Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/22318
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorSelvaganapathy, P. Ravi-
dc.contributor.authorMazumdar Bolanos, Melizeth-
dc.date.accessioned2017-10-30T15:18:11Z-
dc.date.available2017-10-30T15:18:11Z-
dc.date.issued2017-
dc.identifier.urihttp://hdl.handle.net/11375/22318-
dc.descriptionDesign and developmenten_US
dc.description.abstractRespiratory distress syndrome (RDS) is a major cause of mortality and long-term morbidity annually affecting 14% preterm infants worldwide. Therapies have been developed to overcome this common disorder; however, limitations exist with these treatments that often lead to complications including bronchopulmonary dysplasia (BPD). One approach to address RDS is to implement a microfluidic oxygenator that serves as a respiratory support system for preterm neonates while the lungs fully develop, extra-uterine. This artificial lung assist device (LAD) is characterised by its non-invasiveness (given that it is connected via umbilical vessels), pumpless configuration, ambient air operation, portability and low priming volume. Furthermore, the LAD is formed by single oxygenator units (SOU) that are stacked in a parallel array which allows for usage on different body weights. The objective of this thesis is to design an electrochemical system to provide an in-situ enriched O2 environment able to supply 1.9 ml O2/min for use in the SOU while maintaining the simplicity of operation of the oxygenator. An inexpensive, electrically powered and compact device was envisioned allowing for a higher permeation flux to fully oxygenate the blood. Moreover, the system would be easy to manufacture, low maintenance and avoid the risk of gas contamination. In the initial work, different designs of electrolytic cells were developed and tested. The two- chamber design connected by a gel membrane showed an O2 production 10 times higher than with previous designs with 42 mg O2/L. Subsequently, different supporting electrolytes were tested. NaOH demonstrated a better performance and no degradation of the electrode in contrast to NaCl and Na2SO4. Stainless steel mesh (SSM) and graphite sheet electrodes were then tested; it was observed that stainless steel produced 3.4 times more dissolved oxygen (DO) than graphite with 28.3 mg O2/L. Experimentation with electrolysis of water showed that the DO in water reached stability 3 min after the electrolysis process was initiated measuring a change of DO of 29 mg/L at 3 A. Furthermore, an active oxygenation (AO) system was developed for in-vitro experiments via electrolysis of water and compared to a passive oxygenation (PO) system exposing blood to enriched O2 air and ambient air, respectively. It was demonstrated that AO provided 300% greater oxygenation to blood than PO. The electrolysis chamber designed for the microfluidic oxygenator allows the oxygenator to maintain its essential characteristics of simplicity and low cost while increasing the rate of oxygenation of blood. Preterm neonates suffering from RDS need an artificial lung that can partially support the oxygenation of their blood. Thus, combining the oxygenator with the O2 generation in-situ system enables a greater blood O2 uptake of 300% making possible the development of an efficient artificial lung.en_US
dc.language.isoenen_US
dc.subjectartificial placentaen_US
dc.subjectoxygenatoren_US
dc.subjectrespiratory distress syndromeen_US
dc.subjectelectrolysisen_US
dc.subjectoxygen generationen_US
dc.subjectpreterm neonatesen_US
dc.subjectmicrofluidicsen_US
dc.titleELECTROLYSIS-BASED SYSTEM FOR GENERATION AND DELIVERY OF OXYGEN TO MICROFLUIDIC OXYGENATOR UNIT FOR PRETERM NEONATES WITH RESPIRATORY DISTRESS SYNDROMEen_US
dc.typeThesisen_US
dc.contributor.departmentBiomedical Engineeringen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Applied Science (MASc)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Mazumdar-Bolanos_Melizeth_201709_MASc.pdf
Open Access
3.16 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue