A), curation (known or novel) 

(B) and allele frequency in coding regions (common coding or rare coding) (C). 

Error bars depict 95% confidence intervals. 

P = 1.54 x 10
-18

 P = 1.89 x 10
-64

 P = 1.00 x 10
-12

 A. B. C. 
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more frequently among novel and rare alleles (P = 1.5 x 10-18 and P = 1.9 x 10-12 ) (Figure 

3.5 and Table 3.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Nonsynonymous to synonymous SNV ratio for variants in 52 

DECODE participants. Mean NS:S is grouped according to curation (known or 

novel) (A) and allele frequency in coding regions (common coding or rare coding) 

(B). Error bars depict 95% confidence intervals. 

Figure 3.5: Frameshift to non-frameshift INDEL ratio for variants in 52 

DECODE participants. Mean FS:NFS is grouped according to curation (known 

or novel) (A) and allele frequency in coding regions (common coding or rare 

coding) (B). Error bars depict 95% confidence intervals. 

P = 2.91 x 10
-30

 A. B. P = 7.29 x 10
-33

 

P = 1.54 x 10
-18

 A. B. P = 1.89 x 10
-12
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3.3.6 Singletons 

 

Singletons are traditionally defined as variants that occur in a single sample from a 

study cohort in a heterozygous state (i.e. private variants). Similar to het:hom ratio, 

singleton counts are largely a function of selection pressure, ancestry and sample admixture 

due to contamination during sequencing preparation. Singletons can also prove useful to 

mark poorly sequenced or closely related/duplicate samples. Specifically, samples with 

high kinship will have a depletion in singletons as they are likely to share variants that 

would otherwise be private. Conversely, samples that contain an excess of singletons are 

likely to contain an abundance of false positive variants which are unlikely to be observed 

in other individuals. 

 When observed in large sequencing cohorts, singletons are preferentially observed 

amongst novel and protein-altering variants. However, this trend cannot readily be 

observed in smaller populations as intra-cohort singletons are unlikely to remain private in 

cohorts with much larger sample sizes (Figure 3.6A). In fact, for 77913 total DECODE 

singletons, only 2391 (3%) were private after cross-matching with their corresponding 

allele counts in ExAC (Figure 3.6A and Table 3.1). In contrast, over 45 000 variants found 

to be private in DECODE were observed to have allele counts greater than 4 in ExAC 

(Figure 3.6A and Table 3.1) which attests to the necessity of leveraging large publically 

available databases to classify variants within smaller cohorts. A total of 26330 (33%) 

DECODE singletons were not observed in ExAC (i.e. DECODE-specific) which either 

indicates that these sites are false positives or genuine private mutations (Figure 3.6A and 

Table 3.1). For purposes of this analysis, focus will be kept on DECODE singletons also 
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found to be private in ExAC in order to confidently establish how singleton mutations are 

distributed across the genome and identify in which classes of mutations they show 

enrichment. 

Table 3.1: DECODE singletons in the ExAC dataset 

Category DECODE singletons 

Present in ExAC 51581 

Private in ExAC  1985 

DECODE-specific 26330 

Total (Present in ExAC + DECODE-specific) 77913 

 

In contrast to findings published in the ExAC flagship paper, singleton mutations 

are profoundly more enriched among known variants (P = 1.1x10-20 ). In fact a total of only 

2 singleton variants were novel across all DECODE participants. This discrepancy between 

these findings and what is observed in ExAC can largely be attributed to the newer and 

larger version of dbSNP used to curate variants in this work. Similar to what is reported in 

ExAC, singletons were observed more frequently among protein-altering variants (P = 2.4 

x 10-9) (Figure 3.6B and Table 3.3). This is by virtue of the fact that variants which modify 

the protein sequence will reduce fitness for survival and will therefore be maintained at 

lower frequencies in the general population.  
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Two samples of African and Latin-African ancestry (DEOCDE 0018 and DECODE 

62, respectively) showed a high abundance of singleton variants. As previously stated, this 

is largely driven by ancestry as opposed to sequencing artefacts. Two European samples 

were observed to have an excessively low singleton count (DECODE 1039 and DECODE 

66) and were identified as duplicates. DECODE 1039 was thereafter eliminated from 

downstream analysis. 

 

 

 

 

A. B. P = 2.42 x 10
-9

 
198
5 
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72
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Figure 3.6: Singleton counts observed in 52 DECODE participants. (A) 

Corresponding ExAC allele counts for DECODE singletons. Mean count for DECODE 

singletons also observed to be private in ExAC were stratified according to mutation 

type (B) and curation in dbSNP 146 (not shown). Error bars depict 95% confidence 

intervals. 
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3.4 Conclusion 

 

Determining the distribution of population genetic metrics across a variety of 

variant categories can prove invaluable for developing a sound understanding of patterns 

of genetic variation. Moreover, population genetic metrics calculated within high quality 

sequencing datasets can be used to as references to gauge the accuracy of variant calls 

generated in local sequences in order to eliminate individuals that significantly deviate 

from expected values. This will ultimately serve to establish a clean dataset that will 

minimize false discoveries in association analyses 

Here, we demonstrate patterns of genetic variation consistent with what is expected 

under the model of purifying selection by evaluating six population genetic effects in 55 

ethnically diverse samples that have been exome sequenced. Specifically, variants which 

are kept at rare frequencies in the population due to having deleterious effects on fitness 

for survival are observed to be enriched for heterozygous genotypes and for mutation types 

that severely alter the structure of translated protein products (i.e. nonsynonymous SNVs 

and frameshift INDELs). This pattern supports the undertaking of rare variant association 

analyses in order to identify alleles that have an impactful effect on disease phenotype and 

account for heritably that has yet to be explained by epidemiological studies focusing on 

common variants. We also establish that coding sequences preferentially harbour non-CpG 

transition mutations, indicating that these regions are under high evolutionary constraint. 

Therefore, exome sequencing will serve as an ideal approach to maximize the sensitivity 

of detecting coding variants and increase the power of downstream rare variant association 

testing. 
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Furthermore, we demonstrate that applying population genetic features such as 

het:hom ratio and singleton counts to the raw sequences of all DECODE study participants 

allowed for the identification and subsequent removal of an admixed and duplicate sample 

(DECODE 0014 and 1039, respectively). Inclusion of these samples in downstream 

analysis may have skewed association signals due to inaccurate genotyping and inflated 

allele counts. 
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Table 3.2: Mean (95% CI) values for six population genetic metrics across n = 52 DECODE individuals 

Metric 
Coding 

variants 

Non-coding 

variants 

Known 

variants 
Novel variants 

Rare coding 

variants 

Common coding 

variants 

dbSNP 146 

concordance 

97.4 

(97.2-97.5) 

96.6 

(96.4-96.7) 
NA NA 

83.1 Φ 

(81.9-84.3) 

99.9 

(99.9-99.9) 

het: hom ratio 
1.78 

(1.75-1.81) 

1.80 

(1.77-1.84) 

1.78 † 

(1.75-1.81) 

2.39 

(2.22-2.56) 

306.42 Φ 

(258.26-354.58) 

1.62 

(1.59-1.65) 

Non CpG Transition: 

Transversion 

Ratio 

3.17 ¥ 

(3.16-3.18) 

2.56 

(2.55-2.57) 

2.62 † 

(2.61-2.63) 

0.72 

(0.69-0.76) 

2.84 Φ 

(2.73-2.93) 

3.29 

(3.18-3.31)   

NS:S Ratio NA NA 
0.884 † 

(0.881-0.886) 

2.23 

(2.12-2.33) 

1.69 Φ 

(1.63-1.75) 

0.852 

(0.849-0.854) 

FS:NFS 

Ratio 
NA NA 

0.927 † 

(0.885-0.969) 

10.8 

(9.46-12.2) 

2.81 Φ 

(2.04-3.56) 

0.888 

(0.850-0.927) 

Singletons 
24.2 ¥ 

(21.5-27.0) 

13.9 

(12.3-15.5) 

38.1 † 

(34.2-42.1) 

0.301 (0.212-

0.415) 
NA NA 

¥ p < 0.00001 (coding vs. non-coding); † p < 0.00001 (known vs. novel); Φ p < 0.00001 (rare coding vs. common coding) 

 

Table 3.3: Mean (95% CI) singleton counts stratified by mutation type for n = 52 DECODE samples 

Nonsynonymous SNV Synonymous SNV 

14.3 (12.5-16.0) Ψ 7.56 (6.45-8.66) 

Ψ p < 0.00001 (nonsynonymous SNV vs. synonymous SNV)
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CHAPTER 4 – Assessing the Prevalence of Mendelian 

Dyslipidemias in an Early CAD Population and Considerations 

for Clinical Intervention 
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4.1 Introduction 
 

Exome sequencing has been successfully applied in population-based research 

settings to identify high impact variants that aggregate amongst diseased cases or healthy 

controls to confer risk and protective effects, respectively 2,26,30. More recently, however, 

exome sequencing has demonstrated tremendous promise in clinical settings for molecular 

diagnosis of rare diseases that are suspected to have an underlying genetic etiology. The 

utility of clinical exome sequencing (CES) can effectively be quantified by the proportion 

of sequenced cases with successful identification of a disease-causing variant within a 

candidate loci for a given clinical outcome (i.e. the diagnostic yield). Recent reports have 

demonstrated the efficacy of CES primarily in the context of neurological disorders for 

both trio (parent-child) and proband (single sample) cases. Whole exome sequencing 

conducted by Yang et al. 2013 56 and  Lee et al. 2014 57 determined an overall diagnostic 

yield of ~25% for individuals characterized by genetically heterogeneous neurological 

disorders (e.g. developmental delay, autism, intellectual disability) which is superior to 

other genetic tests such as karyotype analysis and chromosomal microarray analysis (5-

20%) in individuals with similar phenotypic composition. Moreover, the diagnostic yield 

observed in the Yang et al. 2013 study was achieved from unselected cases (i.e. individuals 

characterized by a wide range of phenotypic abnormalities) which further demonstrates 

versatility of CES at detecting causal variants for a spectrum of clinical presentations. 

Although CES has proved invaluable for disease diagnosis, its long-term utility for 

enhancing prognostic outcomes remains to be determined. Therefore, shifting focus to 

clinically actionable Mendelian disorders may provide an avenue towards assessing the 
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implications of CES on informing critical lifestyle changes and pharmacological 

interventions. Familial hypercholesterolemia (FH) is the most common genetic Mendelian 

disease and an important risk factor for CAD 32,58. However, the frequency of FH in early 

CAD patients remains controversial and clinical criteria for FH screening are not adapted 

to early CAD patients. For instance, ongoing treatment with lipid lowering agents is 

expected to be the norm in this population such that cholesterol criteria might not apply in 

FH diagnosis. The DECODE study aims to fill this knowledge gap through systematic 

genetic screening of young CAD patient for FH-causing mutations using whole-exome 

sequencing and a semi-automated bioinformatics pipeline tailored for the detection of 

disease-causing mutations in known FH genes. For comprehensiveness, we also aim to 

characterize the prevalence of other Mendelian dyslipidemias such as familial combined 

hyperlipidemia (FCH), sitosterolemia and hypertriglyceridemia in the DECODE cohort. 

 

4.2 Methods 

 

 

4.2.1 DECODE study population 

 

The DECODE cohort was used to assess the enrichment of FH in an early CAD population. 

Details on the population are provided in section 2.3.1. 

 

4.2.2 MIGen and CHARGE consortia 

 

A total of 8577 CAD-free individuals from the Myocardial Infarction Genetics (MIGen) 

consortium 59 (encompassing 7 CAD case-control cohorts) and 11908 individuals from the 

Cohorts for Heart and Aging Research in Genetic Epidemiology (CHARGE) consortium 
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60 (encompassing 5 prospective population-based cohorts) were used as the reference 

population. Information on variant counts meeting specified pathogenicity criteria were 

mined from data published by Khera et al. 2016 61. 

 

4.2.3 Exome sequencing, variant calling, and variant annotation 

 

Exome sequencing, variant calling, and variant annotation were all conducted as described 

in sections 2.4.5-8. 

 

4.2.4 Variant filtering and phenotype matching 

 

Variants leading to a change in the primary amino acid sequence (i.e. protein-altering) that 

had MAF < 0.05 (i.e. rare) in all major ethnicities of external databases (described in 

section 2.3.7) were retained. These variants were further filtered at a MAF < 0.05 within 

an in-house dataset consisting of 230 processed using the same protocol to identify 

potential sequencing artefacts. Analysis was further restricted to 24 genes (defined by the 

Western Database of Lipid Variants (WDLV)) 62 in which mutations are known to cause 

monogenic dyslipidemias and confer substantial risk for developing early CAD. Rare, 

protein altering variants present in any of the 24 genes were further assigned a 

pathogenicity ranking using the ClinVar database (NCBI) 63. Variants identified as “likely 

pathogenic” or “pathogenic” were concluded to be causal for early CAD, whereas “variants 

of uncertain significance” (VUS), variants with conflicting interpretations, or non-curated 

variants were manually interrogated using the InterVar software 64 in order to facilitate a 

standardized interpretation on variant pathogenicity. Variants unambiguously annotated as 

“likely benign” or “benign” after inspection in InterVar were not further considered. 
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Putative disease-causing variants (“pathogenic”, “likely pathogenic”, or VUS) were 

retained and confirmed with Sanger sequencing. 

Individuals harbouring the variant of interest were deeply phenotyped in parallel to variant 

classification to determine genotype-phenotype concordance. Briefly lipid panel metrics 

including LDL-C, HDL-C, total cholesterol, apolipoprotein B to apolipoprotein A1 ratio 

(apoB/apoA1), triglycerides along with history of treatment regimens were used to assign 

each variant carrier to a dyslipidemia class according to the Frederickson Classification of 

Lipid Disorders 65. Lastly, family history information was used to determine potential co-

segregation of the variant of interest with early CAD/MI. Variant and phenotype level data 

was then merged to assess causality. A schematic describing this process is provided 

(Figure 4.1). 

4.2.5 Detailed coverage calculations 

 

The % 20X coverage for the 24 genes described in WDLV was determined by first 

generating per-base coverage metrics for the coding intervals of each gene using the GATK 

DepthofCoverage tool. Using in-house shell scripts, per-base coverage values were used to 

calculate % 20X coverage by assigning each base with a coverage ≥ 20X to value of 100 

and a coverage of < 20X to a value of zero and subsequently computing the mean 

proportion of bases ≥ 20X per exon. 

 

4.2.6 Sanger sequencing preparation. 

 

Sample DNA harbouring a variant(s) of interest was amplified using a standard PCR 

protocol. A 20 uL PCR reactions containing 1-5 ng/ul starting DNA, 50 um forward and 
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reverse primer (Sigma Aldrich), 1X PCR Buffer II (Life Technologies), 3mM Magnesium 

Chloride (MgCl2) (Life Technologies), 0.2 mM dNTP mix (deoxyribonucleotides) 

(Fermentas), and 0.1 U/ul AmpliTaq® Gold Polymerase was used for all amplification runs. 

DNA was amplified using a C1000TM thermocyler (BioRad) according to cycling times 

and temperatures summarized in Table 4.1. PCR amplicons were purified using the 

MinElute® Reaction Cleanup Kit with manufacturer protocol and were quantified to 1ng/ul 

per 100 bases using the QubitTM dsDNA High Sensitivty Assay Kit and the QubitTM 2.0 

fluormeter (ThermoFisher). 5 ul of DNA along with 5 ul of 1uM forward and reverse 

primer was sent to the MOBIX laboratory at McMaster Univesity for Sanger sequencing. 

Summary information for the primers used in this chapter, including sequence and 

amplicon length, are provided in Supplementary Table 1 (Table S1). 

 

Table 4.1: PCR run parameters for Sanger sequencing preparation 

 

 

 

 

4.2.7 Nomenclature 

 

Clinically relevant variants will be designated according coding DNA reference sequence 

and protein reference sequence as described by Human Genome Variation Society (HGVS) 

66. Coding DNA nucleotide substitutions will be prefixed by “c.” followed by the 

nucleotide’s position on the coding sequence and the nucleotide substitution (e.g. c.43G>A 

Stage Temperature (oC) Time (min) Cycles 

Polymerase activation 95 3:00 1 

Denaturation 95 0:30 

34 Annealing 60  50 (gradient) 0:30 

Extension 72 0:30 

Final Extension 72 3:00 1 
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refers to a A  C substitution at position 43 of the coding sequence for a given gene). 

Coding DNA nucleotide deletions will be prefixed with “c.” followed by the positions and 

sequence of the deleted nucleotides (e.g. c.2397_2400delCGTC refers to a 4 base pair 

deletion of ‘CGTG’ nucleotide sequence from position 2397-2400 in the coding sequence 

of a given gene). 

Protein-level substitutions will be prefixed by “p.” followed by the reference amino acid, 

amino acid position in the primary protein sequence, and the alternate amino acid (e.g. 

p.Asp4Tyr refers to an aspartic acid to tyrosine substitution at position 4 of the primary 

protein sequence). Protein-level deletions are prefixed by “p.” followed by the first and last 

amino acid(s) and amino acid position(s) that are deleted (e.g. p.Val800_Leu802del 

indicates a deletion of amino acids at positions 800, 801, and 802 of the primary amino 

acid sequence where position 800 encoded a Valine and position 802 encoded a Leucine). 

It is important to note that the descriptions provided above represent a means to facilitate 

the understanding of results presented in this chapter and are not inclusive of all the 

mutation types for which there are nomenclature standards. 

4.2.8 Clinical databases and software tools 

 

The ClinVar 2016 database along with the InterVar software too were used to assess the 

pathogenicity of clinically actionable variants. 

The ClinVar database is a publically available archive which curates the pathogenicity 

conferred by sequence variants on human disease. The degree of pathogenicity is based on 

submission of research and/or clinical reports outlining the effect of a variant at the cellular, 
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individual, or population level. The confidence of the pathogenicity ranking ascribed to a 

given variant is dependent on the depth and validity of supporting information. 

InterVar is a bioinformatics software tool that facilitates standardized clinical interpretation 

of putative disease-causing variants by generating automated interpretation of 18/28 

guidelines published by the American College of Medical Genetics (ACMG) and 

Association for Molecular Pathology (AMP). The additional 10 guidelines are required to 

be manually curated by the user based on specific attributes for the clinical case and variant 

in question (e.g. family history of disease under evaluation, established functional effect of 

variant in vitro or in vivo studies).  

The M-CAP in silico pathogenicity score has demonstrated tremendous efficacy at 

correctly classifying known pathogenic variants and was used to supplement pathogenicity 

rankings obtained through ClinVar and InterVar. 

 

4.2.9 Statistical analysis 

 

To test the significance between early CAD status and frequency of FH-mutations, P values 

were calculated using a 2-tailed Fisher’s exact test.  Odds ratios and 95% confidence 

intervals were calculated directly from the contingency matrix. A p value of < 0.05 was 

used as a significance threshold. The 95% confidence interval for proportions was 

calculated according to the modified Wald method. All data in the form 𝑥 +/- 𝑦 represents 

𝑚𝑒𝑎𝑛 +/- 𝑆𝐷 unless otherwise stated. All statistical computations were conducted in R 

version 3.2.2 unless otherwise stated. 
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4.3 Primer on Familial Hypercholesterolemia (FH) 

 

 CAD is a chronic disease caused by the interplay of genetic and environmental 

factors, and whose heritability is estimated at 40-60% 4,12,67,68. Numerous genome-wide 

association studies have been conducted to determine genetic variations that contribute to 

the development of CAD, including three large meta-analyses (CARDIoGRAM, C4D, 

CARDIoGRAM plus C4D). Interestingly, a large proportion of variants found to reach 

genome-wide significance (P < 5.0x10-8) involve genes associated with lipid synthesis and 

transport (Figure 1.3) 12,67,68, highlighting the importance of inborn diseases of cholesterol 

metabolism to CAD. One such disorder is Familial Hypercholesterolemia (FH), which 

Figure 4.1: Schematic diagram outlining the process of ascertaining variant 

pathogenicity and matching with carrier phenotype. 
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exhibits an autosomal dominant mode of inheritance and presents with significantly high 

levels of plasma cholesterol, a strong risk factor for CAD58,69. Specifically, FH results in 

increased serum LDL-C concentrations due to the presence of mutations in genes that 

regulate LDL-C transport and metabolism. These mutations exhibit an autosomal dominant 

Mendelian inheritance pattern and result in increased levels of serum LDL-C by inhibiting 

receptor-mediated LDL-C endocytosis (Table 4.2). Due to their high penetrance, each 

mutation is considered diagnostic of FH. However, the severity of disease is largely 

dependent upon the disruptiveness of the mutation and whether individuals are 

heterozygous or homozygous for FH mutations (i.e. gene dosage effects 58). Furthermore, 

a new form of FH has recently been described which is caused by accumulation of LDL-

increasing common genetic alleles of individual weak effect, so-called polygenic FH 70. 

 The prevalence of DNA-confirmed heterozygous FH is estimated to be 1/500 to 

1/300 in the general population and is reported to be as high as 1/77 in non-founder, early-

MI populations 58,69,71. However, these estimations primarily reflect known genetic variants 

found only in a subset of FH genes, which inherently limits the sensitivity and 

comprehensiveness that can be obtained through exome-wide sequencing analysis. 

Nevertheless, enrichment in FH-causing mutations has recently been confirmed in a large 

case-control study of early-MI, which showed rare, disruptive LDLR mutations to be 

present in 0.51% of cases and 0.039% of controls, corresponding to an odds ratio of 13 2. 

Not surprisingly, mean LDL-C levels were significantly elevated in mutation carriers as 

compared to non-carrier controls (7.11 mmol/L vs. 4.52 mmol/L).  While these findings 

support a strong effect of FH mutations on CAD risk, uncertainty on prevalence of FH 
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mutations in very early CAD populations persists because (1) DNA testing was either 

incomplete or absent, (2) many studies also included older participants and (3) some studies 

were done in founder populations. Our study will bridge this knowledge gap by selecting 

for cases with early onset (median age 38) severe disease, with greater than two-thirds of 

participants presenting with angiographically-proven multi-vessel disease in our pilot 

study. Furthermore, we will systematically screen all FH genes for rare mutations and will 

further assess the presence of polygenic FH. Therefore, our study will provide invaluable 

insight in this area and will help establish informed clinical criteria for FH screening in this 

particularly vulnerable patient population. Indeed, the Simon-Broome and Dutch Lipid 

Clinic Criteria for clinical FH diagnoses are widely used by physicians as they are easy to 

implement 72. However, these criteria are unable to definitively diagnose FH in young 

patient populations in which the classic phenotypes are not yet expressed and can be 

challenging to apply in secondary prevention patients on lipid lowering therapy 72. 

Identification of young FH patients will enable “cascade screening” in affected families. 

 

 

 



M.Sc. Thesis – Ricky Lali              McMaster University – Biochemistry and Biomedical Sciences 

91 
 
 

Table 4.2: Details on known FH genes 

Gene 
Name 

Full Name Function 
Most common 

FH-causing 
mutation(s) 

Mode of 
Inheritance 

Frequency of 
FH mutations 
within early 

CAD/MI 

Frequency of 
rare, damaging 

& disruptive 
ExAC * 

Ref. 

LDLR 
Low-density 

lipoprotein receptor 

Binds with APOB 

ligand on LDL to 

initiate receptor-

mediated endocytosis 

Many (~1600) 
Autosomal 

Dominant 
Unknown 0.0047 58,69,73 

APOB Apolipoprotein B 

Ligand on LDL-C that 

binds with LDLR to 

initiate receptor-

mediated endocytosis 

p.Arg3500Glu 
Autosomal 

Dominant 
Unknown 0.0011 58,69 

PCSK9 

Proprotein 

convertase 

subtilisin/kexin 

type 9 

Degradation of 

endocytosed LDLR 
p.Asp374Tyr 

Autosomal 

Dominant 
Unknown 5.9 x 10-5 † 58,69 

LDLRAP1 

Low-density 

lipoprotein receptor 

adapter protein 1 

Promotes interaction 

with clathrin-coated pit 

machinery to facilitate 

receptor-mediated 

endocytosis 

~10 loss of 

function 

Autosomal 

Recessive 
Unknown 

 

0.0018 

 

58,69 

STAP1 

Signal transducing 

adaptor family 

member 1 

Unknown 4 missense 
Autosomal 

Dominant 
Unknown 0.0014 69,74 

Polygenic 

FH 
Not applicable LDL-C – raising SNPs Not applicable Polygenic Unknown 0.0026 Φ 70,75 

* ExAC consists of over 60 000 exomes from large-scale sequencing studies and can be used to measure expected frequencies of the burden of rare 

variants across genes. The criteria for rare damaging & disruptive variants was: all nonsynonymous variants predicted to be “deleterious” and “probably 

damaging” by SIFT and Polyphen2, respectively with minor allele frequency < 0.01 and all loss of function (splicing, nonsense, frameshift indel) 

variants with minor allele frequency < 0.01. 
† Exclusive to gain-of-function variants 

𝛷(𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑒𝑐𝑒 𝐹𝐻 𝑖𝑛 𝑔𝑒𝑛𝑒𝑟𝑎𝑙 𝑝𝑜𝑢𝑙𝑎𝑡𝑖𝑜𝑛) 𝑥 (𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒 𝑜𝑓 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛-𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝐹𝐻) 𝑥 (𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒 𝑜𝑓 𝑝𝑜𝑙𝑦𝑔𝑒𝑛𝑖𝑐 𝐹𝐻 𝑖𝑛 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛-𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝐹𝐻) 

(
1

200
) 𝑥 (

60

100
) 𝑥 (

88

100
) 
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4.4 Short primer on familial combined hyperlipidemia 

 

FCH is often reported as the most common hereditary dyslipidemia with a 

worldwide prevalence of 1/100 to 1/50 in the general population and as high as 1/5 to 1/10 

in early CAD populations 32,76. However, due to the lack of a consensus clinical or genetic 

definition of FCH, these are most certainly overestimates. Most typically, however, FCH 

present with chylomicronemia, hypertriglyceridemia, hypoalphaproteinemia and 

hypercholesterolemia 32. Loss-of-function variants within the lipoprotein-lipase (LPL) 

gene are most commonly associated with FCH and also confer risk for the development of 

early CAD 24,32.  

 

4.5 Results 

4.5.1 WDLV gene coverage 

 

Overall, 92% of WDLV genes (22/24) under investigation had mean % 20X 

coverage of ≥ 80% (Supplementary Table 2). Only 2 genes (GPIHBP1 and APOE) had 

sub-optimal % 20X coverage (60.4% and 52.9%, respectively). Mean % 20X coverage for 

the remaining 22 genes was 89.5 +/- 12.0 %.  

 

4.5.2 Clinical evaluation of FH-mutation positive carriers 

 

Among 53 exome-sequenced DECODE participants, 3 (DECODE 0036, 59, and 

68) were found to carry an FH-causing mutation (DECODE FH prevalence = 5.7% (95% 

CI 1.3-16.0) within the LDLR gene (Table 4.3). All 3 FH-mutation positive cases were 

males and presented with multi-vessel CAD resulting in severe ACS (2 NSTEMI and 1 
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STEMI). Additionally, 2/3 FH-mutation positive cases developed CAD very early 

(DECODE 0036 = 29; DECODE 68 = 35) relative to the FH-mutation negative males in 

DECODE (median age 38). DECODE 0036 also has history of multiple MIs (1 STEMI + 

2 NSTEMI). Significant first-degree family history was also reported in DECODE 59 & 

68 whereas DECODE 0036 only reported an early MI event in a maternal aunt. All FH-

mutation positive cases are smokers. DECODE 68 also presents with hypertension (127 

mmHg/76 mmHg while on anti-hypertensives) and DECODE 0036 was diagnosed with 

type II diabetes mellitus 2 years prior to his first event and is currently undergoing non-

insulin-dependent treatment. All FH-mutation positive cases presented with type IIa 

hyperlipidemia with LDL-C values of 4.1, 4.4 and 3.8 mmol/L for DECODE 0036, 59, and 

68, respectively (4.1 +/- 0.39 mmol/L) after correcting for statin treatment based on statin 

type and dosage regimen according to well-established adjustment coefficients (Table 4.3).  

Table 4.3: Statin-adjusted LDL-C for FH-mutation positive carriers in DECODE 

DECODE 

ID 

 LDL-C 

(mmol/L)  
Statin 

Adjustment 

coefficient 

Statin-adjusted 

LDL-C (mmol/L) 

0036 † 3.46 
80mg 

Simvastatin 
1.46 5.05 

59 Ψ 4.40 None - 4.40 

68 2.68 
40 mg 

Rosuvastatin 
1.55 4.15 

 † Patient also on 10 mg Ezetrol; Ψ Patient not on statin at time of blood draw 

 

DECODE 0036 harbours a nonsense variant within exon 14 (rsID = rs121908031; 

c.2043C>A; p.Cys681X) (Table 4.4) which encodes a portion of the epidermal growth 

factor (EGF) precursor homology domain in the LDLR protein. The variant in question 

results in a truncated LDLR characterized by absence of both the membrane-spanning and 
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cytoplasmic domains. This variant represents a founder mutation known as the Lebanese 

allele (FH Lebanese) as it exhibits higher frequency amongst Lebanese Arabs, consistent 

with this DECODE participant’s ethnicity. This variant is annotated as “pathogenic” within 

ClinVar based on 8 independent submissions (Table 4.3). DECODE 59 and 68 carry 

missense variants (rs551747280; c.82G>T; p.Glu28Lys & rs397509365; c.1690A>C; 

p.Asn564His) (Table 4.4), within exon 2 and 11 of LDLR, respectively. Exon 2 encodes a 

portion of the LDL receptor class A domain repeats which are responsible for interaction 

of with the Apo-B ligand expressed on plasma LDL and exon 11 encodes a subset of the 

EGF precursor homology domain responsible for acid-dependent dissociation of LDL-C 

from the internalized LDL-LDLR complex. The rs551747280 variant observed DECODE 

59 was only recently annotated contain a ClinVar annotation and was therefore manually 

queried using InterVar to achieve standardized pathogenicity interpretation (Table 4.4). 

The variant was found to be positive for 2 ACMG/AMP guidelines that support 

pathogenicity and 1 that supports it being benign: PP2, PP4, and BS2 (described in 

Supplementary Table 3) which resulted in a VUS interpretation. However, given the 

extensive family history of this individual along with having a concordant phenotype for 

FH (i.e. elevated LDL-C and early CAD), it is likely that this variant is causal. The 

rs397509365 variant in DECODE 68 variant was reported as both “likely pathogenic” and 

“pathogenic” in ClinVar according to 4 independent submissions (Table 4.4). Similar to 

rs551747280 (Lebanese allele), rs397509365 is also a founder mutation known as the 

Aarhus allele (FH Aarhus) and exhibits higher frequency in Dutch Europeans. The Aarhus 

allele was also accompanied with a 9 base pair (nonframeshift) deletion (in cis to the 

https://www.ncbi.nlm.nih.gov/variation/tools/1000genomes/?chr=19&from=11226873&to=11226873&gts=rs397509365&mk=11226873:11226873|rs397509365
https://www.ncbi.nlm.nih.gov/variation/tools/1000genomes/?chr=19&from=11226873&to=11226873&gts=rs397509365&mk=11226873:11226873|rs397509365
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missense variant) located in exon 17 (c.2393_2402delTCCTCGTCT; 

p.Leu799_Phe801del). Evidence from in vitro analysis has demonstrated that the presence 

of both the missense and deletion variants are necessary to reduce LDL-C uptake by 75% 

in transfected COS cells, suggesting a synergistic effect. 

Both rs551747280 and rs397509365 were found to be “pathogenic” according to their M-

CAP score. Causal variants within the LDLR gene are segregated into five classes which 

define their functional effect. Class descriptions for LDLR variants discovered in 

DECODE are summarized in Table 4.5.

https://www.ncbi.nlm.nih.gov/variation/tools/1000genomes/?chr=19&from=11226873&to=11226873&gts=rs397509365&mk=11226873:11226873|rs397509365
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Table 4.4: Summary of variants predicted to be causal for Mendelian dyslipidemias in the DECODE cohort. 

ID Ethnicity Interim diagnosis Gene Variant ID 

ExAC 

global 

frequency 

Mutation 

type 

ClinVar 

annotation 

Positive 

InterVar 

criteria Φ 

Final 

status 

0036 Arab 

Familial 

hypercholesterolemia 

FH Lebanese 

LDLR 

 

rs121908031 

 

8.255e-06 Nonsense 
Pathogenic 

- FH 
- Pathogenic 

59 European 
Familial 

hypercholesterolemia 
LDLR 

 

rs551747280 

 

0.0002891 Missense 
No 

annotation 

PP2, 

PP4, 

BS2 

VUS 

68 European 

Familial 

hypercholesterolemia 

FH Aarhus 

 

LDLR 

 

rs397509365 0 Missense 
Pathogenic 

- FH 
- Pathogenic 

NA 0 
Non-

frameshift 
NA 

20 European 
Familial combined 

hyperlipidemia 
LPL rs268 0.01336 Missense 

Pathogenic 

- FCH 
- Pathogenic 

42 European 
Familial combined 

hyperlipidemia 
LPL rs268 0.01336 Missense 

Pathogenic 

- FCH 
- Pathogenic 

60 European 
Familial combined 

hyperlipidemia 
LPL rs1801177 0.01492 Missense 

Pathogenic-

FCH 
- Pathogenic 

Φ Description of criteria codes for InterVar used to standardize pathogenicity ranking are described in Table S3. 

Table 4.5: Summary of the LDLR mutation classes. 

Variant ID 
LDLR mutation 

class 
Class Description 

rs121908031 4 Defect in LDLR clustering on cellular membrane 

rs551747280 3 Diminished affinity between LDLR and APOB ligand on plasma LDL-C 

rs397509365 5 
Defect in acid-dependent dissociation of the internalized LDLR-LDL-C complex which 

compromises LDLR recycling to cellular membrane 

https://www.ncbi.nlm.nih.gov/variation/tools/1000genomes/?chr=19&from=11226873&to=11226873&gts=rs397509365&mk=11226873:11226873|rs397509365
https://www.ncbi.nlm.nih.gov/variation/tools/1000genomes/?chr=19&from=11226873&to=11226873&gts=rs397509365&mk=11226873:11226873|rs397509365
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4.5.3 Enrichment of FH in the DECODE cohort relative to CAD-free controls and an  

 

unselected patient population 

 

When defining FH as having both hypercholesterolemia (LDL-C > 3.36 mmol/L) 

and a rare (MAF < 0.01) missense (predicted pathogenic by in silico pathogenicity tools or 

by ClinVar) or rare disruptive LDLR variant, the presence of an FH mutation was 

associated with a 30-fold (95% CI 3-128) increase risk of early CAD when compared to a 

reference population consisting of CAD-free and unselected participants in the MI-Gene + 

CHARGE consortia (P=0.002) (Table 4.6). When restricting analysis to only CAD-free 

controls and instituting a more widely accepted genetic definition for FH (rare disruptive 

LDLR variant + rare missense LDLR variant predicted to be pathogenic by ClinVar) while 

withholding threshold for LDL-C, FH mutation carriers were associated with a 20-fold 

(95% CI 2-87) increased risk of early CAD (Table 4.6). The effect observed here is 

approximately 3-fold greater than the effect observed by Abul-Husn et al. 2016 77 on early 

CAD (Figure 4.2). No significant enrichment in FH mutation carriers was identified for 

early CAD when defining FH solely on the basis of severe hypercholesterolemia (i.e. LDL-

C > 4.9 mmol/L) (P>0.05). 
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Table 4.6: Association of FH mutations in DECODE compared to the MIGen + CHARGE 

consortia 

 DECODE 
MIGen + CHARGE 

consortia 

OR  

(95% CI)  

FH+ vs FH- 

P-value  FH+ 

vs FH- 

Statin corrected LDL-C ≥ 3.36 mmol 

N (FH mutation 

pos †) 
2 68 

30.0 (3.4 – 

127.8) 
0.002 

N (FH mutation 

neg) 
20 20417 

 DECODE 
MIGen CAD-free 

controls 

OR  

(95% CI)  

FH+ vs FH- 

P-value  FH+ 

vs FH- 

No LDL-C threshold 

N (FH mutation 

pos Ψ) 
2 17 

19.7 (2.2 - 

86.7) 
0.005 

N (FH mutation 

neg) 
51 8561 

† Rare disruptive LDLR variants + rare missense LDLR predicted pathogenic by each of 

5 in silico pathogencity criteria (SIFT, Polyphen2 HumDiv, Polyphen2 HumVar, 

MutationTaster, LRT) + rare missense LDLR variants predicted to be pathogenic in 

ClinVar; Ψ Rare disruptive LDLR variants + rare missense LDLR variants predicted to be 

pathogenic in ClinVar 

 

  

 

 

 

 

 

 

OR (95% CI) P value 

19.7 (2.1-86.7) 0.005 

7.0 (4.5-10.9) 1.2x10-17 
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4.5.4 Clinical evaluation of FCH-mutation positive carriers 

 

Two DECODE participants (20, 42) are carriers of a single missense mutations within LPL 

(rs268; c.953A>G; p.N318S) (Table 4.4) which is annotated as pathogenic in ClinVar and 

causal for FCH. rs268 has a global ExAC frequency of > 0.01 and consequently does not 

have a M-CAP annotation. However, the CADD score for this variant is 21 which 

corresponds to the 99th percentile of deleterious variants. DECODE 20 and 42 both have 

elevated LDL-C levels at 4.81 and 3.59 mmol/L, respectively. DECODE 42 was also on 

statin treatment (80 mg atorvastatin) at time of blood draw. Both participants also display 

modestly elevated triglyceride levels at 2.01 and 2.22 mmol/L and decreased HDL-C levels 

at 0.75 and 0.78 mmol/L, respectively. Collectively, the lipid panel for both individuals is 

most consistent with type IIb dyslipidemia. The rs268 variant has recently been shown to 

confer the highest effect for increased triglycerides amongst low frequency and common 

variants (beta = 0.17 mmo/L per risk allele) and is also independently associated with CAD. 

An additional LPL variant was found in DECODE 60 (rs1801177, c.9126G>A, 

p.D36N) and has previously been reported as pathogenic for FCH in ClinVar, however the 

lipid panel for this individual is incomplete with no additional records on our electronic 

Figure 4.2: Association of premature CAD with FH mutations in 

analysis conducted by Abul-Husn et al. and DECODE. CAD was defined 

as premature in males < 55 and females < 65 for the Abul-Husn et al. 

analysis. CAD was defined as premature in males < 40 and females < 45 for 

in DECODE. ORs were calculated using logistic regression with adjustment 

for age, sex and ethnicity in the Abul-Husn analysis and using 2-tailed fisher 

exact test in DECODE. FH mutations were defined as disruptive LDLR 

variants + missense LDLR variants predicated to be pathogenic in ClinVar. 
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health databases. We do declare this variant in our summary results (Table 4.4), but fully 

acknowledge that it is difficult to ascertain whether it can be classified as causal. 

4.5.5 Diagnostic yield 

 

When taking into account all FH and FCH variants predicted to be disease-

causing in our pipeline, we ascertain a diagnostic yield of 10%, with all cases being 

clinically actionable. 

4.5.6 Sanger sequencing validation 

 

All variants discussed were confirmed using Sanger sequencing according to 

workflow described in section 4.2.5. Figure 4.3 depicts schematics for the LDLR and LPL 

genes annotated with the variants discussed. Electropherograms confirming presence of 

variants in patient samples are also provided. 
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Figure 4.3: Schematics of the LDLR (A) and LPL (B) gene along with the 

electropherograms depicting the variants (red arrows) causal for FH and FCH, 

respectively. The header for the electropherogram describes the sample IDs for 

mutation carriers, coding sequence variation and protein variation, respectively. 

Nucleotides highlighted in blue and red represent the reference and alternate sequences, 

respectively. Black bars encompass individual codons with the amino acids encoded by 

reference and alternate sequence provided below (separated by a slash). 

C-terminal 

domain 

N-terminal 

domain 

 E/E         I/I      N/S       K/K       

20/42; c.953A>G; p.N318S 

 G  A G    A T  C A  A  T  A A  A 
G  A G    A T  C A  G  T  A A  A 

G A T T  T T A T  C G A C A T C  G A A 
G A T T  T T A T  C  A A A T C  G A A C 

 D/D    F/F     I/I     D/N     I/I      E/E       

60; c.9126G>A; p.D36N 
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4.6 Discussion 

 

FH and FCH represent the two most common inherited disorders in the general 

population and are significant risk factors for the development of premature CAD 32,61,76,77. 

Both conditions are critically under-diagnosed (especially in the Western world) based on 

expected prevalence estimates established by countries with health policies in place to 

conduct systematic genetic screening. For example, using the conservative global 

prevalence of FH (1/500), it is expected that ~600000 Canadians currently present with 

sufficient clinical and/or genetic evidence to support FH diagnosis. However, less than 1% 

of these cases have currently been diagnosed which provides strong rationale to institute 

genetic screening early in life in order to facilitate timely pharmacological or lifestyle 

interventions and initiate cascade screening in families with individuals harbouring FH-

causing variants.  

The issue of unknown FH prevalence is particularly concerning among individuals 

with early CAD, who by virtue of their stringent cholesterol-lowering treatment regimens, 

do not meet clinical requirements (i.e. highly elevated LDL-C and total cholesterol) 

necessary to warrant a consensus FH diagnosis. However, it has been shown that FH-

mutation positive carriers demonstrate substantially higher risk for CAD compared to FH-

mutation negative individuals across all strata of LDL-C levels (e.g. FH-mutation positive 

individuals with LDL-C < 3.3 mmol/L were at a 2-fold higher risk for developing CAD 

compared to individuals who are FH-mutation negative within the same LDL-C strata) 61. 

This observation underscores the necessity of incorporating genetic information to 

appropriately assess disease risk. The increased in CAD risk for FH-mutation positive 
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individuals can largely be attributed to cumulative, life-long exposure to elevated LDL-C 

as opposed to acute elevations likely related to diet and physical activity which are not 

sufficient to fully develop atherosclerotic plaques that are characteristic of CAD. This 

finding is strengthened when considering that all FH-mutation positive carriers in 

DECODE failed to reach LDL-C levels recommended by the National Lipid Association’s 

Expert Panel 78 for adults with FH and CAD (< 1.8 mmol/L) even while on statin treatment. 

Although this observation is based on a small sample size, evidence in the literature from 

cohorts encompassing thousands of individuals support the discrepancy between FH-

mutation positive and negative individuals in the ability to reach desirable LDL-C while 

on statins 77. 

In order to validate our 3rd hypothesis in this work, we set to evaluate the effect 

and putative association between CAD status and frequency of an FH mutation. We find 

that FH mutations were associated with a 30-fold increased for early CAD accompanied 

with hypercholesterolemia (LDL-C > 3.36 mmol/L) when using CAD-free controls and 

unselected participants from prospective population cohorts as the reference (both also with 

LDL-C > 3.6 mmol/L). This effect illustrates that individuals with an FH mutation hold 

substantially greater risk for developing early CAD as compared to a reference population 

that is similarly hypercholesteremic. This is consistent with the observation (as stated 

earlier) purported by Khera et al. 2016 61 in which individuals with similar LDL-C were 

evidently more likely to develop CAD if they were FH-mutation positive. 

We next sought to compare the difference in FH mutation frequency between 

DECODE and other early CAD cohorts using only CAD-free individuals in MIGen as 
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reference. A recent analysis published by Abul-Husn et al. 2016 77 observed that FH 

mutations (see Table 4.3 for pathogenicity criteria) were associated with a 7-fold increased 

risk of early CAD (defined as males ≤ 55 and females ≤ 65) compared to only a 4-fold 

increased risk seen in general CAD. In DECODE, however, FH-mutations were associated 

with a 20-fold increase in early CAD risk, which is quite similar to the effect observed in 

a separate study between FH-mutation positive carriers with severe hypocholesteremia 

(LDL-C > 4.9 mmol/L) and FH-mutation negative individuals that were 

normocholesterolemic (LDL-C < 3.3 mmol/L). The discrepancy between effects observed 

in young populations may largely be attributed to the upper age limits used to define “early” 

CAD. In the aforementioned study, males ≤ 55 and females ≤ 65 were considered to have 

early disease whereas the median age for males and females in DECODE is 37 and 41 

respectively. We therefore establish that frequency of FH mutations increases extensively 

in a manner that is largely age-dependent, which can serve as a proxy for disease severity 

in the context of CAD. 

Collectively, these observations point to the urgent need to perform systematic 

genetic-based FH screening in early CAD cohorts in order to appropriately modulate 

lifestyle choices and optimize pharmacological interventions. Conducting FH screening on 

the basis of clinical criteria alone is in insufficient and uncomprehensive, especially when 

considering that < 2-2.5 % of individuals carrying an FH-causing mutation have severe 

hypercholesterolemia as reported by two recent large clinical analyses 61,77. It was also 

shown that only 1/4 individuals with an FH-mutation were diagnosed with possible or 

definite FH when using the Dutch Lipid Network criteria on the basis of clinical electronic 
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health record data alone 77. The extremity of these findings are further amplified in early 

CAD cohorts as we show significant increases in FH-mutation frequency to be 

representative of these populations. 

The individuals within DECODE found to carry FH mutations have been contacted 

to follow-up appointments in our Lipid Clinic to re-assess type and dosage of lipid-

loweirng medication.  Additionally, we have received permission to perform “cascade 

testing” in family members to evaluate potential genotype-phenotype co-segregation. This 

can inform appropriate clinical and lifestyle interventions in close relatives which may 

possibly prevent severe clinical outcomes. 

We also acknowledge that the confidence intervals observed in our results are a 

manifestation of the small sample size of the DECODE study. We fully expect this to be 

ameliorated over the next several months as more individuals become recruited.   

Nevertheless, we observe that the direction and magnitude of effect to be as expected.  
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CHAPTER 5 – Rare Variant Association: Leveraging External 

and Internal Control Datasets for Gene Discovery 
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5.1 Introduction 

 

Rare variant association analyses (RVAS) have proven invaluable for the detection 

of genes causally linked to CVD that would not have otherwise been identified through 

standard GWAS 2,25,26,30. The success of RVAS is grounded in its study design. 

Methodologies including EPS and biological validation of discovered variants (both of 

which are employed in this work) can vastly empower studies to detect associations of 

large effect with smaller sample sizes. Nevertheless, the advent of large external, publicly 

available sequence databases (e.g. ExAC and gnomAD) have made it possible to 

substantially increase the sample size and power of association analyses without incurring 

large sequencing costs. Due to their sheer size, external sequencing datasets can be used as 

control populations to facilitate identification of rare variants within the case population 

(i.e. case-only analyses). This is especially attractive for studies examining rare or early 

phenotypes which are inherently limited in their ability to reach large sample sizes. 

However, studies that employ the use of external databases as control sets require rigorous 

adjustments to account for potential differences in sequencing chemistries, which may lead 

to spurious association signals due to technical artifacts. Moreover, external sequencing 

databases can be phenotypically heterogeneous and it must be ensured that these datasets 

are large enough to dilute variants that could otherwise mask true association signals. 

External sequencing databases may also provide only summary-level data on called 

variants which requires use of alternate statistical methodologies to assess the impact of 

rare variant burden on disease risk.  
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The utility of case-only analyses for the discovery of genes causally linked to 

complex diseases such as CAD is currently unknown. We herein leverage the large sample 

size of the ExAC database (N=60706) as our reference control set to identify significant or 

nominal gene-based associations with early CAD.  We also use internally sequenced, 

CVD-free controls from the ORIGIN trial 79 (N=409) as a means of controlling for potential 

residual biases. Using internal controls also offers the advantage of having access to 

individual-level data, which may allow for 1) stringent selection of samples that are not 

afflicted with CAD and access  and 2) employ the use of variance component tests (e.g. 

SKAT) that may result in discovery of novel genes that could not be detected with 

traditional rare variant burden testing. 

 

5.2 Methods 

 

 

5.2.1 DECODE study population 

 

The DECODE population is described in detail in section 2.3.1. 

 

 

5.2.2 Early-Onset Myocardial Infarction (EOMI) study population 

 

A total of 736 early-MI cases were obtained from The Early-Onset Myocardial Infarction 

(EOMI) cohort within the NHLBI GO ESP6500 via application to the database of 

Genotypes and Phenotypes (dbGAP) (study accession: phs000279.v2.p1) 80. EOMI cases 

were drawn from 5 community based studies (PennCATH, Cleveland Clinic Genebank, 

Massachusetts General Hospital Premature Coronary Artery Disease Study (MGH-

PCAD), Heart Attack Risk in Puget Sound (HARPS), and Translational Research 



M.Sc. Thesis – Ricky Lali              McMaster University – Biochemistry and Biomedical Sciences 

110 
 
 

Investigating Underlying Disparities in Myocardial Infarction Patients' Health Status 

(TRIUMPH)). The proportion of cases recruited from each study is provided in 

Supplementary Table 4. The case definition for EOMI included an MI (STEMI or 

NSTEMI) in males ≤ 50 and females ≤ 60. 

 

5.2.3 ExAC 

 

The ExAC dataset consists of 60706 exomes which were aggregated across 17 exome 

sequencing datasets (Supplementary Table 4) 20,21. Version 0.3 of ExAC dataset (ExAC 

v0.3) was used as the reference population for case-only association analyses. The VCF 

containing 10.2 million variant calls (92% SNV; 8% INDEL) along with coverage files 

were downloaded from the ExAC ftp repository: 

(ftp://ftp.broadinstitute.org/pub/ExAC_release/release0.3/). The raw VCF was filtered to 

retain only sites receiving a PASS filtering annotation (retaining 9.1 million variant sites - 

94% SNV, 6% INDEL) prior to any downstream analyses. 

 

5.2.4 The ORIGIN trial 

 

The ORIGIN trial has been described previously 79. Briefly, 12,537 participants with 

cardiovascular risk factors and evidence of dysglycemia were randomized in a 2x2 factorial 

design to either oral insulin glargine versus standard care, and omega-3 fatty acid 

supplementation versus placebo, and followed for a median of 6.2 years. A total of 494 

ORIGIN participants have undergone exome sequencing in our laboratory. We have 

selected 409 of these individuals who have not demonstrated history of CVD as a control 

population for SKAT association testing. 

ftp://ftp.broadinstitute.org/pub/ExAC_release/release0.3/
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5.2.5 Sample-level QC for the EOMI study population 

 

Kinship analysis was conducted exclusively on common (MAF > 0.01) SNVs that were 

LD-pruned according to a window size of 100, window shift of 50 and an r2 threshold of 

0.2 using plink v1.9. Pairwise kinship coefficients (k0) between all samples was calculated 

using KING 81. Duplicate samples (k0 > 0.354) or sample pairs demonstrating first (0.177 

< k0 < 0.354), second (0.177 < k0 < 0.0884), or third (0.0442 < k0 < 0.0884) degree 

relatedness were flagged for removal. The sample demonstrating the higher overall call 

rate from each pair was retained. Sex check and heterozygosity checks were also performed 

using plink v1.9. Samples with discordance between reported and genetically determined 

sex as well as samples demonstrating excess heterozygosity were removed. 

 

5.2.6 Variant-level QC for the EOMI study population 

All variants were assessed for Hardy-Weinberg Equilibrium (HWE) using an exact test as 

defined by Wigginton et al. 2015 82. This test was implemented in vcftools 83. Variants 

demonstrating nominal deviation from Hardy-Weinberg Equilibrium (P<0.05) were 

removed from downstream analysis. 

 

5.2.7 Exome library preparation and exome sequencing 

 

Exome library preparation and exome sequencing were performed as described in sections 

2.4.3-5. 

 

 

5.2.8 Variant calling and annotation 

Variant calling and annotation was performed as described in sections 2.4.7-8. 
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5.2.9 Variant pathogenicity filtering 

 

Called variants passing quality thresholds in were annotated with their corresponding 

MAFs observed in 1KGP3 50, NHLBI GO ESP6500 51 , and ExAC 20 for rare variant 

filtering. Variants annotated with a MAF < 1% (T1 alleles) and MAF < 5% (T5 alleles) in 

all ethnicities among all external exome databases (1KGP3, NHLBI GO ESP6500, ExAC 

v0.3) were kept. T1 and T5 alleles were further filtered for MAF < 0.01 and MAF < 0.05, 

respectively within an in-house dataset consisting of 248 samples sequenced using the Ion 

ProtonTM and S5XLTM systems in order to account rare variant sequencing artifacts. Rare 

variants subsequently underwent functional annotation using several in silico protein-

prediction algorithms (using dbNSFP v.3.0 48) in order to effectively discriminate neutral 

from putative disease-causing variation according to four pathogenicity schema: 1) all 

variants resulting in mutation types that alter the primary protein sequence (i.e. protein-

altering) 2) All disruptive variants (splicing, stopgain, stoploss, frameshift indel) in 

addition to all nonsynonymous SNVs predicted to be “deleterious” and “damaging” 

according to SIFT and Polyphen2-HDIV/HVAR, respectively 3) All disruptive variants in 

addition to nonsynonymous SNVs with a CADD score > 20  4) All disruptive variants in 

addition to all nonsynonymous SNVs predicted to have an M-CAP score > 0.025. 

Definitions for all mutation and pathogenicity types can be found in Tables 2.3 and 2.4, 

respectively. Identical frequency and functional filtering were applied to the ExAC 

reference dataset in order to associate the aggregate frequency of rare, disease-causing 

variants among all genes with the early-onset CAD phenotype.  
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5.2.10 Association models  

 

Gene burden tests for T1 and T5 alleles were conducted using additive, dominant, and 

recessive models in order to determine if specific genes were conferring disease risk 

through different modes of inheritance (Figure 5.2). 

In the additive and dominant models, aggregate allele (additive) and carrier frequencies 

(dominant) were determined for T1 and T5 alleles across all stringencies in DECODE and 

ExAC cohorts. The dominant model functions as a sensitivity analysis to the additive 

Rare-variants (MAF < 1% & 5%) 

using local database 

Rare-variants (MAF < 1% & 5%) using  
Exome Aggregation Consortium (ExAC) 

Coding Variants 

Raw Variants (n = 45000) 

Disease-causing T1 and 

T5 alleles 

n=300-400 

VARIANT CALLING 

ANALYSIS 

Figure 5.1: Flow-diagram outlining filtering criteria necessary to 

achieve putative set of rare, disease-causing variants that can be 

used in association analyses. 



M.Sc. Thesis – Ricky Lali              McMaster University – Biochemistry and Biomedical Sciences 

114 
 
 

model as it accounts for association signals that may be driven by only one or two carriers. 

For the recessive model, aggregate recessive carrier frequency were determined for 

homozygous and trans compound heterozygous T5 alleles across all stringencies in 

DECODE. Trans compound heterozygous variants were defined as distinct heterozygous 

variants that lie on separate homologous chromosomes. These were identified through 

phasing genotypes to their respective homologous chromosomes using the hidden markov 

model-based SHAPEIT2 algorithm 84. In order to facilitate phasing accuracy, both the 

1KGP3 and Haplotype Reference Consortium (HRC) 85 were used as reference panels. 

1KGP3 and HRC consist of 82 million and 40 million variant sites across 5008 and 64940 

haplotypes, respectively and are therefore ideal for robust phasing of both rare and low 

frequency variants. In ExAC, recessive carrier frequencies were calculated based on the 

square of the carrier frequencies determined in the dominant analysis as this provides the 

expected frequency of observing an allele twice in a given individual. 

 

 

 

 

 

Figure 5.2: Schematic outlining the additive, dominant, and recessive 

association models. 
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5.2.11 Coverage adjustments for external controls 

Briefly, mean % 20X coverage was determined for each exon in both DECODE and 

ExAC. Exons exhibiting differential % 20X coverage of > 10% were removed from 

analysis. This is described in further detail (for single samples) in section 6.2.4. 

 

5.2.12 Statistical analyses using external controls (ExAC) 

Gene burden tests were used to evaluate the in-aggregate frequency (i.e. cumulative minor 

allele frequency (CMAF)) of T1 and T5 alleles across all pathogenicity rankings (see 

section 5.2.7) for every individual gene assessed within DECODE, EOMI and ExAC 

cohorts. Gene based p-values were calculated using the cumulative binomial probability 

distribution function in R 86. A weighted-minor allele frequency and minor allele carrier 

frequency (𝑤𝑀𝐴𝐹 and 𝑤𝑀𝐴𝐶𝐹, respectively) (equation 5.1 and 5.2) that are based on the 

ethnic structure of DECODE were determined using the MAF of each T1 and T5 allele 

within ExAC:  

 
 

 

 

 

where  𝑝̂ (𝐷𝐸𝐶𝑂𝐷𝐸) represents the proportion of ethnicity 𝑒 in the DECODE study and 

𝐸𝑥𝐴𝐶𝑀𝐴𝐹 and 𝐸𝑥𝐴𝐶𝑀𝐴𝐶𝐹 represent the allele and carrier frequencies, respectively, for 

𝑤𝑀𝐴𝐹 =  ∑ 𝑝̂ (𝐷𝐸𝐶𝑂𝐷𝐸)𝑒 𝐸𝑥𝐴𝐶𝑀𝐴𝐹𝑒

𝑀

e=1

 

 

𝑤𝑀𝐴𝐶𝐹 = ∑  

𝑀

e=1

𝑝̂ (𝐷𝐸𝐶𝑂𝐷𝐸)𝑒𝐸𝑥𝐴𝐶𝑀𝐴𝐶𝐹𝑒 

 

Equation 5.1 

Equation 5.2 
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a given variant in ethnicity 𝑒 in ExAC. The 𝑤𝑀𝐴𝐹 and 𝑤𝑀𝐴𝐶𝐹 meeting pre-specified 

pathogenicity criteria for all alleles were subsequently summed for each gene and used as 

the expected, gene-specific CMAF (additive) and cumulative minor allele carrier frequency 

(i.e. CMACF) (dominant) obtained by chance. For the recessive association model, we 

used the square of the CMACF as this provides the expected frequency of observing an 

allele twice in a given individual. The expected CMAF/CMACF for each gene was 

subsequently measured against the observed T1 and T5 allele/carrier counts in DECODE 

using a sample size of 104 alleles for the additive analysis and 52 cases for the dominant 

and recessive analysis in order to determine the cumulative probability of observing an 

aggregate frequency higher than what is expected in ExAC (i.e. the right-tailed probability) 

using the survival function: 

𝑃 (𝐷𝐸𝐶𝑂𝐷𝐸 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 𝑎𝑙𝑙𝑒𝑙𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 > 𝐸𝑥𝐴𝐶 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 𝑎𝑙𝑙𝑒𝑙𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)𝑗 

 

where 𝑗 represents each individual gene. Exome wide significance was uniquely 

determined according the “discrete method” of multiple hypothesis correction for discrete 

distributions described by Westfall and Wolfinger 87 for all association tests. Briefly, 

discreteness is incorporated into multiplicity adjustments by sampling the maximum 

permuted p-values 𝑝𝑝𝑒𝑟 across 𝑚 genes (based on N observances; where N = number of 

alleles or carriers) that fall below a significance threshold 𝑝𝑡ℎ𝑟𝑒𝑠ℎ to produce a family-wise 

error rate (FWER) of 0.05 according to: 
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where 

 

 

 

 

 

 

P-value cutoffs for exome-wide significance are provided in Supplementary Table 6 and 7 

for each permutation of association model, MAF threshold and pathogenicity requirement. 

Gene-based p-values < 0.01 were deemed as being nominally significant. All statistical 

computations for this section were conducted in R version 3.2.2 unless otherwise stated. 

 

5.2.13 Statistical analysis using internal controls 

 

The Sequence Kernal Association Test (SKAT) was used to regress each variant in a gene 

on the binary phenotypic outcomes of: CAD and CAD-free using the skatMeta package in 

R 86,88. Outcomes were adjusted for age, sex, and BMI. Variants exhibiting differential 

missingness between case and control populations were removed from analysis. 

 

5.3 Results and Discussion 

 

 

5.3.1 Ethnic composition of the DECODE cohort 

 

The ethnic composition of the DECODE cohort is fully outlined in section 2.5.2. 

 

 

 

𝑚𝑎𝑥(𝑝𝑝𝑒𝑟 < 𝑝𝑡ℎ𝑟𝑒𝑠ℎ)           𝑖𝑓 𝑚𝑖𝑛 𝑝𝑝𝑒𝑟 <  𝑝𝑡ℎ𝑟𝑒𝑠ℎ 

0,             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

𝑝𝑚𝑖𝑛𝑖𝑢𝑚𝑢𝑚 = 

𝐹𝑊𝐸𝑅(0.05) = 1 − ∏ 1 − 𝑝𝑚𝑖𝑛𝑖𝑚𝑢𝑚

𝑀

j=1

 

 

Equation 5.3 
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5.3.2 Ethnic composition of the EOMI cohort 

 

The 736 individuals comprising the EOMI cohort generated by NHLBI GO 

ESP6500 are consisted of 560 (76.0%) Europeans, 146 (19.8%) Africans, 14 (19.8%) Latin 

Americans, and 28 (3.8%) members of minor or unknown ethnicities. Due to their sample 

sizes, only Europeans and Africans were used in association analysis.  

 

5.3.3 Ethnic composition of the ExAC database 

 

The 60706 participants within the ExAC dataset consisted of 33370 (55.0%) Non-Finnish 

Europeans (NFE), 5203 (8.6%) Africans (AFR), 5789 (9.5%) Latin Americans (AMR), 

4327 (7.1%) East Asians (EAS), 3307 (5.4%) Finnish Europeans (FIN), 8256 (13.6%) 

South Asians, and 454 (0.75%) members from minor ethnic groups. 

 

5.3.4 Additive analysis identifies known CAD GWAS genes in EOMI Europeans using the 

  

ExAC NFE population as the control dataset 

 

After interrogation of genes enriched for disease-causing T1 and T5 alleles in the 

EOMI European cohort, we detected an exome-wide significant associations of Cadherin 

EGF LAG seven-pass G-type receptor 2 (CELSR2) (P = 1.1x10-17) and a nominal 

association of the Apolipoprotein A-V (APOA5) (P = 0.001) (Table 5.1) with MI.  

 

5.3.4.1 CELSR2 

 

The association signal for CELSR2 was driven by 17 T5 nonsynonymous SNVs 

across 76 heterozygous and 1 homozygous carrier(s). All variants were predicted to be 

damaging using the M-CAP in silico pathogenicity tool. CELSR2 is a member of the 
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adhesion G protein-coupled receptors and is expressed ubiquitously, with highest 

expression shown in the liver and pancreas 89,90. An intergenic SNP (rs599839) localized 

to the CELSR2-PSRC1-SORT1 locus has independently associated with CAD/MI and 

LDL-C in recent GWAS meta-analyses at genome-wide significance (P = 2.9x10-10 for 

CAD/MI; P = 1.8x10-11 for LDL-C) 5,91. SORT1 was proposed as the gene driving this 

association due to its role in enhancing LDL-C catabolism as reported in murine 

knockdown studies 92. However, due to the inherent infrequency of rare variants, they are 

unlikely to exist in LD with common SNPs (tested in GWAS) in surrounding genes that 

may otherwise contribute to CAD/MI manifestation. Moreover, rs599839 was found to be 

localized to an expression quantitative trait locus (eQTL) (i.e. a region influencing gene 

expression levels) which was determined to regulate expression levels for all three genes 

(CELSR2, PSRC1, SORT1) in hepatocytes 93. An additional SNP localized to the 3’ UTR 

of CELSR2 (rs7528419) was independently associated with increased Lipoprotein-

associated phospholipase A2 activity, which results in production of pro-inflammatory 

factors (mainly lysophospholipids) within the arterial wall (P = 1.3x10-17; beta = 0.035 for 

effect allele) 94. This SNP is also independently associated with prevalent CAD, which may 

be mediated by its aforementioned pro-inflammatory effects (P=1.97x10-23) 94. Given that 

this SNP is found within the 3’ UTR of CELSR2, it may result in perturbed translational 

efficiency or mRNA stability which exhibit analogous functional effects to rare disease-

causing variants within the coding sequence. A SNP found within transcript sequence of a 

given gene may also be less likely to functionally effect neighboring genes, namely PSRC1 
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and SORT1. Taken together, there is reason to confirm the role for the burden of rare 

disease-causing variants in CELSR2 for predisposing risk to MI. 

 

5.3.4.2 APOA5 

 

APOA5 acts as a co-activator to the LPL enzyme, which is responsible for 

hydrolyzing triglycerides localized within chylomicrons and VLDL 2,32. The nominal 

association between burden of rare, disease-causing variants in APOA5 and MI in our work 

represents a replication of results from an exome sequencing study published by Do et al. 

2016 2, who also used the EOMI cohort samples (among others) in their analysis to identify 

association between rare variant burden and early MI. The association signal in our work 

was driven by 7 T1 nonsynonymous SNVs predicted to be damaging using the M-CAP in 

silico pathogenicity tool across 12 heterozygous carriers and a single nonsense variant 

across 1 heterozygous carrier (Table 5.2). A similar magnitude of effect for the association 

of APOA5 with CAD/MI was determined between our work and results from the Do et al. 

study (OR 2.72 and 2.2, respectively). The rs964184 SNP within the ZNF259-APOA5-

APOA1 locus has consistently demonstrated genome-wide significant association with 

CAD/MI in GWAS meta-analyses 5. However, the results in the aforementioned study in 

addition to our work identifies APOA5 as the risk gene driving association. The association 

of APOA5 with CAD/MI has also been shown to be mediated by elevated plasma 

triglycerides 2,95, consistent with its molecular function. 

The demarcation of two known CAD/MI genes establishes a proof of concept for 

our case-only study design. Nevertheless, due to lack of individual-level data for controls, 
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it is essential to manually examine the biological functional of novel genes exhibiting 

significant or suggestive association in order to reconcile phenotypic correlates to the 

burden of rare variation. 

Table 5.1: Association of CELSR2 and APOA5 with early MI in the EOMI European 

population.  

Gene 

EOMI 

European 

allele count 

ExAC NFE 

CMAF 
OR (95% CI) P-value 

CELSR2  Ψ 78 0.022945 
3.08 (2.54-

4.13) 
1.1x10-17 

APOA5 † 13 0.00431674 
2.72 (1.45-

4.84) 
0.001 

Ψ Association signal observed using only T5 alleles; † Association signal observed using 

T1 alleles 

 

5.3.5 Additive analysis identifies novel, biologically relevant genes in EOMI Europeans  

 

and Africans using the ExAC NFE and AFR populations as the control dataset 

 

Several genes with biological significance to CAD/MI were identified in our case-

only approach at either exome-wide or nominal significance. In EOMI Europeans, we 

identified nominal associations with endothelin-converting enzyme 2 (ECE2) (P = 0.002) 

and matrix metalloproteinase 9 (MMP9) (P = 0.0004) (Table 5.2). For EOMI Africans, we 

identified an exome-wide significant association with intestinal alkaline phosphatase 

(ALPI) (P = 2.2x10-5) and a nominal association with hydroxy-delta-5-steroid 

dehydrogenase, 3 Beta- Steroid Delta-Isomerase 7 (HSD3B7) (P = 0.0001) (Table 5.2). 
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5.3.5.1 ECE2 

 

ECE2 encodes for endothelin converting enzyme 2 which catalyzes the proteolytic 

conversion of big endothelin-1 to endothelin-1 within endothelial cells 96. While the role 

of endothelin-1 in CAD/MI has been well documented, the mechanism by which big 

endothelin-1 could predispose individuals to disease remains elusive. However, recent 

epidemiological analyses have demonstrated positive correlation of increased levels of 

plasma big endothelin-1 with future CVD events (including MI and revascularization 

procedures) and lower event-free survival (P=0.016) 97,98, thus establishing it as a 

prospective prognostic marker. Furthermore, elevated big endothelin-1 has been shown to 

be associated with increased coronary calcification 99, which could represent a putative 

mechanism by which CAD/MI risk is conferred. The association signal for ECE2 was 

found to be driven by 18 T1 nonsynonymous SNVs across 26 heterozygous carriers (Table 

5.2). All variants were predicted to be damaging by M-CAP. 

 

5.3.5.2 MMP9 

 

Matrix metalloproteinases (MMPs) are endopeptidases whose members are mostly 

responsible for the catalytic cleavage of proteins comprising the ECM - which are 

necessary for the formation of the fibrous cap overlaying atherosclerotic plaques 100. MMPs 

are highly expressed in a wide-array of vascular cell types (i.e. endothelial cells and 

vascular smooth muscle cells) and have shown to be vital mediators of CAD/MI onset in 

both epidemiological and functional studies 100–102. Over 20 subtypes of MMPs have been 

characterized with each having preferential affinity for different ECM proteins 100 which 
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has led investigators to suspect that this enzymatic family contains members that could 

either confer risk or protection to CAD/MI. MMP9 has consistently been shown to confer 

protection against plaque rupture by promoting vascular smooth muscle cell migration 101, 

which leads to reinforcement of plaque stability through increased ECM deposition. 

Moreover, murine models of MMP9 knockout (MMP9-/-) have shown that MMP9 inhibits 

platelet aggregation by catalyzing the cleavage of fibrin within the ECM 103. This is 

supported through clinical observations of increased MMP9 levels in individuals suffering 

an ACS (i.e. NSTEMI, STEMI), but not in individuals with stable CAD 104. This is 

primarily due to a compensatory mechanism in which MMP9 is upregulated to heal 

ruptured plaques by promoting smooth muscle cell migration 101. Taken together, these 

results support a protective role for MMP9 in plaque rupture and thrombus generation. 

Indeed, it is of high interest that we have discovered enrichment of rare disease-causing 

variants within MMP9 in an early MI cohort, as opposed to a case population that does not 

necessarily have to be afflicted with an ACS for study inclusion. Overall, we identify 6 T1 

nonsynonymous SNVs in MMP9 across 19 heterozygous carriers (Table 5.2). All variants 

were predicted to be damaging by M-CAP.  

 

5.3.5.3 ALPI 

 

The ALPI gene is most highly expressed by duodenal enterocytes and encodes 

intestinal alkaline phosphatase, an enzyme localized to the intestinal brush-border 

membrane responsible for the detoxification (via dephosphorylation) of local 

lipopolysaccharides (LPS) 105. LPS are able to induce a pro-inflammatory environment that 
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sufficiently enhances gut permeability and consequently enhances intestinal lipid 

absorption 106. Therefore, ALPI represents a robust negative regulator of intestinal fat 

absorption. In fact, in vivo murine models have shown that ALPI-/- mice present with 

significantly elevated plasma triglycerides after exposure to high-fat diets 106. We identified 

a total of 5 T5 nonsynonymous SNVs predicted to be damaging by M-CAP and a single 

nonsense variant across 9 heterozygous carriers (Table 5.2). 

 

5.3.5.4 HSD3B7 

 

The HSD3B7 gene demonstrates high expression in hepatocytes and encodes for 3 

beta-hydroxysteroid dehydrogenase type 7, which participates in the enzymatic cascade 

responsible for converting cholesterol to bile acids (cholic acid and chenodeoxycholic acid) 

107. Specifically, HSD3B7 catalyzes a reduction reaction that converts 7α-

hydroxycholesterol to 7α-hydroxy-4-cholesen-3-one, which is the second enzymatic 

process in the cholesterol to bile acid conversion 107. Individuals homozygous for HSD3B7 

variants typically develop congenital bile acid synthesis defect type I, which is 

characterized by impaired intestinal fat absorption 107. Heterozygous carriers of HSD3B7 

have also demonstrated markedly reduced enzymatic function and increased hepatic LDL-

C 107, however, it remains to be determined as to whether this is can elevate plasma LDL-

C to levels sufficient for atherosclerotic plaque development. A total of 5 T1 

nonsynonymous SNVs predicted to be damaging by MCAP contributed to the association 

signal for HSD3B7 and were identified across 6 heterozygous carriers (Table 5.2).  
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Table 5.2: Association of biologically relevant genes with early MI in EOMI European or 

African populations.  

Gene 

EOMI 

European/African 

allele count 

ExAC 

NFE/AFR 

CMAF 

OR (95% 

CI) ǂ 
P-value 

EOMI effect 

population 

ECE2 Ψ  26 0.012 
1.90 (1.28-

2.95) 
0.002 European 

MMP9 Ψ  19 0.0070 
2.44 (1.48-

3.95) 
0.0004 European 

ALPI † 9 0.0051 
6.10 (2.64-

12.7) 
2.2x10-5 African 

HSD3B7 Ψ  6 0.0027 
7.74 (2.54-

18.7) 
0.0001 African 

Ψ Association signal determined with T5 alleles; † Association signal determined with 

T1 alleles 

 

5.3.6 Additive and recessive analyses identifies novel, biologically relevant genes in 

DECODE cohort using a weighted estimate of all ExAC populations as the control 

dataset  

We have identified 5 novel genes (3 additive and 2 recessive) enriched for rare 

disease-causing variants within DECODE. Under the additive model, we show nominal 

associations with Carcinoembryonic antigen-related cell adhesion molecule 1 

(CEACAM1) (P=0.0002), Myotubularin Related Protein 9 (MTMR9) (P = 0.007), and 

DExH-Box Helicase 34 (DHX34) (P = 0.007). Under the recessive model, we identify an 

exome-wide significant association with butyrophilin like 3 (BTNL3) (P = 0.0002) and a 

nominal association with interleukin 7 receptor (IL7R) (P = 0.001). 

 

5.3.6.1 CEACAM1 

 

The CEACAM1 gene demonstrates high expression in both vascular endothelial 

cells and hepatocytes. CEACAM1 encodes for a transmembrane adhesion molecule which 
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has been shown to regulate endothelial cell permeability and mediate numerous 

intracellular signaling cascades 108. In vivo murine knockout of CEACAM1 (CEACAM1-

/-) exhibit a variety vascular aberrations 109 that produce appropriate conditions for the 

development of CAD. Specifically, CEACAM1-/- mice exhibit 2-fold greater protein 

expression of VCAM-1 109, which participates in leukocyte adhesion to the endothelial 

monolayer, leading to the establishment of an inflammatory foci. This observation provides 

support for a potential role of CEACAM1 in negatively regulating VCAM-1 expression. 

Furthermore, CEACAM1-/- mice show vast reductions (60%) in endothelial nitric oxide 

content 109, which was shown to compromise vessel relaxation and result in hypertension. 

Lastly, endothelial cells of CEACAM1 -/- mice are characterized by aberrant intercellular 

junctions due to decreased expression of vascular endothelial cadherin (VE-cadherin), 

resulting in increased vessel permeability 108,109.  

 In other work, CEACAM1 -/- mice developed spontaneous atherosclerosis and were 

characterized by significantly elevated levels of total cholesterol, LDL-C and triglycerides 

110 in addition to all the vascular abnormalities discussed above. This evidence is 

corroborated in our work as the 2 carriers of CEACAM1 variants demonstrated elevated 

levels of LDL-C and/or triglycerides beyond the 90th percentiles (Table 5.3). The 

association signal for CEACAM1 was driven by a single frameshift indel in two 

heterozygous carriers (Table 5.4). Neither individual was an FH or FCH mutation carrier. 

Further functional evidence is necessary to confirm a causal role of this variant is 

CAD development and progression. However, given that the variant in question is 
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heterozygous and disruptive, it is highly likely that the native CEACAM1 function as at 

least 50% compromised. 

Table 5.3: LDL-C and triglyceride levels for CEACAM1 rare  

variant carriers.  

DECODE ID  LDL-C (mmol/L) Triglycerides (mmol/L) 

0008 3.2 3.0 

44 6.2 3.0 

 

5.3.6.2 MTMR9 

 

The MTMR9 gene encodes Myotubularin-related protein 9 which demonstrates 

high expression in peripheral blood mononuclear cells. The function of MTMR9 has not 

been well documented, but SNPs within this gene have previously demonstrated nominal 

associations with systolic blood pressure in GWAS 111. More recently, SNPs within 

MTMR9 were found to significantly associate with hypertension and impaired fasting 

glucose in a Japanese population 112. Several GWAS meta-analyses have also consistently 

demonstrated strong association between loci regulating vessel tone and CAD, such as 

SH2B3 (P=1.0x10-9) and NOS3 (P=1.7x10-7) 5. Given the substantial risk conferred by 

hypertension on CAD onset, we sought to identify whether carriers of rare disease-causing 

variants in MTMR9 presented with elevated systolic blood pressure as compared to non-

carriers. After adjustment for age, sex, BMI, and anti-hypertensive medication (adding 10 

mmHg to systolic blood pressure), we indeed confirmed a significant association (P = 

9.6x10-4, beta = 27.6 mmHg) and will look to replicate this finding in additional cohorts. 

Overall, a total of 3 T1 nonsynonymous SNVs were identified across 5 heterozygous 

carriers (Table 5.4). 
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5.3.6.3 DHX34  

 

DHX34 is a member of the DExH/D box gene family and exhibits high expression 

within endothelial cells. Members of the DExH/D box gene family play essential roles in 

regulating mRNA expression by participating in mRNA synthesis, ribosomal biogenesis 

and nonsense-mediated decay (NMD) 113. Of these processes, DHX34 has shown to be 

necessary for the activation of NMD in human cells 114. NMD is a surveillance mechanism 

that functions to identify and degrade mRNA harbouring premature stop codons, thereby 

preventing the translation of truncated proteins 114,115. Variants perturbing the native 

function of DHX34 may result in disruption of numerous cellular processes which could 

confer risk for complex disease. We sought to investigate endothelial-specific effects of 

rare DHX34 variants via reprogramming peripheral blood leukocytes into iPSCs and 

subsequently differentiating these cells to the endothelial lineage using glycogen synthase 

kinsase-3 inhibitors and vascular endothelial growth factor.  

Endothelial cells derived from DHX34 variant carriers have demonstrate perturbed 

tube formation compared to healthy iPSC-derived endothelial cells and human umbilical 

vein endothelial cells (HUVECs). This observation is suggestive of differential angiogenic 

capacity between DHX34-carrier and healthy endothelial cells which likely results in 

decreased ability to form compensatory vascular networks to perfuse ischemic tissue. 

Secondly, DHX34-carrier endothelial cells demonstrate increased expression (compared to 

baseline established by healthy iPSC-derived endothelial cells and HUVECs) of I-CAM1 

on their cell surface during inactive states. I-CAM1 is an adhesive proteins responsible for 

mediating the process of leukocyte extravazation (see section 1.8.2) into the tunica intima 
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and establishing the foci for plaque formation. Therefore, expression of I-CAM1 in an 

inactive state can render endothelial cells primed for an inflammatory processes. Lastly, 

we observe that DHX34-carrier endothelial cells are characterized by an aberrant “jagged” 

morphology, which impedes their ability to form adhesive monolayers necessary to 

regulate cell-to-cell permeability. We observe a total of 3 T1 nonsynonymous SNVs 

predicted to be damaging by M-CAP across 3 heterozygous carriers (Table 5.4). 

 

5.3.6.4 BTNL3 

 

BTNL3 is a member of the butyrophilin superfamily and demonstrates high 

expression within the antigen-presenting cells (APCs) of the innate immune system 116. 

BTNL3 functions as a potent negative regulator of T-cell activation as T-cells have been 

robustly shown to play a pivotal role in atherosclerotic plaque instability 40,116.  

Specifically, in vitro models of cultured murine CD4+ T-cells demonstrate significant 

inhibition in proliferative capacity when co-cultured with both APCs that overexpress 

BTNL3 and stimulatory ligands 116. Interestingly, addition of a BTNL3 monoclonal 

antibody was able to rescue normal T-cell activation as demonstrated by a return to baseline 

proliferation rate in the presence of stimulatory ligands 116. We identified a single 

homozygous carrier of a T5 nonsynonymous SNV in BTNL3 predicted to be deleterious 

according to SIFT and damaging according to Polpyhen2-HDIV/HVAR (Table 5.4). 

 

5.3.6.5 IL7R 

 

IL7R is largely expressed in both B and T-lymphocytes and is responsible for their 

maturation and proliferation as IL7R knockout (IL7R-/-) mice show a 10-fold reduction in 
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precursor B-cells 117. However, it has also been shown that IL7R is expressed in human 

microvascular endothelial cells (HMEC) where it shown to positively contribute to 

endothelial cell proliferation in a dose-dependent manner after the administration of 

exogenous Interleukin 7 (IL-7) 118. We identified a single homozygous carrier of a T5 

nonsynonymous SNV in IL7R with a CADD score >20 (Table 5.4). 

Table 5.4: Association of biologically relevant genes with early CAD in DECODE.  

Gene 

DECODE 

allele or 

carrier count  

ExAC 

wCMAF 

or 

wMACF 

OR (95% 

CI) 
P-value 

Association 

model 

CEACAM1 †  2 0.0002 
95.4 (10.2-

417) 
0.0002 Additive 

MTMR9 †  5 0.0070 
4.15 (1.40-

10.7) 
0.007 Additive 

DHX34 † 3 0.0051 
7.75 (1.61-

24.2) 
0.007 Additive 

BTNL3 Ψ  1 4.91x10-6 - 0.0002 Recessive 

IL7R Ψ 1 2.4x10-5 - 0.001 Recessive 

Ψ Association signal determined with T5 alleles; † Association signal determined with 

T1 alleles; wMACF represents the DECODE-weighted frequency of the CMACF for a 

given gene (see section equation 5.2 and section 5.2.10) 

 

5.3.7 SKAT analysis identifies CLEC4D as novel CAD gene in DECODE cohort using  

 

CVD-free ORIGIN samples as the control dataset 

 

Unlike burden test, variance-component tests such as SKAT are able to regress the 

CAD phenotype on each rare variant within a gene in addition any specified covariates 23. 

As such, individual variants are not assumed to act in the same direction or confer the same 

magnitude of effect. Therefore, we used a less stringent pathogenicity filter (T1 alleles that 

are disruptive or nonsynonymous SNV predicted to be deleterious/damaging by SIFT or 
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Polphen2-HDIV/HVAR) to conduct SKAT, which has substantially greater power 

(compared to burden tests) when neutral or protective variants are expected to be present.  

After adjusting for age, sex, and BMI, we discovered an exome-wide significant 

association with C-Type Lectin Domain Family 4 Member D (CLEC4D) (P = 3.1x10-6), 

which is highly expressed within cells of the innate immune system, including 

macrophages, monocytes and neutrophils 119. In vivo analysis of murine knockout models 

(i.e. CLEC4D-/-) was found to induce pulmonary inflammation mediated by excessive 

neutrophil recruitment 119. While the role for CLEC4D has not yet been demonstrated in 

CAD, the molecular phenotype exhibited in knockout studies is indeed consistent with 

what would be expected to confer CAD risk. Therefore, this gene represents a candidate 

for functional follow-up in the macrophage arm of this study. 

 

5.4 Conclusion 

 

In this chapter, we have leveraged the size of the ExAC database to identify 

numerous genes that associate with CAD at exome-wide or nominal significance using the 

in aggregate burden test for rare variants. Associations identified in previously known CAD 

genes (i.e. CELSR2 and APOA5) using the EOMI case cohort represent a proof-of-concept 

of our case-only study design. Moreover, the delineation of novel, biologically relevant 

genes in EOMI provides grounds to perform replication analyses in larger case cohorts in 

order to robustly establish their putative roles in conferring risk for CAD. We do not report 

any exome-wide significant findings in the DECODE cohort under an additive model of 

inheritance, but have identified several genes demonstrating both nominal significance and 
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biological plausibility in the context of CAD. One such example is DHX34, for which we 

have established a robust vascular phenotype that is consistent with what is observed during 

CAD progression. We have indeed identified 2 genes: BTNL3 and IL7R that reach exome-

wide and nominal significance, respectively, under the recessive model of inheritance. 

Since associations for both genes are driven by variants with homozygous or trans 

compound heterozygous genotypes, they functionally represent human gene knockouts. 

Consequently, the demarcation of biologically relevant genes in recessive-based analyses 

should be followed-up for clinical validation, regardless of the statistical significance level. 

Lastly, we used ~400 internal CVD-free control samples to conduct a SKAT analysis which 

detected an exome-wide significant association with CLEC4D. 

We expect that the continual growth of the DECODE study will facilitate the 

discovery of additional genes associated with CAD and provide further supporting 

evidence genes currently exhibiting nominal significance.  
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CHAPTER 6 – ‘N of 1’ Benchmarking for the Calibration of 

Individual Sequences to Big Data: A Novel Methodology to 

Facilitate Construction of Rare Variant Gene Risk Scores 
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6.1 Introduction 

 

The recent development of large sequencing datasets such as ExAC and gnomAD 

have substantially improved the ability to discern rare disease causing variants of high 

effect from benign polymorphisms in cohorts with small sample sizes. Recent work 

published by Wilfert et al. 2016 120 has also demonstrated utility of these ‘Big Data’ sets 

in facilitating the identification of genome-wide significant variants in single samples (i.e. 

the ‘N of 1’ problem) by leveraging null distributions generated from gene-based 

pathogenicity scores. However, this approach demonstrates best results in cases of 

Mendelian disease and may not necessarily be well suited for stratifying individuals 

according to risk for complex diseases such as CAD, which can be driven by the additive 

effect of multiple rare risk alleles across several genes. Moreover, these approaches cannot 

necessarily account for biases inherent within population sub-structure and sequencing 

artefacts that may be confounding ‘N of 1’ association signals. 

In this chapter we establish rationale that population sub-structure and sequencing 

artifacts can readily impede the ability to detect ‘N of 1’ associations. By using consensus 

reference sequences that are devoid of artefactual variants, we demonstrate that individual 

ethnic background significantly compromises single case sequences from achieve 

calibration with Big Data sets. Additionally, we use high coverage sequences with variants 

filtered at multiple stringencies to demonstrate the impact of sequencing artifacts on single 

case calibration and the corresponding gains/losses achieved in sensitivity and specificity. 

We propose the development of single case correction factors (CF), which are 

coefficients weighted based on the magnitude of discrepancy in total mutation load 
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between local sequences and Big Data. We demonstrate practical applications for CF in 

the calibration of single case exomes to the ExAC dataset (i.e. ‘N of 1’ benchmarking) for 

the construction of rare variant gene scores (RVGS), which will allow for un-confounded 

assessment of individual-level associations with CAD based on the count of variant alleles 

(meeting specified pathogenicity criteria) in well-established CAD risk genes. RVGS may 

be incorporated into risk stratification models and be used as a factor to inform appropriate 

clinical decisions. Furthermore, single sample RVGS can be leveraged to compute cohort-

wide associations, which is particularly attractive for populations of small sample size that 

maybe underpowered detect rare variant association signals using standard approaches.  

 

6.2 Methods 

 

6.2.1 DECODE study population 

 

The DECODE population is described in detail in section 2.3.1. 

 

 

6.2.2 Leuven study population 

 

A total of 77 CAD-free individuals of Belgian ancestry were recruited as part of a severe 

white-matter disease study by the University of Leuven underwent whole-exome 

sequencing in our Laboratory using methods described in sections 2.4.3-5. This cohort was 

used as an internal reference population for downstream analyses to ascertain potential 

biases inherent to our sequencing and bioinformatics pipelines. 
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6.2.3 Variant calling and annotation 

 

Variant calling and annotation was performed as described in sections 2.4.7-8. 

 

 

6.2.4 Variant pathogenicity filtering 

 

Variant pathogenicity filtering was conducted identically as described for association 

analysis (section 5.2.7). Briefly, T5 alleles that were either disruptive or nonsynonymous 

SNVs predicted deleterious/damaging by SIFT or Polyphen2-HDIV/HVAR were used to 

generate gene-based cumulative sum plots for GIAB reference samples. T5 alleles that 

were either disruptive or nonsynonymous SNVs predicted to be damaging by M-CAP were 

used for the rest of the analyses. 

 

6.2.5 Benchmarking correction factors for local comparison sequences 

 

Correction factors for each sample were calculated based on the ratio of mutation loads 

between a comparison sample and the ExAC dataset. Specifically, variant counts across 

~18500 autosomal protein-coding genes were aggregated to generate observed variant 

counts in a comparison sample, and then compared to the aggregate expected aggregate 

variant count obtained from ExAC frequencies across the same set of genes (equation 6.1)  

 

 

 

where 𝐶𝐹 represents the correction factor for individual 𝑖 which is equal to the ratio 

between the aggregate variant count 𝑉 for gene  𝑗 to 𝑀. Expected ExAC variant counts 

were generated using ethnic-specific frequencies dictated by the ethnicity of the 

𝐶𝐹𝑖 =
∑ 𝑉𝑖𝑗

𝑀
j=1

∑ 𝑉𝐸𝑥𝐴𝐶𝑗
𝑀
j=1

 

 

Equation 6.1 
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comparison sample (e.g. samples of European ancestry would generate aggregate variant 

counts based on the Non-Finnish European subgroup in ExAC) in order to prevent 

population stratification bias. 

Variant counts were determined only across exons that did not demonstrate 

differential coverage between the comparison sample and ExAC in order to ensure that 

there was equal sensitivity to detect variants. The difference in % 20X coverage metric 

(defined in section 2.4.12) was calculated for each exon (𝐸𝑖 in equation 6.2) in ~18500 

protein-coding genes. Exons exhibiting an absolute difference in % 20X coverage of > 10% 

were excluded and thus did not contribute to mutation load for the comparison sample or 

ExAC (conditional 1). 

 

 
 
 

 

 

Lastly, all variant counts used to generate the correction factor were standardized to the 

minor allele according to conditional 2. Briefly, frequencies corresponding to the alternate 

allele (i.e. alternate allele frequency (AAF)) that were greater than 0.5 were flipped to the 

minor allele. This procedure serves to circumvent the exclusion of variants based on 

arbitrary assignment of reference and alternate alleles.  

 

 

 

 

𝑖𝑓 | Δ % 20𝑋 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 | 𝐸𝑖 > 10 

𝑡ℎ𝑒𝑛 𝑒𝑥𝑐𝑙𝑢𝑑𝑒; 

    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑘𝑒𝑒𝑝 

Conditional 1 

𝑖𝑓 𝐴𝐴𝐹 > 0.5; 𝑡ℎ𝑒𝑛 

               𝑡ℎ𝑒𝑛 𝑀𝐴𝐹 = 1 − 𝐴𝐴𝐹; 

                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑀𝐴𝐹 = 𝐴𝐴𝐹  

Conditional 2 
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6.2.6 Benchmarking correction factors for GIAB consensus sequences 

 

In order to evaluate the accuracy of exome-wide mutation load in ExAC, we determined 

correction factors using high-confidence sequence variants characterized by the GIAB 

consortium (using methodology developed by Zook et al. 2014 121) for 2 reference samples 

of differing ethnicities: NA12878 (European) and NA24631 (East Asian). Variants called 

in these reference sets were harmonized across 5 sequencing technologies, 7 read mappers 

and 3 variant callers to generate a “consensus” variant callset that were used as benchmarks 

against the ExAC dataset. Defining consensus variant calls also allows for the identification 

of “difficult-to-sequence” regions across the genome largely due to the presence of 

segmental duplications, short tandem repeats and structural variations. Characterization of 

these regions for different reference samples can be used to generate “high-confidence” 

genomic intervals that are free of difficult to sequence regions. High confidence region 

files and variant call sets (in variant call format) for version 3.2.2 of NA12878 and version 

3.3 of NA24631 were obtained from the GIAB ftp repository (ftp://ftp-

trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/NISTv3.3.2/) and (ftp://ftp-

trace.ncbi.nlm.nih.gov/giab/ftp/release/ChineseTrio/HG005_NA24631_son/NISTv3.3/) 

for use in our benchmarking analysis. 

Correction factors were generated as in Equation 6.1. Variant counts were determined only 

across exons that were both present within NIST v.3.2.2 high confidence regions and 

exhibiting high coverage in ExAC (% 20X coverage > 90) (conditional 3). All variants 

contributing to the correction factor were also standardized to the minor allele as stated in 

conditional 2. 

ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/NISTv3.3.2/
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/NISTv3.3.2/
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/ChineseTrio/HG005_NA24631_son/NISTv3.3/
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/ChineseTrio/HG005_NA24631_son/NISTv3.3/
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6.2.7 NA12878 & NA24631 Ampliseq 

 

Genomic DNA for the NA12878 and NA24631 reference samples was obtained from 

Coriell Cell Repositories 122 and underwent Ion AmpliseqTM library and template 

preparation as described in section 2.4.3. Exome libraries underwent template preparation 

on 2 IonChefTM instruments and were subsequently exome sequenced on 2 Ion S5XLTM 

sequencers (4 total runs), respectively as described in sections 2.4.4-5. This combination 

approach was selected in order to minimize technical biases that may have been exclusive 

to a particular instrument. Binary alignment (BAM) files generated from all 4 sequencing 

runs were merged using the samtools merge function to generate a combined BAM file 

with a mean coverage depth of 700X for NA12878 and 660X for NA24631. 

 

6.2.8 Evaluating true positives, false positives and false negatives in the NA12878- 

 

Ampliseq sequence at different variant filtering stringencies 

 

Variant calls for the high-depth NA12878-Ampliseq sequence were filtered according to 

default TVC 5.2 variant filtering settings in addition to the low, medium, and high Damiati 

variant filtering stringencies (discussed in section 2.4.7). Variants generated across all 

filtering stringencies were evaluated against the NA12878 GIAB truth set in order to 

ascertain the proportion of calls that were true positives, false positives and false negatives. 

The proportion of variant calls mutually present in both NA12878 Ampliseq variants and 

𝑖𝑓 (% 20𝑋 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 <  90 𝑖𝑛 𝐸𝑥𝐴𝐶)𝐸𝑖  𝑜𝑟 (𝑜𝑢𝑡𝑠𝑖𝑡𝑒 ℎ𝑖𝑔ℎ-𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑟𝑒𝑔𝑖𝑜𝑛)𝐸𝑖  

𝑡ℎ𝑒𝑛 𝑒𝑥𝑐𝑙𝑢𝑑𝑒; 

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑘𝑒𝑒𝑝 

 

Conditional 3 
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the truth set were evaluated as true positives. Conversely, variant calls present within 

NA12878 Ampliseq, but absent in the gold-standard set were set as false positives. Lastly, 

calls present in the gold-standard set, but absent in NA12878-Ampliseq were evaluated as 

false negatives. Identical variants with different genotypes (e.g. heterozygous in NA12878-

Ampliseq but homozygous in the gold-standard) were considered discordant and would be 

evaluated as either false positives or false negatives. All metrics were computed using RTG 

Tools’ vcfeval tool 123.  

 

6.2.9 Mutation load visualization 

 

Plots representing the cumulative sum of variant counts meeting specified frequency and 

pathogenicity criteria are shown to demonstrate the contribution of each gene to the overall 

mutation load. Gene indices on the plots (x-axis) are ordered by gene-based mutation rate 

(i.e. gene-based variant count adjusted for total gene length). In order to facilitate 

interpretation of these plots, an annotated example is provided below. The plateau of each 

cumulative sum distribution represents the mutation load. 
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6.2.10 Statistical analysis for cumulative sum distributions and mutation loads 
 

The 95% confidence intervals for ExAC cumulative sum distributions was determined by 

computing the cumulative Bernoulli variance on ExAC gene-based CMAF (equation 6.2).  

 

 

High  

mutation  

rate 

Medium  

mutation  

rate 

Low 

mutation  

rate 

Cumulative sum 

Distribution for 

 GIAB sequence 

Cumulative sum 

Distribution  

(with 95% CI) 

 for ExAC 

Gene Index 

Figure 6.1: Annotation figure for cumulative sum distribution plots. Red, green, and 

yellow shaded areas represent genes with high, medium, and low mutation rate in ExAC, 

respectively. Discrepancy in slope between ExAC (solid black line) and GIAB sequence 

(solid red line) indicate the difference in contribution of each gene to the overall 

mutation load.   

Equation 6.2 

 

95% 𝐶𝐼 = 2 𝑝𝑗 ± 1.96 √ ∑ 2 𝑝𝑗(1 − 𝑝𝑗)

𝑀

𝑗=1

 

 



M.Sc. Thesis – Ricky Lali              McMaster University – Biochemistry and Biomedical Sciences 

142 
 
 

where 𝑝 represents the ExAC CMAF from genes 𝑗 to 𝑀 and 2 represents a coefficient to 

convert the CMAF to a cumulative minor allele count (CMAC). 

P-values for differences in correction factors between or within ethnic groups was 

determined using a student’s t-test. All computations for this section and remaining 

methods sections were conducted in R version 3.2.2 unless otherwise stated. 

 

6.2.11 Rare variant gene scores 

 

Gene-based odds ratios generated from rare variant association analysis between the 

EOMI cohort and ExAC were used to compute beta coefficients according to equation 

6.3.  

 

Each gene-based beta value was subsequently used to weight the aggregate rare variant 

burden score (i.e. total number of rare alleles meeting a pre-specified pathogenicity criteria) 

observed for the corresponding gene within each individual from the DECODE (cases) and 

Leuven (control) cohorts. Weighted burden scores were summed across all genes to 

generate a rare variant gene score per individual according to equation 6.4 

 

 

 

where 𝑅𝑉𝐺𝑆 represents the rare variant gene score for individual 𝑖 across genes 𝑗 to 𝑀 and 

where 𝑅𝑉𝐵 represents the aggregate rare variant burden score for individual 𝑖 in gene 𝑗. 

 

𝑅𝑉𝐺𝑆𝑖 =  ∑ 𝛽𝑗𝑅𝑉𝐵𝑖𝑗

𝑀

j=1

 

 

Equation 6.4 

𝛽𝑗 = ln(𝑂𝑅)𝑗 Equation 6.3 
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6.2.12 Statistical analysis for RVGS 

 

Per-sample rare variant gene scores were adjusted for correction factors and converted to 

standardized z-scores using population means and standard deviation for RVGSs generated 

from ExAC. Standard deviation of ExAC RVGS was computed through a beta-coefficient 

weighted cumulative Bernoulli variance based on the ExAC CMAF across a pre-specified 

set of genes (equation 6.5) 

 

 

where 𝑝 represents the ExAC CMAF from genes 𝑗 to 𝑀 and 2 represents a coefficient to 

convert the CMAF to a CMAC. 95% CI for proportions of individuals with significant 

RVGS was calculated using the modified Wald method. 

 

6.2.13 Endothelial secretome 

 

Due to the recent demarcation of numerous loci involved in vessel wall biology being 

associated with CAD, we sought to determine whether proteins encompassing the 

endothelial secretome demonstrated an increased mutational load in early CAD patients 

relative to CAD-free controls using our ‘N of 1’ benchmarking method. We used 

PUBMED literature searches to identify recent publications that may have curated a list of 

secreted proteins that characterize endothelial cells. A study published by Tunica et al. 

2009 mapped a total of 71 proteins to human umbilical vein endothelial cells which were 

used in our analysis (Supplementary Table 8). Gene identifiers for all 71 proteins were 

obtained from the HUGO Gene Nomenclature Committee (HGNC) database. 

𝜎𝐸𝑥𝐴𝐶 =  √∑  2 𝛽𝑗
2𝑝𝑗(1 − 𝑝𝑗)

𝑀

j=1

 

 

Equation 6.5 
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6.3 Results 

 

 

6.3.1 Evaluating the effect of population structure on mutation load using consensus  

 

(GIAB) sequences 

 

            After intersecting exons through “high-confidence” genomic regions and with 

sufficiently high coverage in ExAC (i.e. % 20X coverage > 90), an overall mutation load 

of 215 and 211 was determined for ExAC’s Non-Finnish European (NFE) and East Asian 

(EAS) populations, respectively (Figure 6.2 and Table 6.1). Corresponding mutation loads 

for the GIAB European (NA12878-GIAB) and East Asian (NA24631-GIAB) reference 

samples were 131 and 174, resulting in correction factors (CF) of 0.61 and 0.83, 

respectively (Figure 6.2 and Table 6.1). The cumulative sum distributions for ExAC NFE 

and NA12878-GIAB are significantly discrepant (P<0.05) across genes that are highly 

mutable (as indicated by the difference between the slopes) (Annotated Figure and Figure 

6.2A). In contrast, ExAC EAS frequencies adhere closely to observed variant counts in the 

NA24631-GIAB reference samples across all genes (Figure 6.2B). 
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Table 6.1: Total mutation loads and corresponding correction factors for GIAB  

sequences and ExAC for NFE and EAS ancestries. 

 ExAC NFE NA12878-GIAB ExAC EAS NA24631-GIAB 

Mutation load 215 131 211 175 

CF 0.61 0.83 

 

In order to identify whether the patterns observed for T5 alleles in the NFE and 

EAS populations was consistent across the entire allele frequency distribution, all variants 

meeting a pre-specified pathogenicity criteria were spit across 6 allele frequency bins 

(Table 6.2). Cumulative sum distributions were also plotted on an exon-by-exon basis in 

order to reduce stochasticity observed in the gene-based plots by increasing the total 

A. B. 

Figure 6.2: Gene-based cumulative sum distributions for ExAC and GIAB 

reference samples. (A) Black and red solid lines represent the ExAC NFE 

population and the NA12878-GIAB reference sample, respectively. (B) Black and 

red solid lines represent the ExAC EAS population and the NA24631-GIAB 

reference sample, respectively. Shaded areas correspond to 95% confidence 

intervals on ExAC variant counts. Gene indices (x-axis) are ordered from highest to 

lowest ExAC mutation rate. Genes beyond the black dotted line are mutually absent 

of variants in ExAC and reference samples.  
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number of observations and refine interpretation of population-specific effects (Figure 

6.2A and 6.2B).  

The mean CFs determined for the “rare” allele frequency bins (i.e. bins 1-3) were 

0.81 +/- 0.12 and 0.61 +/- 0.03 for ExAC EAS-NA24631 GIAB and ExAC NFE-NA12878 

GIAB, respectively (Table 6.3). Mean CFs for “common” allele frequency bins (i.e. bins 

4-6) were 1.00 +/- 0.05 and 0.80 +/- 0.09 (Table 6.3). The CFs for rare allele frequency 

bins were significantly more impactful (i.e. further from CF of 1) than those for common 

bins in the ExAC NFE-NA12878 GIAB comparison (P<0.05). No significant difference 

between rare and common CFs in the ExAC EAS-NA24631 GIAB comparison was 

observed. However, CFs were significantly higher and better calibrated (i.e. CF closer to 

1) across all allele frequency bins in ExAC EAS-NA24631 GIAB compared to ExAC NFE-

NA12878 GIAB (P<0.05).  
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Table 6.2: Allele frequency bins used to generate mutation loads 

Bin number Lower bound frequency Upper bound frequency 

1 0 0.001 

2 0.001 0.01 

3 0.01 0.05 

4 0.05 0.1 

5 0.1 0.25 

6 0.25 0.50 

 

 

A. 
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B. 

Figure 6.3: Exon-based cumulative sum distributions for ExAC and GIAB reference 

samples across 6 allele frequency bins. (A) Black and red solid lines represent the ExAC 

NFE population and the NA12878-GIAB reference sample, respectively. (B) Black and red 

solid lines represent the ExAC EAS population and the NA24631-GIAB reference sample, 

respectively. Shaded areas correspond to 95% confidence intervals on ExAC variant 

counts. Exon indices (x-axis) are ordered from highest to lowest ExAC mutation rate.  
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Table 6.3: Correction factors for ExAC EAS-NA24631 GIAB and ExAC NFE-NA12878 

GIAB. Blue and green sections represent rare and common allele frequency bins, 

respectively. Means +/- SD CFs are provided for rare and common bins in each 

comparison. 

Bin number 

Correction 

factor ExAC 

EAS and 

NA24631 GIAB 

Mean +/- 

SD 

Correction 

factor ExAC 

NFE and 

NA12878 GIAB 

Mean +/- SD 

1 0.71 
0.81 +/- 

0.12 

0.62 

0.61 +/- 0.03 2 0.76 0.63 

3 0.95 0.56 

4 0.96 
1.00 +/- 

0.05 

0.73 

0.80 +/ 0.09 5 1.05 0.78 

6 1.00 0.91 

 

6.3.2 Evaluating the effect of sequencing artefacts on mutation load using the NA12878- 

 

Ampliseq sequence 

 

            Variant calls for the NA12878-Ampliseq sequence were filtered using default TVC 

5.2 parameters in addition to all 3 Damiati filters (see section 6.2.7 in Methods and section 

2.4.7) in order to evaluate the effects of filtering stringency on CFs. Default stringency 

resulted a mutation load closest to what is expected in ExAC (173/215; CF = 0.8) (Table 

6.4), but retains the most false positive variants (Table 6.5). The mutation loads steadily 

deviate away from what is expected in ExAC as variant filtering stringency increases, 

resulting in more extreme CFs (Table 6.4).  
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Table 6.4: Mutation loads and CFs for NA12878-Ampliseq sequence using Damiati 

variant filtering criteria 

 Mutation load CF 

ExAC NFE 215 NA 

NA12878-Ampliseq 

Default 
173 0.80 

NA12878-Ampliseq Low 159 0.74 

NA12878-Ampliseq Med 156 0.72 

NA12878-Ampliseq High 143 0.66 

 

 

Table 6.5: Proportion of variants retained (relative to default settings on TVC 5.2) for each 

Damiati stringency using T5 alleles that are either disruptive or nonsynonymous SNVs 

predicted to be deleterious/damaging according to SIFT or Polyphen2-HDIV/HVAR. True 

positives, false positives, and false negatives were determined using the NA12878-GIAB 

as the truth set 

 

6.3.3 Evaluating heterogeneity in mutation loads of local European sequences  

 

We generate cumulative sum plots, mutation loads, and CFs for 39 DECODE 

Europeans and 77 Leuven sequences using T5 alleles that were either disruptive or 

nonsynonymous SNVs evaluated as “damaging” by M-CAP. Using this pathogenicity 

criteria, the mean mutation loads for DECODE and Leuven were 77.4 +/- 12.8 and 72.5 

+/- 12.7, respectively. The corresponding CFs were both determined to be 1.03 +/- 0.15. 

No significant differences were detected for either mutation load or CF between DECODE 

Variant filtering 

stringency 

True Positive 

retained (%) 

False positives lost 

(%) 

False negatives 

gains (%) 

Low 99 35 4 

Medium 97 40 23 

High 87 54 44 
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and Leuven cohorts (P>0.05). Overall, 15% (95% CI 6.9-30.1%) and 45% (95% CI 34.8-

56.5%) of CFs were < 1 for DECODE and Leuven, respectively (Figure 6.3).  

Cumulative sum distribution plots for exemplar local samples showcasing 

variability in mutation load are provided in Figure 6.4. The three samples depicted illustrate 

instances where mutation load is inflated (Figure 6.5A), deflated (Figure 6.5B), and well-

calibrated (Figure 6.5C) as compared to what is expected in ExAC. The mutation loads and 

corresponding correction factors for each interrogated DECODE and Leuven sample is 

provided in Supplementary Table 9.  

 

 

 

 

 

  

 

 

 

 

 

 

Figure 6.4: Scatter plot of correction factors for each sample of 

DECODE (orange) and Leuven (blue) cohorts. Correction factors 

are ordered from smallest to largest. 
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6.3.4 Using CFs to calibrate construction of RVGS in CAD and CAD-free cohorts  

 

            The gene-based beta values obtained from association analysis conducted using 

EOMI European cases and ExAC NFE controls (see section 5.3.4) were used to construct 

sample-wise RVGS in DECODE Europeans and Leuven (CAD-free) participants 

according to equations 5.2 and 5.3. Several p-value thresholds were used to arbitrate the 

selection of which genes from the above association analysis contributed to the RVGS 

calculation (Table 6.5). Using a stringent p-value threshold of 0.001, we observed a 

significantly higher RVGS in DECODE European participants compared to expected mean 

in ExAC NFE (0.240 vs 0.130; z-score = 1.75; p-value = 0.04) (Table 6.6). In contrast, no 

significant deviation in mean RVGS was determined for CAD-free controls as compared 

to expectation in ExAC NFE (0.09 vs 0.130; z-score = -0.721; p-value = 0.231) (Table 6.6). 

In increasing the association gene-based p-value threshold by 10-fold (i.e. p < 0.01), we 

again observed significant elevation in mean RVGS among DECODE European 

Figure 6.5: Examples cumulative sum distributions generated from local 

sequences showcasing different single-sample calibration with ExAC. Plots depict 

single sample sequences that that are inflated (A), deflated (B), and well-calibrated (C) 

to ExAC.  

Well-calibrated Deflated Inflated 
A. B. C. 
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participants (0.83 vs. 0.60; z-score = 1.84; p-value = 0.03) and no significant deviation in 

mean RVGS among CAD-free controls (0.46 vs. 0.60; z-score = -1.61; p-value = 0.053) 

compared to expectation in ExAC NFE (Table 6.6). ORs for CAD were also calculated 

based on RVGS in DECODE (OR 1.12 for p<0.001 and OR 1.27 for p<0.01) (Table 6.6). 

Among all p-value thresholds that were interrogated, CAD-free controls were determined 

to have mean z-scores < 0 (i.e. consistent depletion of CAD-risk alleles) while DECODE 

Europeans had z-scores > 0 (i.e. consistent enrichment of CAD-risk alleles).  

            Before incorporation of correction factors and in using p < 0.01, 13% (95% CI 5-

27%) (5/39) DECODE Europeans and 5% (95% CI 2-13%) (4/77) CAD-free control 

participants demonstrated significant enrichment of CAD-risk alleles (i.e. z-score > 1.64). 

Following incorporation of correction factors, 15% (95% CI 7-30%)  (6/39) DECODE and 

3% (95% CI 0.2-10%) (2/77) CAD-free participants were enriched for CAD-risk alleles. 

Summary of z-scores and CAD ORs for p < 0.01 criteria are provided in Supplementary 

Table 10 for DECODE and CAD-free participants. The RVGS for a single DECODE 

participant (bolded sample in Supplementary Table 10) was substantially increased after 

incorporation of the CF, resulting in gain of an ‘N of 1’ association signal (i.e. z-score > 

1.64; p-value < 0.05).  
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Table 6.6: Association of CF-adjusted RVGS in DECODE Europeans and CAD-free 

controls 
EOMI 

European 

vs. ExAC 

NFE p-

value 

threshold 

N risk 

Genes 

used 

Ψ 

ExAC 

mean 

RVGS 

ExAC 

RVGS 

SD 

DECODE 

z-score of 

mean 

RVGS 

CAD-

free z-

score 

of 

mean 

RVGS 

P-value 

DECODE 

P-

value 

CAD-

free 

CAD OR 

in 

DECODE 

0.001 13 0.13 0.28 1.75 -0.72 0.04 0.231 1.12 

0.01 85 0.60 0.54 1.84 -1.61 0.03 0.053 1.27 

Ψ Refers to number of genes from EOMI-ExAC association analysis used to build RVGS  
 
 

6.4 Discussion 

 

            Benchmarking of human sequences to Big Data represents a novel approach to 

accurately and confidently identify enrichment of risk alleles that may confer susceptibility 

to complex diseases such as CAD. This is especially attractive for the conduct of ‘N of 1’ 

association analyses where the validity of results is largely dependent on the degree of 

calibration between a local sequence and large sequencing databases (i.e. ExAC). We 

demonstrate the rationale for the development of sample-specific correction factors in order 

to calibrate the mutation load of a single sample to what is expected in large sequencing 

databases. Specifically, in leveraging highly accurate sequencing genotypes from reference 

samples of differing ethnicity, we show the impact of population structure in producing 

deviations from expected mutation loads. 

            The ExAC NFE population demonstrated significantly elevated mutation load as 

compared to the NA12878 GIAB European sample across all genes (regardless of mutation 

rate) whereas the ExAC EAS population was well-calibrated with the NA24631 GIAB East 

Asian reference sample across all genes. It is unlikely that the difference in mutation rate 
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between NA12878 GIAB and ExAC NFE is due to technical artefacts in the ExAC 

database because if this were the case, the East Asian NA24631 sample should also be 

similarly affected by artefacts and exhibit an elevated mutation load.  

            Instead, the variation in degree of calibration appears to be population-specific and 

likely attributable to differences in population sub-structure within Europe and East Asia. 

Since Europeans have demonstrated a high degree of continental migration 124 and are 

characterized by greater geographical heterogeneity, it is likely that variation in population 

sub-structure is accounting for the difference in mutation loads between ExAC NFE and 

NA12878 GIAB. In contrast to Europeans, East Asian populations have exhibited 

significantly less continental migration 125and are localized to homogenized geographical 

regions. This is reflected by similar mutation loads observed between ExAC EAS and 

NA24631 GIAB.  

            In an effort to understand whether the magnitude of difference or similarity in 

mutation load was being driven by rare or common variants, we stratified the analysis 

according to 6 MAF bins. It was observed that mean correction factors calculated based on 

the mutation loads for ExAC NFE-NA12878 GIAB comparison were significantly more 

impactful (i.e. higher-weighted) for rare frequency bins compared to common. This 

observation is as expected since it has been well established that rare variants exhibit a 

higher degree of geographical specificity compared to common variants 14,126. No 

significant difference was observed between rare and common frequency bins in the ExAC 

EAS-NA24631 GIAB comparison, which further reflects the degree of population 

homogeneity in East Asian populations.  
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            We also show the impact of sequencing artefacts on mutation load calibration. In 

using the NA12878-Ampliseq high coverage sample, there was increased deviation from 

expected mutation load in ExAC NFE as variant filtering stringency increased. However, 

an increased stringency substantially dampened false positive rate while also increasing the 

frequency false-negative variants.  

            Due to the degree of genetic variability influenced by differences in population 

structure, sequencing chemistries, variant calling algorithms, and variant filtering criteria, 

we postulate that the incorporation of a correction factor can significantly democratize the 

conduct of ‘N of 1’ association analyses and provide robust results that are not otherwise 

confounded.  

            In the last portion of this chapter, we establish practical applications of per-sample 

correction factors for the construction of RVGS, which have the ability to detect 

enrichment of disease-causing alleles of high effect on the individual (i.e. ‘N of 1’) and 

cohort level (mean ‘N of 1’). Since the calculation of RVGS is based on summary statistics 

(i.e. odds ratios) obtained from large association analyses, they can be leveraged by smaller 

cohorts to detect meaningful enrichment of risk alleles from multiple genes which 1) cannot 

be detected in standard association analysis and 2) can inform clinical decisions for 

individual samples exhibiting significant elevation in their RVGS compared to expectation.  

            We performed an arbitrary selection of gene-based p-value thresholds obtained the 

EOMI European and ExAC NFE association to select genes used to construct RVGS for 

DECODE and internal CAD-free controls using ExAC to generate the null distribution. 

Using a p-value threshold of 0.001, we detected significantly elevated mean RVGS in 
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DECODE compared to ExAC expectation. Mean RVGS in CAD-free controls did not 

deviate significantly from ExAC expectation, which demonstrates that elevation in 

DECODE was not due to technical artifacts inherent in our sequencing or bioinformatics 

pipeline. When the p-value threshold increased to 0.01, we again observed significant 

elevation of mean RVGS in DECODE while mean RVGS in CAD-free controls remained 

insignificant. We tested several intermediary p-value thresholds which all trended in 

enrichment (positive z-scores) and depletion (negative z-scores) of CAD risk alleles in 

DECODE and CAD-free controls, respectively. Not all thresholds resulted in significant 

findings, which corroborates the necessity to simulate various scenarios of variant 

pathogenicity, frequency, and p-value thresholds in order to arrive at a consensus for 

optimal thresholds that are able to effectively discriminate between significant and null 

findings. 

            Lastly, we demonstrate the “gain of significance” for a single DECODE sample 

after incorporation of correction factors to the RVGS.  While mean RVGS remained 

significant for DECODE Europeans on the cohort level, 1 individual was found to have a 

deflated mutation load compared to ExAC NFE, which resulted in a higher-weighted 

correction factor (bolded sample in Supplementary Table 10). Although this is a small 

proportion, these findings are proof-of-concept for the necessity of calibrating individual 

samples to large sequencing databases in order to facilitate correct interpretation of ‘N of 

1’ association analyses which will have implications for potential clinical management in 

terms of risk stratification. 
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7.1 Conclusion 

 

In this work, we sought to validate the hypothesis that rare, protein-altering variants 

confer risk for the development of EOCAD. To evaluate this, we formulated three primary 

objectives: 1) to identify and biologically characterize rare, protein-altering genetic 

mutations responsible for very early CAD using burden and variance component testing 

under case-only and case-control study designs, 2) to develop per-sample correction factors 

that can be used to calibrate ‘N of 1’ benchmarking analyses in practical applications such 

as rare variant association testing and calculation of rare variant gene scores, and 3) to 

determine the prevalence of Mendelian dyslipidemias (especially familial 

hypercholesterolemia) in young, angiographically-proven CAD patients by evaluating rare, 

protein-altering variants in known genes. 

The first objective involved conducting RVAS in the form of burden and variance 

component testing in order to detect genes that were enriched for putative disease-causing 

variants beyond what is expected due to chance. Rare variant burden testing was conducted 

with two case populations (the EOMI cohort and DECODE) in a case-only study design 

using ethnically-matched populations in the ExAC dataset as controls. We replicated 

associations in two known CAD genes: CELSR2 and APOA5 at exome-wide and nominal 

significance, respectively. Emergence of these genes as top associations in addition to 

several genes with strong biological rationale for CAD/MI (ECE2, MMP9, ALPI, and 

HSD3B7) demonstrates the efficacy of our case-only study design and bioinformatics 

pipeline. In DECODE (using both burden and variance component testing), we identified 

exome-wide and nominal associations of several genes involved in endothelial and immune 
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cell function, suggesting prominent role of these cell types in the development of very early 

CAD. 

To complete our second objective, we selected several genes from the EOMI vs. 

ExAC analysis that exhibited nominal statistical significance to construct RVGS that could 

be leveraged to conduct single sample (i.e. ‘N of 1’) association analyses in DECODE 

participants by using derived descriptive statistics from public sequencing consortia (i.e. 

ExAC) as the reference population. However, we established that both population structure 

and frequency of sequencing false positives/negatives rigorously impacts cumulative 

mutation burden and, in turn, the degree of calibration between single samples and ExAC. 

Consequently, we developed single sample CFs to calibrate mutation loads in order to 

ameliorate spurious ‘N of 1’ associations driven by differences in population structure and 

sequencing artefacts as opposed to the additive effect of rare variants. This process, termed 

‘N of 1’ benchmarking, identified 6 DECODE participants with significant enrichment of 

CAD/MI risk alleles. Additionally, we observed significant enrichment of CAD/MI risk 

alleles across all DECODE participants (cohort-level), but not in a CAD-free population, 

which was processed with identical sequencing and bioinformatics pipelines. We conclude 

that CF-adjusted RVGS can facilitate detection of individual and cohort-level enrichment 

of risk alleles beyond what is detectable by standard RVAS methods. Moreover, CF-

adjusted RVGS can be used to inform disease prognosis and risk stratification, which can 

be especially useful for young individuals with advanced history of CAD/MI. 

To satisfy our third objective, we generated a semi-automated pipeline to delineate 

variants conferring risk for Mendelian dyslipidemias (especially FH). Briefly, our pipeline 
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involved the selection of rare protein-altering variants across 24 genes in the WDLV that 

have been previously annotated as “pathogenic” or “likely pathogenic” in the ClinVar 

database. The lipid panel and family pedigree of individuals harbouring such variants were 

subsequently evaluated to determine overall penetrance and degree of familial co-

segregation. Variants with no ClinVar annotation or established as VUS were manually 

assessed in InterVar by adjusting ACMG/AMP criteria based on patient phenotype, family 

history/co-segregation, mode of inheritance, and evidence of established functional effects 

in in vitro/in vivo models. Variants that generated a “pathogenic”, “likely pathogenic”, or 

“VUS” annotation in InterVar were established as causal, assuming phenotypic 

penetrance/family history was present. In using this pipeline, we identified 3 cases of FH 

and 2 cases of FCH, resulting in an overall diagnostic yield of 10%.  

In order to assess whether very early CAD populations harbour an increased 

frequency of FH-causing mutations, we conducted an association analysis using count 

variables from CAD-free and unselected patients populations as control data, which was 

mined from the MIGen and CHARGE consortia. We observed a significant enrichment of 

FH-causing mutations in DECODE both before and after applying an LDL-C cutoff for 

variant inclusion. Moreover, we observed an enrichment of FH-causing mutations even 

compared to other premature CAD populations with more liberal age-cutoffs than those 

applied in DECODE. Our findings provide support for the application of systematic genetic 

screening for individuals with very early CAD in order to evaluate the presence of putative 

disease-causing mutations within FH genes. This is especially important considering 
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individuals harbouring these mutations may not be receiving appropriate clinical 

management or may circumvent clinical FH diagnosis due being on statin regimens.  

 

7.2 Future directions 

 

The large majority of our future work will be building upon objective 2 in this work. 

Although we successfully demonstrated application of the CF-adjusted RVGS on the 

individual and cohort-level, we must conduct extensive simulation on random variables in 

order to assess impact of incorporation of the CF on statistical metrics including estimated 

OR and statistical power. Specifically, scenarios inclusive of deviations in population 

structure and frequency of sequencing artefacts between single exomes and ExAC will be 

incorporated into simulation models in order to comprehensively assess their individual on 

the above metrics. We will also be looking to generate more robust CAD/MI RVGS with 

the use of additional case samples from both the HeartGO cohorts of the NHLBI GO 

ESP6500 and the MIGen Exome Sequencing Consortium. Implementation of additional 

case samples will provide increased statistical power to effectively detect gene-based 

association signals driven by rare variants. Lastly, we hope to use our methodology to 

construct RVGS for other complex diseases (e.g. type II diabetes mellitus, stroke) and for 

gene-set panels (e.g. the endothelial secretome). Such applications will provide the 

opportunity to demonstrate the utility of our RVGS across a variety of complex diseased 

states in addition to demarcating specific gene-sets involved in complex disease 

development. Moreover, it will provide means to help stratify individual prognostic risk 

for a variety of conditions in order to reduce disease incidence. 
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Supplementary Information 

 

Table S1: Sanger sequencing primers. 

DECODE ID 0036 

Variant ID rs121908031 

Coding DNA change c.2043C>A 

Protien change p.Cys681X 

Forward primer  5’-ATGATCTCGTTCCTGCCCTG-3’ 

Reverse primer 5’-CAGAGAGAGGCTCAGGAGGG-3’ 

Length of amplicon 259 base pairs 

 

DECODE ID 59 

Variant ID rs551747280 

Coding DNA change c.82G>T 

Protien change p.E28K 

Forward primer  5’- AGACACAGGAAACGTGGTCA -3’ 

Reverse primer 5’- CTCCTGGGACTCATCAGAGC -3’ 

Length of amplicon 186 base pairs 

 

DECODE ID 68 

Variant ID rs397509365 

Coding DNA change c.1690A>C 

Protien change p.Asn564His 

Forward primer  5’- ACTGGACTGACTGGGGAACT -3’ 

Reverse primer 5’- AGCTTGGGCTTGTCCCAGA -3’ 

Length of amplicon 203 base pairs 

 

DECODE ID 68 

Variant ID NA 

Coding DNA change c.2393_2402delTCCTCGTCT 
Protein change p.Leu799_Phe801del 
Forward primer  5’- GGTACGATGCCCGTGTTTTC -3’ 

Reverse primer 5’- TGGTTGTGGCAAATGTGGAC -3’ 

Length of amplicon 225 base pairs 

 

DECODE ID 20 & 42 

Variant ID rs268 

Coding DNA change c.82G>T 

https://www.ncbi.nlm.nih.gov/variation/tools/1000genomes/?chr=19&from=11226873&to=11226873&gts=rs397509365&mk=11226873:11226873|rs397509365
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Protien change p.E28K 

Forward primer  Hs00784204_CE † 

Reverse primer Hs00784204_CE † 

Length of amplicon 213 base pairs 

† Identification of Thermofisher proprietary primers 

 

Table S2: Coverage information for 24 WDLV genes. 

Gene Effect of pathogenic variant Syndrome 
Mean % 20X  

coverage +/- SD 

LDLRAP1 Inc LDL-C Familail Hypercholesterolemia 
86.29864 +/- 

5.487477 

PCSK9 Dec  LDL-C Familail Hypercholesterolemia 
85.48926 +/- 

13.316117 

ANGPTL3 Dec LDL-C; Dec TG Hypertriglyceridemia 
84.45083 +/- 

14.097855 

APOB Inc/Dec LDL-C FH 
90.91872  +/- 

5.077927 

ABCG5 Inc sitosterol/campesterol Sitosterolemia 
81.27876 +/- 

12.165487 

ABCG8 Inc sitosterol/campesterol Sitosterolemia 
91.89265  +/- 

9.918207 

MTTP Dec LDL-C Hypercholesterolemia 
90.84445  +/- 

5.982988 

SAR1B Dec LDL-C Hypercholesterolemia 
91.99373 +/- 

10.211056 

LPL Inc LDL-C; Inc TG; Dec HDL-C FCH; FLD 
86.90728  +/- 

4.736173 

GPIHBP1 Inc TG Hypertriglyceridemia 
60.36872 +/- 

21.877923 

ABCA1 Dec HDL-C Hypoalphaproteinemia 
92.99476  +/- 

3.824263 

LIPA - - 
87.29760 +/- 

10.902002 

APOA5 Inc TG Hypertriglyceridemia 
95.68654  +/- 

4.895916 

APOC3 Dec TG Hypertriglyceridemia 
86.28375 +/- 

25.292422 

APOA1 Dec HDL-C Hypoalphaproteinemia 
85.79201 +/- 

11.190626 

SCARB1 - Premature CAD 
82.58899 +/- 

15.299940 

LIPC Inc TG; Inc HDL-C Hypertriglyceridemia 
93.40729  +/- 

7.815569 

LMF1 Inc TG Hypertriglyceridemia 
89.02909 +/- 

15.997057 

CETP Inc HDL-C Hypoalphaproteinemia 
94.23773  +/- 

7.927210 
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LCAT Dec HDL-C Hypoalphaproteinemia 
86.38898 +/- 

15.349061 

LIPG Inc HDL-C Hypoalphaproteinemia 
98.14990  +/- 

3.764887 

LDLR Inc LDL-C Familail Hypercholesterolemia 
90.82657  +/- 

8.040695 

APOE Inc IDL-C Familail Hypercholesterolemia 
52.95406 +/- 

24.454529 

APOC2 Inc TG Hypertriglyceridemia 
95.48983  +/- 

9.185995 

 

 

Table S3: Descriptions of ACMG/AMP criteria selected as positive in InterVar to 

determine pathogenicity of rs551747280 observed in DECODE 59. 

ACMG/AMP 

guideline code † 
Description 

PP2 Missense variant in a gene that has a low rate of benign missense 

variation and in which missense variants are a common 

mechanism of disease 

PP4 Patient's phenotype or family history is highly specific for a 

disease with a single genetic etiology 

BS2 Observed in a healthy adult individual for a recessive 

(homozygous), dominant (heterozygous), or X-linked 

(hemizygous) disorder, with full penetrance expected  

† Criteria BP1 (“Missense variant in a gene for which primarily truncating variants are 

known to    cause disease”) was initially set to positive for this variant by InterVar. 

However, it was manually set to negative given the extensive evidence supporting 

causality of multiple missense variants in LDLR for FH. 

 

Table S4: Exome sequencing datasets contributing to ExAC. 

Project title 

1000 Genomes Project 

Bulgarian Trios 

Finland-United States Investigation of NIDDM Genetics (FUSION) 

GoT2D 

Inflammatory Bowel Diseae 

METabolic Syndrome in Men (METSIM) 

Jackson Heart Study 

Myocardial Infarction Genetics Consortium 

NHLBI-GO Exome Sequencing Project 

National Institute of Mental health (NIMH) controls 
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SIGMA-T2D 

Sequencing in Suomi (SiSu) 

Swedish Schizophrenia and Bipolar Studies 

T2D-GENES 

Schizophrenia Trios from Taiwan 

The Cancer Genome Atlas (TCGA) 

Tourrete Syndrome Association International Consortium for Genomics (TSAICG) 

 

 

Table S5: Proportion of individuals from 5 community-based studies used to generate the 

EOMI cohort by NHLBI GO ESP6500. 

Study 

Proportion in EOMI 

with phenotype data 

(N=736) 

PennCATH 36/736 (4.9%) 

Cleveland Clinic Genebank 40/736 (5.4%) 

Massachusetts General Hospital Premature 

Coronary Artery Disease Study (MGH-PCAD) 
154/736 (20.9%) 

Heart Attack Risk in Puget Sound (HARPS) 428/736 (58.1%) 

Transnational Research Investigation Underlying 

Disparities in Myocardial Infarction Patients’ 

Health Studies (TRIUMPH) 

78/736 (10.6%) 

 

 

Table S6: Exome-wide significant cutoffs for different combinations of association 

model, MAF threshold and pathogenicity criteria in EOMI Europeans and Africans using 

the additive model of inheritance. 

 

T1 alleles 

EOMI 

EUR 

T5 alleles 

EOMI 

EUR 

T1 alleles 

EOMI 

AFR 

T5 alleles 

EOMI AFR 

All nonsynonymous SNV + 

disruptive 
1.655e-05 1.47e-05 2.52e-05 1.845e-05 

Nonsynonymous SNV predicted 

deleterious or damaging by SIFT 

or PP2-HDIV/HVAR + 

disruptive 

1.83e-05 1.67e-05 2.76e-05 2.12e-05 

Nonsynonymous SNV with 

CADD score > 20 + disruptive 

variants 

1.96e-05 1.805e-05 2.925e-05 2.29e-05 
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Nonsynonymous SNV predicted 

to be damaging by M-CAP + 

disruptive variants 

2.06e-05 2.035e-05 3.28e-05 2.8e-05 

 

 

Table S7: Exome-wide significant cutoffs for different combinations of association 

model, MAF threshold and pathogenicity criteria in DECODE 

 
T1 alleles 

DECODE 

T5 alleles 

DECODE 

All nonsynonymous SNV + disruptive Add: 3.78e-05 

Add: 3.615e-

05 

Rec: 1.41e-04 

Nonsynonymous SNV predicted deleterious or 

damaging by SIFT or PP2-HDIV/HVAR + 

disruptive 

Add: 5.355e-

05 

 

Add: 4.74e-05 

Rec: 3.17e-03 

Nonsynonymous SNV with CADD score > 20 + 

disruptive variants 

Add: 5.91e-05 

 

Add: 5.305e-

05 

Rec: 6.64e-03 

Nonsynonymous SNV predicted to be damaging by 

M-CAP + disruptive variants 

Add: 7.34e-05 

 

Add: 7.125e-

05 

Rec:8.84e-03 

 

Add = additive; rec = recessive 

 

Table S8: 71 genes coding for proteins encompassing the endothelial secretome. 

Obtained from Tunica et al. 2009 

Gene Category 

LAMP1 Lysosomal 

CTSD Lysosomal 

PRCP Lysosomal 

SAP Lysosomal 

P4HB Miscellaneous membrane proteins 

PDIA3 Miscellaneous membrane proteins 

VAS1 Miscellaneous membrane proteins 

LMAN2 Miscellaneous membrane proteins 

VAT1 Miscellaneous membrane proteins 

THBS1 Membrane antigens and receptors 
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MCAM Membrane antigens and receptors 

CDH5 Membrane antigens and receptors 

AXL Membrane antigens and receptors 

PROCR Membrane antigens and receptors 

CD93 Membrane antigens and receptors 

ICAM2 Membrane antigens and receptors 

CD59 Membrane antigens and receptors 

MANF Miscellaneous secreted proteins 

B2M Miscellaneous secreted proteins 

CLSTN1 Annexins and calcium ion-binding 

proteins 

CALR Annexins and calcium ion-binding 

proteins 

CALU Annexins and calcium ion-binding 

proteins 

ANXA5 Annexins and calcium ion-binding 

proteins 

ANXA2 Annexins and calcium ion-binding 

proteins 

MMRN1 Coagulation and related proteins 

TFPI Coagulation and related proteins 

SERPINE1 Coagulation and related proteins 

VWF Coagulation and related proteins 

S100A9 Protein S100 family 

S100A8 Protein S100 family 

S100A7 Protein S100 family 

CFI Inflammation-related proteins 

C4A Inflammation-related proteins 

C4B Inflammation-related proteins 

APP Inflammation-related proteins 

MYDG5 Inflammation-related proteins 

PTX3 Inflammation-related proteins 

IL1RL1 Inflammation-related proteins 

CXCL1 Growth factors and related proteins 

DKK3 Growth factors and related proteins 

FSTL1 Growth factors and related proteins 

CTGF Growth factors and related proteins 

CYR61 Insulin-like growth factor-binding 

proteins 
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IGFBP7 Insulin-like growth factor-binding 

proteins 

IGFBP4 Insulin-like growth factor-binding 

proteins 

IGFBP2 Insulin-like growth factor-binding 

proteins 

MMP1 Proteinases 

MMP2 Proteinases 

MMP14 Proteinases 

ADAM9 Proteinases 

ADAM10 Proteinases 

ADAM15 Proteinases 

ANPEP Proteinases 

PRSS23 Proteinases 

TIMP1 Proteinase inhibitors 

CST3 Proteinase inhibitors 

ITIH2 Proteinase inhibitors 

A2M Proteinase inhibitors 

LOXL2 Extracellular matrix components 

TGM2 Extracellular matrix components 

COL5A2 Extracellular matrix components 

COL4A2 Extracellular matrix components 

EMILIN3 Extracellular matrix components 

MMRN2 Extracellular matrix components 

SPOCK1 Extracellular matrix components 

EFEMP1 Extracellular matrix components 

FBN1 Extracellular matrix components 

LGALS3 Extracellular matrix components 

LGALS1 Extracellular matrix components 

HSPG2 Extracellular matrix components 

SPARC Extracellular matrix components 
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Table S9: Mutation loads for ExAC and local samples along with correction factors for 

39 DECODE European and 77 CAD-free samples 

ID 

ExAC 

mutation 

load 

sample 

mutation 

load 

CF (sample 

mutation 

load/ ExAC 

mutation 

load) 

cohort 

0004 64.461 99 1.535812352 DECODE 

0006 83.2521 88 1.057030393 DECODE 

0008 82.7825 86 1.03886691 DECODE 

0009 81.3824 91 1.118177886 DECODE 

0010 81.4732 85 1.043287854 DECODE 

0011 80.2178 89 1.109479442 DECODE 

0012 72.4228 84 1.159855736 DECODE 

0015 64.8238 79 1.218688198 DECODE 

0016 64.7258 61 0.942437173 DECODE 

0017 82.2134 90 1.094712054 DECODE 

0019 69.3246 89 1.283815558 DECODE 

0033 75.8458 72 0.94929449 DECODE 

0034 80.5963 82 1.017416432 DECODE 

0035 80.2764 89 1.108669547 DECODE 

1017 75.1895 64 0.851182678 DECODE 

20 77.5955 66 0.850564788 DECODE 

31 75.8624 71 0.935905007 DECODE 

37 82.9627 73 0.879913503 DECODE 

38 71.2326 74 1.038850189 DECODE 

39 76.9544 86 1.117544936 DECODE 

40 71.0045 78 1.098521925 DECODE 

41 76.6651 70 0.913062136 DECODE 

42 59.1335 48 0.811722628 DECODE 

43 64.0268 57 0.890252207 DECODE 

44 67.4057 51 0.756612571 DECODE 

45 65.5763 58 0.884465882 DECODE 

47 79.6407 98 1.230526603 DECODE 
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48 78.0061 80 1.025560822 DECODE 

55 77.0238 79 1.025657005 DECODE 

56 76.4724 76 0.993822608 DECODE 

57 76.8461 86 1.119119903 DECODE 

59 79.2117 94 1.18669338 DECODE 

60 78.9517 68 0.861286077 DECODE 

61 75.1944 66 0.877724937 DECODE 

64 76.2818 78 1.022524377 DECODE 

65 77.0448 81 1.051336365 DECODE 

66 79.4132 75 0.944427375 DECODE 

67 61.8038 63 1.019354797 DECODE 

68 79.1885 94 1.187041048 DECODE 

1021L 67.048 70 1.044028159 CAD-free 

1030L 74.7556 70 0.936384699 CAD-free 

1032L 73.6987 73 0.990519507 CAD-free 

1033L 69.8364 75 1.073938519 CAD-free 

1034L 73.6308 82 1.11366439 CAD-free 

1043L 73.0803 65 0.889432583 CAD-free 

1045L 74.257 68 0.915738584 CAD-free 

1069L 66.9176 77 1.150668882 CAD-free 

1072L 70.534 82 1.1625599 CAD-free 

1074L 64.5104 102 1.581140405 CAD-free 

1076L 79.3039 82 1.033997067 CAD-free 

1092L 73.2635 73 0.996403393 CAD-free 

1110L 73.9843 67 0.905597539 CAD-free 

1112L 73.3934 70 0.953764235 CAD-free 

1114L 71.8858 62 0.862479099 CAD-free 

1115L 75.5051 75 0.993310386 CAD-free 

1118L 76.2305 80 1.049448711 CAD-free 

1124L 76.6971 76 0.990910999 CAD-free 

1125L 78.5164 78 0.99342303 CAD-free 

250 64.9864 67 1.030984945 CAD-free 

252 60.6745 58 0.955920527 CAD-free 

376 67.4408 65 0.963808259 CAD-free 
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384 76.4858 85 1.111317395 CAD-free 

484 75.244 76 1.010047313 CAD-free 

487 69.1749 79 1.142032732 CAD-free 

514 76.7069 92 1.199370591 CAD-free 

515 76.2442 85 1.114838899 CAD-free 

552 76.3149 86 1.126909686 CAD-free 

567 76.5789 82 1.07079104 CAD-free 

572 77.5614 86 1.108798964 CAD-free 

573 66.7109 82 1.229184436 CAD-free 

593 77.9985 71 0.910273916 CAD-free 

608 77.554 75 0.967068107 CAD-free 

621 71.3016 82 1.150044319 CAD-free 

624 73.7562 86 1.166003672 CAD-free 

641 72.9285 80 1.096964835 CAD-free 

645 75.1716 77 1.024323016 CAD-free 

656 76.5532 75 0.979710842 CAD-free 

671 63.0993 56 0.887490036 CAD-free 

690 71.1258 68 0.956052515 CAD-free 

695 76.7941 64 0.833397357 CAD-free 

696 72.1456 84 1.164312169 CAD-free 

699 68.7925 96 1.395500963 CAD-free 

704 31.4668 33 1.04872437 CAD-free 

708 77.2935 71 0.918576594 CAD-free 

723 73.8917 70 0.94733238 CAD-free 

724 67.0486 68 1.014189707 CAD-free 

729 29.9163 44 1.470770115 CAD-free 

780 53.5542 63 1.176378323 CAD-free 

782 77.3321 75 0.969843054 CAD-free 

787 66.5684 61 0.916350701 CAD-free 

790 67.8881 68 1.001648301 CAD-free 

811 69.3525 83 1.196784543 CAD-free 

817 78.0461 74 0.948157563 CAD-free 

819 72.2124 62 0.858578305 CAD-free 

820 67.5497 76 1.125097521 CAD-free 
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830 70.1208 60 0.855666222 CAD-free 

833 72.4961 70 0.965569182 CAD-free 

860 72.4973 80 1.103489371 CAD-free 

863 75.3034 74 0.982691353 CAD-free 

866 73.5939 74 1.00551812 CAD-free 

871 73.3058 76 1.03675289 CAD-free 

930 74.5059 77 1.033475201 CAD-free 

943 21.6206 14 0.647530596 CAD-free 

947 51.9509 62 1.19343457 CAD-free 

958 77.8093 68 0.873931522 CAD-free 

962 75.7655 88 1.161478509 CAD-free 

967 69.7341 78 1.118534548 CAD-free 

975 67.6827 77 1.13766147 CAD-free 

977 74.6568 73 0.977807782 CAD-free 

979 76.6495 77 1.004572763 CAD-free 

988 70.8032 56 0.790924704 CAD-free 

997 74.7549 67 0.896262319 CAD-free 

999 73.7487 77 1.044086201 CAD-free 

B574 74.2564 57 0.767610603 CAD-free 

B633 66.6077 85 1.276128736 CAD-free 

C576 76.2868 62 0.812722516 CAD-free 

 

 

Table S10: CAD ORs and z-scores before and after incorporation of the CF in DECODE 

Europeans.  

ID CAD OR 
CF-adjusted 

CAD OR 
z-score 

CF-adjusted 

z-score 

0004 2.739918065 1.561207353 1.322725573 0.58458602 

0006 1.740582002 1.635116702 0.727314201 0.645287073 

0008 5.547526686 5.086733771 2.248468854 2.134669249 

0009 0.546459943 0.546459943 -0.793028345 -0.793028345 

0010 0.546459943 0.546459943 -0.793028345 -0.793028345 

0011 2.894506461 2.455448788 1.394754437 1.178870907 

0012 0.830191431 0.783693279 -0.244221667 -0.319862033 
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0015 0.546459943 0.546459943 -0.793028345 -0.793028345 

0016 7.45848602 8.749452014 2.636916351 2.846413544 

0017 2.172766682 1.928193555 1.018363196 0.86164873 

0019 1.660495524 1.29876195 0.6654993 0.343055876 

0033 2.145594915 2.308210103 1.001848338 1.097720657 

0034 16.37829462 15.45200462 3.669194338 3.592793324 

0035 0.546459943 0.546459943 -0.793028345 -0.793028345 

1017 16.72799952 30.42492826 3.69691972 4.481922006 

20 2.631421308 3.468337878 1.269702674 1.632102032 

31 0.546459943 0.546459943 -0.793028345 -0.793028345 

37 1.484395558 1.701290515 0.518377029 0.697350685 

38 0.546459943 0.546459943 -0.793028345 -0.793028345 

39 0.546459943 0.546459943 -0.793028345 -0.793028345 

40 0.546459943 0.546459943 -0.793028345 -0.793028345 

41 0.546459943 0.546459943 -0.793028345 -0.793028345 

42 0.806315542 0.882453378 -0.282516726 -0.164104908 

43 0.546459943 0.546459943 -0.793028345 -0.793028345 

44 0.546459943 0.546459943 -0.793028345 -0.793028345 

45 0.546459943 0.546459943 -0.793028345 -0.793028345 

47 0.546459943 0.546459943 -0.793028345 -0.793028345 

48 0.546459943 0.546459943 -0.793028345 -0.793028345 

55 2.854427417 2.738779304 1.376456282 1.322180035 

56 0.546459943 0.546459943 -0.793028345 -0.793028345 

57 0.546459943 0.546459943 -0.793028345 -0.793028345 

59 0.546459943 0.546459943 -0.793028345 -0.793028345 

60 0.546459943 0.546459943 -0.793028345 -0.793028345 

61 3.735659512 4.88274106 1.729540455 2.080957014 

64 1.42636625 1.396542788 0.466044888 0.438315036 

65 0.546459943 0.546459943 -0.793028345 -0.793028345 

66 † 3.29605432 3.663680773 1.565240055 1.704007847 

67 2.556323862 2.482540732 1.231705868 1.193270976 

68 1.314701978 1.144857333 0.359064286 0.177530887 

† Significant z-score after CF adjustment 

 


